Mustafa Kibar and İbrahim Aytekin

SUPPLEMENTARY FILE

Material and Methods

8

5

6

7

9 Experimental animals and data collection

10 The milk yield traits lactation milk yield (LMY; kg), activity (A; step/day), 11 conductivity (C; mS/cm), milking time (MT; min), 305 days of lactation milk yield (LMY₃₀₅; 12 kg), 200 days of lactation milk yield (LMY₂₀₀; kg), 100 days of lactation milk yield (LMY₁₀₀; 13 kg), days in milk (DIM; day), peak milk yield (PMY; kg), days to peak milk yield (DPMY; 14 day), average daily milk yield (ADMY; kg) and dry period (DP; day)) were collected from the 15 herd management program of the enterprise. The activities of the animals during the day were 16 determined with the help of the mobility measurement module and pedometers in the Afifarm 17 herd management program (Ver 5.4.2). With the Afifarm MPC milk measure module, milk 18 yield, milking duration and milk conductivity values were determined during milking of the 19 animal with a deviation of less than 2%. In addition to all this information, numerical data 20 such as parity and dry period of the animal were recorded were also recorded with Afifarm 21 MPC. All obtained values were transmitted to the computer system via the online data line and transferred to excel from there. Also, LMY305, LMY200, LMY100, PMY, DPMY and 22 23 ADMY were obtained from the excel data. In the current farm, cows were milked three times 24 in a day and artificially inseminated.

25

26

DNA extraction and PCR-RFLP method

27 Whole blood samples from each animal were taken in tubes containing 28 Ethylenediaminetetraacetic acid (EDTA) from the Vena coccygea and stored at -18°C until 29 DNA extraction analysis. The EURX (Quick Blood DNA Purification Kit/Poland) commercial 30 kit and the QuickGene Mini 80 (Medical Expo/USA) device were used to extract genomic 31 DNA. In the study, primers (F 5' -TGGAGTGGCTTGTTATTTCTTCT 3' and R 5' -32 GTCCCCGCTTCTGGCTACCTAACT 3'F) discovered by Liefers et al. (2002) were used to 33 determine the Sau3AI polymorphism in the intron 2 region of the leptin gene. The PCR 34 reaction was performed in 20 µl reaction volume. The polymerase chain reaction (PCR) comprised of 4 μ mol L⁻¹ genomic DNA, 10 μ mol L⁻¹ 2x HOT FIREPol® Blend Master Mix 35

PCR Master Mix (2X; Solis BioDyne/Estonia), 0.5 μ mol L⁻¹ of each primer, and 5 μ mol L⁻¹ 36 37 ddH_2O in a 20 µl volume. The amplification was performed in a gradient thermal cycler 38 (T100 Thermal Cycler/Axonia Medical/Singapur) using the following program: an initial denaturation step at 94 °C for 2 min, followed by 35 cycles of 94 °C for 60 s, 58.1 °C for 60 s 39 and 72 °C for 60 s. The final extension was at 72 °C for 15 min. 5 µmol L⁻¹ PCR products 40 41 were used for control and 15 μ mol L⁻¹ for cutting. The PCR products were digested with 42 0.5 U of Sau3AI restriction enzyme in 25 µl volume (Thermo Fisher Scientific). The 43 restriction fragments were subjected to electrophoresis on 2% agarose with ethidium bromide 44 gel in 1X TBE buffer and then visualized under UV light and scored in a gel documentation 45 system.

46

47 *Statistical analysis*

48 The PopGene Version 1.32 software (Yeh et al., 1997) was used for statistical analysis 49 of allele and genotype frequencies and heterozygosity (Nei, 1973) of the gene region. The 50 Chi-square (γ^2) test was performed to determine whether the population was in Hardy-Weinberg equilibrium (Düzgüneş et al., 1983). Since the number of animals in the first 51 52 lactation is high, the analysis of the data is not suitable for the repeated measurement of 53 mixed model, therefore we used the General Linear Model to evaluate the effects of genotype 54 and environmental factors are shown below. However, factors such as year, parity, and 55 covariance vary in the models according to the different traits. Tukey's multiple comparison 56 test was performed to assess the differences between means that were significant as a 57 consequence of the analysis of variance. Minitab v16.1.1. software package (Minitab, 2010) 58 was used for statistical analysis.

- $59 \qquad Y_{ijklm} = \mu + \alpha_i + \beta_j + S_k + G_l + Cov_{(A,B)} + \epsilon_{ijklm}$
- 60 Y_{ijklm} : observed traits in *ijklm*-th animal,
- 61 μ : mean of traits for population,
- 62 α_i : effect of years (*i* = years),
- 63 β_j : effect of seasons (*j* = seasons),
- 64 S_k: effect of parity (k = parity),
- 65 G_l: effect of genotype, (l = genotypes),
- 66 Cov_(A,B): the estimated value of genetic or environmental covariance between two traits,
- **67** ε_{ijklm} : random error.
- 68 The Multiple Trait Derivative Free Restricted Maximum Likelihood (MTDFREML)69 package was utilized in the study to estimate variance components and genetic parameters

- vising the Best Linear Unbiased Prediction (BLUP) method (Boldman *et al.*, 1995). The genotype was not included in the statistical model used to estimate variance components and heritability. Also, factors such as year, parity, and covariance vary in the models according to the different traits. In the estimation of variance components, heritability, and EBVs, the
- statistically significant factors (*P<0.05, **P<0.01) as a result of the analysis of variance
 were included in the model (Supplementary Table S1).
- The following are the matrix descriptions of the models used to calculate the variance
 components (Mrode, 2014). The variance components were determined using Model, which
 included additive genetic effect (a) and maternal effect (m).
- $79 \qquad Y = Xb + Za + Wm + e$
- 80 Y: A vector of the observation for each feature
- 81 X, Z ve W: matrices related to fixed and random factors
- 82 b: Fixed effects vector (such as parity, calving year, and season)
- 83 a: A vector of direct additive genetic effect
- 84 m: A vector of maternal effect
- 85 e: A vector of random error
 - The variance-covariance structure of Model was shown as a matrix below.

$$V \begin{vmatrix} \sigma_a^2 & \sigma_{am} \\ \sigma_{am} & \sigma_m^2 \end{vmatrix}$$

86

87

With this model, direct additive genetic effect (σ_a^2) , genetic covariance between maternal effect and direct additive genetic effect $(\sigma_a^2 \times \sigma_m^2)$, maternal effect (σ_m^2) , environmental variance (σ_e^2) , phenotypic variance (σ_p^2) , and the logarithm of likelihood (-2 Log L) of variance components were estimated. The variance components and heritability were estimated using the Restricted Maximum Likelihood (REML) technique in the MTDFREML program. Below are the models used to calculate the heritability of direct additive genetic effect (h_a^2) and maternal effect (h_m^2) .

95
$$h_a^2 = \sigma_a^2 / (\sigma_a^2 + \sigma_m^2 + \sigma_a^2 x \sigma_m^2 + \sigma_e^2) = \sigma_a^2 / \sigma_p^2$$

96
$$h_m^2 = \sigma_m^2 / (\sigma_a^2 + \sigma_m^2 + \sigma_a^2 x \sigma_m^2 + \sigma_e^2) = \sigma_m^2 / \sigma_p^2$$

- 97 The BLUP technique was used to determine the EBVs in the MTDFREML package98 program. The breeding value of each animal was calculated using the formula below.
- 99 $BV_i = h^2 x (P_i P)$
- 100 BV_i: the breeding value of the *i*-th animal,
- 101 h^2 : heritability of *i*-th animal,
- 102 P_i: the phenotypic value of the *i*-th animal in terms of the trait emphasized,

103 P: population means in terms of the trait emphasized.

104 A one-way analysis of variance (ANOVA) was performed to examine the variation 105 between genotypes in terms of EBVs. Tukey's multiple comparison test was used to compare 106 the means of genotypes whose effect was found to be significant by analysis of variance.

- 107 Results 108 109 Association analysis, variance components, and breeding values 110 The effects of parity (P), calving year (CY), days in milk (DIM), A, C, and MT 111 factors on LMY were significant, whereas the effects calving season (CS) and first calving 112 age (FCA) were insignificant. Regarding A, the effects of P, CY, CS, DIM, MT, and LMY on 113 A were significant. The C value, another milk yield trait, was considerably affected by the P, 114 CY, DIM, and LMY, whereas the effects of CS and MT were determined to be insignificant 115 (Supplementary Table S3). The effects of P, CY, DIM, A, and LMY factors on MT were statistically significant but C and CS had no effect. Another trait, LMY₃₀₅, was affected by 116 117 factors P, CY, and FCA significantly, but the effect of CS was insignificant. In the current 118 study, the P, CY, and FCA significantly affected LMY₂₀₀, whereas the effect of CS was found 119 to be insignificant. In LMY₁₀₀, even though the effects of P, CY, and FCA on this milk yield 120 trait were found to be significant, the effect of CS was not (Supplementary Table S4). 121 In the present study, the effects of P, CY, service period (SP), and LMY on DIM were 122 found to be significant, whereas CS, and FCA did not affect this trait. The effects of P, CY, CS, and the milking time of peak milk yield (MTPMY) on PMY were found to be significant, 123 124 whereas the effects of the activity of peak milk yield (**APMY**), the conductivity of peak milk 125 yield (**CPMY**) and DPMY were not significant. A further trait DPMY, was significantly 126 affected by the P, CY, and milking time of days to peak milk yield (MTDPMY), but not the 127 effects of CS, PMY, the activity of days to peak milk yield (ADPMY) and conductivity of 128 days to peak milk yield (CDPMY) (Supplementary Table S5). The P, CY, CS, A, C and MT had a significant effect on ADMY, but DIM and FCA had no effect. Another important milk 129 130 yield feature DP was considerably influenced by the CY whereas not the effects of P, CS, 131 LMY, DIM and calving interval (CI) (Supplementary Table S6). 132
- 133

Conclusions and suggestions

As a result, the associations between milk yield traits excluding activity and *Sau3AI* polymorphism were statistically insignificant in this study. Nevertheless, because the associations between activity and lameness or other health-related traits were not examined in

this study, no allele or genotype was recommended for MAS-based selection studies for all-milk yield traits. According to our knowledge of the literature, the present study is the first to examine the associations between the Sau3AI polymorphism and MT, LMY₂₀₀, and DP. For the first time, the association between EBVs for milk yield traits and the Sau3AI polymorphism of the leptin gene was investigated in this study. Although there was no statistically significant difference in EBVs for the traits LMY, LMY₃₀₅, LMY₂₀₀, LMY₁₀₀, PMY, and ADMY, the genotypes with the highest values should be chosen in the selected studies. However, genotypes with the lowest breeding values should be chosen for C and DPMY. Besides, genotypes with the closest breeding values to 305 and 60 days, respectively, should be selected for DIM and DP. Because extremely high or low activity could indicate estrous, in the selection programs, genotypes with moderate breeding value in terms of A should be chosen to decrease lameness and other problems. Since extending the MT could cause udder tissue damage, it was found that the cattle with the AB genotype, which have a lower breeding value in terms of MT, can be used in selection to reduce the MT. However, the leptin gene should still be tested to decide whether to use it as a candidate gene in a herd.

Acknowledgments

This study was derived from Ph.D. thesis, "Investigation of the Effects of Leptin Gene *Sau3AI* Polymorphisms with FGF-2 Gene *Csp6I* Polymorphisms and Some Environmental
Factors on Milk Yield and Reproductive Performances of Holstein-Friesian Dairy Cattle". We
thank "Tek Yön Hayvancılık Gıda Tarım İnşaat San. ve Tic.Ltd.Şti." for sharing their data
and animals with us doing this study.

171	References
172	
173	Boldman KG, Kriese LA, Van Vleck LD, Van Tassell CP & Kachman SD 1995 A manual
174	for use of MTDFREML: a set of programs to obtain estimates of variances and
175	covariances. US Department of Agriculture Agricultural Research Service 114
176	Düzgüneş O, Kesici T & Gürbüz F 1983 Istatistik Metodları. Ankara Universitesi Ziraat
1//	Fakültesi Yayınları Viban M. S. Astabin İ 2021 Determination of the Lontin Cone Sou2 AL Delementhism Using
178	KIDAR INI & Aytekin I 2021 Determination of the Leptin Gene Sau3AI Polymorphism Using by PCP, PELP in Holstein Friedran Dairy Cattle, <i>ISPEC</i> 7th International Conference
180	on Agriculture Animal Sciences and Rural Development 815-826
181	Minitab 2010 Minitab 16.1.1. for Windows, Vol. State College, PA, USA: Minitab Inc.
182	Mrode RA 2014 Linear models for the prediction of animal breeding values. <i>Cabi</i>
183	Nei M 1973 Analysis of gene diversity in subdivided populations. Proceedings of the national
184	academy of sciences 70 3321-3323
185	Yeh FC, Yang RC, Boyle TB, Ye ZH & Mao JX 1997 POPGENE, the user-friendly
186	shareware for population genetic analysis. <i>Molecular biology and biotechnology centre</i>
188	University of Alberta Canada 10 293-301
189	
100	
101	
100	
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
200	
207	
208	
209	
210	
211	
212	
213	
214	

Supplementary Figure

216 Supplementary Figure S1. PCR and restriction products picture of the Sau3AI polymorphism

217 218 219

220

221

215

M: 100 bp Plus DNA ladder, Left image line 1-3: PCR products and Right image line AA: 390 and 32 bp, AB: 390, 303, 88 and 32 bp (32 bp was not seen in gel)

Supplementary Tables

222 Supplementary Table S1. Factors used to estimate variance components.

Milk yield traits	Discrete factors	Continuous factors
Lactation milk yield (kg)	Parity**, calving year**, calving season*	DIM**, C**, MT**, A*, FCA
Activity (step/day)	Parity*, calving year**, calving season**	DIM**, MT**, LMY**
Conductivity (mS/cm)	Parity**, calving year**, calving season	DIM**, MT, LMY*
Milking time (min)	Parity*, calving year**, calving season	DIM**, C, A**, LMY**
305 days of lactation milk yield (kg)	Parity**, calving year**, calving season	FCA*
200 days of lactation milk yield (kg)	Parity**, calving year**, calving season	FCA*
100 days of lactation milk yield (kg)	Parity**, calving year**, calving season	FCA**
Days in milk (day)	Parity**, calving year**, calving season	FCA, SP**, LMY**
Peak milk yield (kg)	Parity**, calving year**, calving season*	DPMY, APMY, CPMY, MTPMY*
Days to peak milk yield (day)	Parity**, calving year*, calving season	PMY, ADPMY, CDPMY, MTDPMY*
Average daily milk yield (kg)	Parity**, calving year**, calving season*	DIM, C*, MT**, A**, FCA
Dry period (day)	Parity, calving year**, calving season	LMY, DIM, CI

LMY: Lactation milk yield, A: Activity, C: Conductivity, MT: Milking time, DIM: Days in milk, PMY: Peak milk yield,
DPMY: Days to peak milk yield, *: p<0.05, **: p<0.01, kg: Kilogram, mS/cm: Milli siemens/centimetre, FCA: First calving age, APMY: Activity of peak milk yield, CPMY: Conductivity of peak milk yield, MTPMY: Milking time of peak milk yield, ADPMY: Activity of days to peak milk yield, CDPMY: Conductivity of days to peak milk yield, MTDPMY: Milking time of peak milk yield
time of days to peak milk yield

- 229 Supplementary Table S2. Allele and genotype frequencies and heterozygosity of Leptin gene
- polymorphism in Holstein-Friesian dairy cattle (Kibar & Aytekin 2021).

Lontin	N	Genotypes			Genotype frequencies			Allele frequencies		²	тт
Leptin		AA	AB	BB	AA	AB	BB	Α	В	- χ-	Пe
Observed	212	162	50	0	0.764	0.236	0.000	0 0001	0 1170	2 780NS	0 200
Expected	212	164.95	44.10	2.95	0.78	0.21	0.01	0.0021	0.1179	5.769	0.208

231 N: Number of animals, χ^2 (HWE): Hardy-Weinberg equilibrium χ^2 value, H_e: Expected heterozygosity, NS: Not significant 232

- 202
- 233
- 234
- 235
- 236

237 Supplementary Table S3. The associations between lactation milk yield, activity and238 conductivity with *Sau3AI* polymorphism.

			Traits					
Factors		Ν	Lactation milk yield (kg)	Activity (step/day)	Conductivity (mS/cm)			
			$\overline{X} \pm S_{\overline{X}}$	$\overline{X} \pm S_{\overline{X}}$	$\bar{X} \pm S_R$			
Loptin	AA	318	9687.84±111	170.86±2.35	10.15±0.04			
Lepun	AB	112	9818.36±145	176.24±3.13	10.09±0.05			
	1	212	9525.6±115 ^C	181.44 ± 2.41^{a}	$9.64\pm0.04^{\circ}$			
	2	95	10332.1±146 ^A	172.85 ± 3.15^{ab}	10.06 ± 0.05^{B}			
Parity	3	59	10104.9±192 ^{AB}	170.50 ± 4.00^{b}	10.30 ± 0.07^{A}			
	4	33	9651.1±249 ^{BC}	166.05 ± 5.35^{b}	10.24 ± 0.09^{AB}			
	5	31	9151.8±262 ^C	176.90±5.63 ^{ab}	10.36±0.09 ^A			
	2013	26	8274.2±278 ^C	170.13 ± 6.37^{AB}	9.99 ± 0.10^{AB}			
	2014	38	9057.5±239 ^C	$176.60 \pm 5.24^{\text{A}}$	10.24 ± 0.09^{AB}			
Calving	2015	59	9976.1±202 ^B	$180.47 \pm 4.24^{\text{A}}$	10.28 ± 0.07^{A}			
year	2016	69	10131.3±175 ^B	179.48±3.76 ^A	10.09 ± 0.06^{AB}			
	2017	101	10305.4±145 ^{AB}	175.16±3.14 ^A	10.00 ± 0.05^{B}			
	2018	137	10774.0±142 ^A	159.46±3.02 ^B	10.12 ± 0.05^{AB}			
	Winter	87	9685.8±168	171.90 ± 3.65^{AB}	10.10 ± 0.06			
Calving	Spring	86	9515.3±165	179.45±3.52 ^A	10.20±0.06			
season	Summer	141	9770.8±134	177.23±2.90 ^A	10.03 ± 0.05			
	Autumn	116	10040.4±153	165.62±3.24 ^B	10.15±0.05			
			DIM: 27.92±1.10**	DIM: 0.1076±0.0370**				
р ·			C: -383±139**	MT: 3.67±1.34**	DIM: 0.002758±0.000603**			
Regressio	n		M1: 3/8.8±59.3**	LMY:	M1: 0.0370 ± 0.0218			
			A: $-5.60\pm 2.27^{*}$	$-0.00285 \pm 0.00105 **$	LMY: -0.000044±0.000017			
D ²			1.44 ± 1.00	0.1402	0.2259			

257 LMY₁₀₀ with *Sau3AI* polymorphism.

			Traits							
	Factors	Ν	Milking time (min)	LMY ₃₀₅	LMY_{200}	LMY_{100}				
			$\overline{X} \pm S_{\overline{X}}$	$\overline{X} \pm S_{\overline{X}}$	$\overline{X} \pm S_{\overline{X}}$	$\overline{X} \pm S_{\overline{X}}$				
	.Ę AA	318	8.89±0.09	9159.71±114	6794.01±67.10	3528.29±32.00				
	AB	112	8.71±0.12	8956.98±155	6777.30±91.50	3543.29±43.60				
	1	212	8.42 ± 0.09^{B}	8559.25±113 ^B	6092.47±66 ^C	2988.01±31.60 ^B				
	2	95	8.74 ± 0.12^{AB}	9611.56±158 ^A	7122.76±93 ^A	3682.41±44.30 ^A				
	≥ 3	59	8.80±0.15 ^{AB}	9596.91±200 ^A	7160.37±118 ^A	3753.84±56.20 ^A				
	ur 4	33	9.03±0.20 ^A	9027.01±266 ^{AB}	6903.53±157 ^{AB}	3666.12±74.70 ^A				
	<u>щ</u> 5	31	9.03±0.21 ^A	8497.00±274 ^B	6649.15±162 ^B	3588.60±77.00 ^A				
	2013	26	8.99±0.23 ^A	7804.80±301 ^D	5733.93±177 ^E	3055.26±84.50 ^D				
	ਲੂ 2014	38	9.47 ± 0.19^{A}	8522.30±250 ^{CD}	6474.09 ± 147^{D}	3461.34±70.30 ^C				
	≥ 2015	59	$7.79\pm0.15^{\circ}$	8894.60±203 ^C	6775.77±119 ^{CD}	3538.60±57.00 ^{BC}				
	.Ē 2016	69	8.32 ± 0.14^{B}	9132.80±186 ^C	6970.89±110 ^{BC}	3621.34±52.30 ^{BC}				
	je 2017	101	9.16±0.11 ^A	9740.10±152 ^B	7221.27±90 ^B	3683.56±42.80 ^B				
	2018	137	9.08±0.11 ^A	10255.60±143 ^A	7537.97±84 ^A	3854.66±40.30 ^A				
	Winter	87	8.88±0.13	9078.55±180	6744.08±106	3471.88±50.70				
	. 🗄 🗧 Spring	86	8.80±0.13	8889.68±172	6739.36±101	3584.94 ± 48.40				
	Summer as Summer	141	8.76±0.11	8973.21±143	6721.39±85	3496.38±40.30				
	O S Autumn	116	8.77±0.12	9291.96±162	6937.79±95	3589.98±45.50				
	Regression		DIM: -0.00756±0.00134** C: 0.189±0.110 A: 0.00492±0.00178**	FCA: 2.50±1.13*	FCA: 1.521±0.663*	FCA: 0.707±0.316*				
			LMY: 0.000238±0.000037**							
	\mathbb{R}^2		0.3167	0.2689	0.4105	0.5249				
261 262										
263										
264										
265										
266										
267										
268										
269										
270										
271										
272										
273										
274										
275										
276										

277 Supplementary Table S5. The associations between days in milk, peak milk yield and days to

278	peak milk yield with Sau3AI polymorphism.	
-----	---	--

				Traits						
	Factors		Ν	Days in milk (day)	Peak milk yield (kg)	Days to peak milk yield (kg)				
				$\bar{X} \pm S_{\bar{X}}$	$\bar{X} \pm S_{\bar{X}}$	$\bar{X} \pm S_{\bar{X}}$				
	Leptin	AA	318	328.25±0.83	48.43±0.41	54.53±2.80				
		AB	112	328.61±1.11	<u>48.08±0.55</u>	54.57±3.75				
		1	212	$333.05\pm0.83^{\circ}$	42.52 ± 0.40^{2}	/9./2±3.4/* 51.26+3.84 ^B				
	Parity	2	93 59	329.85 ± 1.11 327.91 ± 1.42^{BC}	49.48±0.30 50.67+0.71 ^A	51.20 ± 3.84 51.85+4.90 ^B				
	Tanty	4	33	326.54+1.89 ^{BC}	49.53+0.94 ^A	44.85+6.42 ^B				
		5	31	324.22±1.99 ^C	49.09±0.97 ^A	45.06±6.72 ^B				
		2013	26	336.73±2.22 ^A	39.50±1.07 ^E	34.67±7.98 ^b				
		2014	38	333.08±1.80 ^{AB}	46.50±0.89 ^D	53.17±6.31 ^{ab}				
	Calving	2015	59	328.68±1.45 ^{BC}	47.87±0.71 ^{CD}	53.47±4.95 ^{ab}				
	year	2016	69	$324.64 \pm 1.32^{\text{CD}}$	50.02 ± 0.65^{BC}	58.89±4.51ª				
		2017	101	$324.04\pm1.08^{\text{CD}}$ $322.70\pm1.04^{\text{D}}$	51.60 ± 0.54^{2} 54.04±0.51 ^A	$62.03\pm 3.81^{\circ}$				
		Winter	87	329.41+1.29	47 85+0 63 ^{ab}	55 35+4 47				
	Calving	Spring	86	328.75+1.25	48.13 ± 0.61^{ab}	51.19+4.14				
	season	Summer	141	327.49±1.03	47.68±0.51 ^b	59.03±3.62				
		Autumn	116	328.06±1.14	49.37±0.58 ^a	52.62±3.96				
				$ECA : -0.00123 \pm 0.00797$	DPMY: -0.00715±0.00704	PMY: -0.245±0.347				
	Regressio	m		SP: 0.8323+0.0109**	CPMY: 0.567±0.334	CDPMY: -6.04±4.05				
	regressio			LMY: 0.003854±0.000328**	MTPMY: 0.2212±0.0896*	MTDPMY: -2.62±1.30*				
	D ²			0.0726	APM Y: -0.00/22±0.003/4	ADPMY: -0.0775±0.0444				
279	PMY· Pe	ak milk vie	Id DPN	<u>V: Days to peak milk vield FC</u>	<u>0.3732</u> 'A: First calving age SP: Servic	e period I MY: Lactation milk				
280 281 282 283 284	yield, CP yield, CD Activity of determ	PMY: Cond PMY: Cond of days to period	uctivity iductivit eak mill Least m	ty of days to peak milk yield, MTPMY: M ty of days to peak milk yield, M k yield, a, b: P<0.05, A, B: P<0.01 lean squares, $S_{\vec{x}}$: Standard error	TIRING time of peak milk yield, TDPMY: Milking time of day: 1, *: P<0.05, **: P<0.01, N: Nur	s to peak milk yield, ADPMY: nber of animals, R ² : Coefficient				
285										
286										
287										
288										
289										
290										
291										
292										
293										
294										
295										
296										
297										
298										
299										

300 Supplementary Table S6. The associations between ADMY and DP with Sau3AI

301 polymorphism.

			Traits				
Factors	Ν		Average daily milk yield (kg)	N	Dry period (day)		
			$\bar{X} \pm S_{\bar{X}}$	- IN	$\bar{X} \pm S_{\bar{X}}$		
T antin	AA	318	29.79±0.34	156	62.32±1.13		
Lepun	AB	112	30.13±0.45	62	62.95±1.56		
	1	212	29.19±0.35 ^B	#			
	2	95	31.67±0.45 ^A	95	60.69±1.23		
Parity	3	59	31.11±0.59 ^A	59	61.15±1.50		
	4	33	29.68 ± 0.77^{AB}	33	62.07±2.01		
	5	31	28.15±0.81 ^B	31	66.64±2.18		
	2013	26	25.40±0.86 ^C	8	52.89±3.71 ^B		
	2014	38	$27.58\pm0.74^{\circ}$	10	61.66±3.27 ^{AB}		
Coluing yoor	2015	59	30.81 ± 0.62^{B}	38	62.05 ± 1.78^{AB}		
Carving year	2016	69	31.18 ± 0.54^{B}	33	66.60±1.83 ^A		
	2017	101	31.71 ± 0.45^{AB}	58	67.08±1.34 ^A		
	2018	137	33.07±0.44 ^A	71	65.54±1.32 ^A		
	Winter	87	29.68±0.52 ^{ab}	46	62.96±1.74		
Calving souson	Spring	86	29.26±0.51 ^b	48	61.42±1.66		
Carving season	Summer	141	29.96±0.41 ^{ab}	78	63.13±1.47		
	Autumn	116	30.94 ± 0.47^{a}	46	63.04±1.69		
			DIM: -0.00615±0.00337				
			C: -1.003±0.428*	LMY:	-0.000843 ± 0.000447		
Regression			MT: 1.244±0.183**	DIM:	0.0191±0.0153		
			A: -0.01872±0.00700**	CI: 0.0)1439±0.00753		
			FCA: 0.00541±0.00326				
\mathbb{R}^2			0.3894	0.1335	5		

302 303 DIM: Days in milk, C: Conductivity, MT: Milking time, A: Activity, FCA: First calving age, LMY: Lactation milk yield, CI: Calving interval, a, b: P<0.05, A, B: P<0.01, *: P<0.05, **: P<0.01, N: Number of animals, R²: Coefficient of determination, \overline{X} : Least mean squares, $S_{\overline{X}}$: Standard error

304 305

306

307

Supplementary Table S7. Variance components and heritability of milk yield traits.

T :						Model			
Traits	$\sigma_a{}^2$	$\sigma_a{}^2x\sigma_m{}^2$	$\sigma_m{}^2$	$\sigma_e{}^2$	σ_p^2	h_a^2	h_m^2	r _{am}	-2 Log L
LMY (kg)	0.40665	0.15735	0.26318	0.87171	1.69889	0.24±0.173	0.16±0.167	0.48±0.136	642.2401958691
A (step/day)	0.02224	0.00615	0.00584	0.04599	0.08022	0.28 ± 0.180	0.07 ± 0.006	$0.54{\pm}10.368$	-599.3654385128
C (mS/cm)	0.09924	0.02055	0.00933	0.07012	0.19924	0.50 ± 0.183	0.05 ± 0.177	0.68 ± 10.156	-330.2392815965
MT (min)	0.22618	0.18824	0.17591	0.46565	1.05598	0.21±0.143	0.17 ± 0.146	0.94 ± 0.237	420.7889335021
LMY305 (kg)	0.58191	0.02531	0.25066	1.10559	1.96347	0.30 ± 0.164	0.13 ± 0.010	0.07 ± 0.791	689.9016060587
LMY200 (kg)	0.26977	0.01092	0.00995	0.37463	0.66527	0.41 ± 0.177	0.01 ± 0.001	0.21 ± 20.079	234.6087479873
LMY100 (kg)	0.03157	0.01785	0.01009	0.09957	0.15909	0.20 ± 0.132	0.06 ± 0.005	$1.00{\pm}10.478$	-355.1561301709
DIM (day)	0.00616	0.00451	0.00330	0.00966	0.02363	0.26 ± 0.273	0.14 ± 0.026	$1.00{\pm}10.996$	-1300.134079639
PMY (kg)	0.06970	0.01269	0.00513	0.15040	0.23792	0.29 ± 0.162	0.02 ± 0.002	0.67 ± 20.085	-168.2920895754
DPMY (day)	1.83023	0.42192	0.11560	9.43553	11.80328	0.16 ± 0.117	0.01 ± 0.104	0.92 ± 40.610	1483.5616078396
ADMY (kg)	0.06453	0.06493	0.06532	0.06980	0.26458	0.24 ± 0.153	0.25 ± 0.031	1.00 ± 0.990	-309.9723015443
DP (day)	0.03153	0.06321	0.12676	0.75765	0.97915	0.03 ± 0.283	0.13 ± 0.014	1.00 ± 80.518	217.5937598359

308 309 310 311 312 313 314 LMY: Lactation milk yield, A: Activity, C: Conductivity, MT: Milking time, LMY₃₀₅: 305 days of lactation milk yield, LMY₂₀₀: 200 days of lactation milk yield, LMY₁₀₀: 100 days of lactation milk yield, DIM: Days in milk, PMY: Peak milk yield, DPMY: Days to peak milk yield, ADMY: Average daily milk yield, DP: Dry period, Ga2: Direct additive genetic variance, $\sigma_a^2 x \sigma_m^2$: Covariance between additive genetic effect and maternal effect, σ_m^2 : Maternal genetic variance, σ_e^2 : Temporary environmental variance G_p^2 : Phenotypic variance, h_a^2 : Direct heritability, h_m^2 : Maternal heritability, h_e^2 : Heritability of environmental effect, ram: Correlation between additive genetic effect and maternal effect, -2 Log L: Loglikelihood

315

316