1								
2	Productive performance and milk composition of dairy ewes supplemented with corn silage							
3 4	(Zea mays L.), sunflower (Helianthus annuus) silage, and their mixture							
	Manuel Gonzalez-Ronquillo, Navid Ghavipanje, Lizbeth E. Robles Jimenez, Eduardo							
5 6	Cardoso, Edgar A. Aguirre, Augusto Lizarazo, Ricardo A. Garcia Herrera, Octavio A. Cartelan Ortega and Einar Vargas-Bello-Pérez							
	SUPPLEMENTARY FILE							
7								
8	Material & methods							
9	Roughages collection and conservation							
10	The soil from the study site had a clay soil texture composed by 62% sand, 10% silt, and 28% clay.							
11	The land had a slope of 2 to 6%. The dominant rocks were of volcanic and clastic types. The							
12	soils were pelic vertisol type and haplic phaeozem and were characterized by being very							
13	compact and clayish. Likewise, soil had wide and deep cracks during drought season and							
14	showed a layer of tepetate between 10 and 50 cm of depth. Soils had 5.8 of pH, 23.8 cmol+kg ⁻¹							
15	capacity of cationic interchange, 0.31 % of total nitrogen, 7.56 % of organic matter and 0.8							
16	dS M ⁻¹ electrical conductivity (Vaca García et al., 2014).							
17	A 2000 m ² plot of corn was used and this plot was established on the 15 th of April 2019. It							
18	was irrigated with side roll irrigation every 20 days and fertilized with 44 kg N/ha (44% N,							
19	FIMSA and ACIFEX,) and KCl 60 kg/ha, 60 days prior before harvest. A second plot of							
20	2000 m ² plot of sunflower was used (New Holland tractor, 3-5 cm).							
21	For silage making, fresh corn and sunflower whole plant were chopped, placed, and compacted in 12							
22	hermetically sealed plastic containers (100 \times 120 cm) (n = 6), and Pulque (1 ml/kg FM) as							
23	an additive was used (Franco Martinez et al. 2020). Each container was kept in a dark room at 15							
24	°C. After 60 days, silages were opened, and pH was determined (Conductronic model pH130).							
25	Chemical Analysis							
26	Silages were opened after 60 days and were used for ewes feeding. Three samples per container were							
27	taken from each treatment (n = 36 samples) for DM determination (Haigh and Hopkins, 1977).							
28	Samples were separately pooled and ground in a hammer mill with a 1-mm screen (Arthur							
29	Hill Thomas Co., Philadelphia, PA), and analyzed (three replicates) for dry matter (using a							

forced-air oven at 60 °C for 48 h; AOAC method 934.01), ash (incineration at 550 °C for 3 h;

- 30 942.05), nitrogen (Kjeldahl N; AOAC method 954.01), and ether extract (AOAC method 920.39)
- according to the AOAC (2015). Neutral detergent fiber (NDF, Van Soest et al., 1991), acid detergent
- 32 fiber (ADF) and acid detergent lignin (ADL) (AOAC, 1997; 973.18) analyses were performed using
- an ANKOM200 Fiber Analyzer Unit (ANKOM Technology Corporation, Macedon, NY, USA).
- Neutral detergent fiber was assayed with alpha amylase. The non-fibrous carbohydrates (NFC) were
- calculated according to the equation proposed by Sniffen et al. (1992), NFC = 100 (CP + EE + Ash)
- + NDF), and adjusted in g/kg DM.
- 37 A second fresh silage subsample was used to assess pH (Conductronic model pH130, Puebla,
- Mexico), ammonia nitrogen (NH₃ -N) and volatile fatty acids (two replicates). The silage extract was
- 39 obtained after homogenization in a stomacher device (model 400 circulator, Seward Inc., Bohemia,
- 40 New York, USA) for 4 min, using 30 g of fresh sample and 270 g of distilled water. The
- 41 measurement of NH₃ -N was performed using a specific electrode coupled to a multiparameter meter
- 42 (Orion Star A214 pH/ISE benchtop meter, Thermo Scientific, Waltham, MA, USA) and
- concentrations of of lactic, acetic, and butyric acids according to Moon et al. (1981).
- 44 In vitro trial
- 45 Animal care and procedures for extraction of rumen inoculum were approved by the Ethics
- 46 Committee for Animal Experimentation (Protocol ID UAEMex 4974/2020). Three dairy ewes
- 47 (Suffolk \times Texel; 84 \pm 6 kg of live weight) were used to obtain rumen fluid for *in vitro* fermentation
- 48 incubations. Sheep were fed a maintenance diet with 50:50 concentrate to roughage ration (DM
- 49 contents was 62%) containing corn silage, sorghum grain, soybean meal, canola meal, wealth bran
- and mineral-vitamin premix at 08.00 and 16.00h. Diet and water were provided ad libitum
- 51 throughout the trial. Ewes were adapted to the diet for 20 days. Rumen fluid was strained through
- four layers of cheesecloth and kept in a warm water bath at 39 °C. In vitro gas test was conducted
- according to the procedure described by Theodorou *et al.* (1994). Concentrate and silage samples
- were weighed (0.800 g DM). Each sample was analyzed in triplicate and incubated in glass flasks
- 55 (125 ml) with 90 ml of buffer solution and 10 ml of ruminal fluid, and three incubation runs were
- performed. The buffer solution was prepared according to Menke & Steingass (1988), where 0.800 g
- 57 DM of each ingredient and each diet mixture were incubated in glass bottles of 125 ml. Details on
- buffer solution composition have been described previously (Vargas-Bello-Pérez et al., 2020).
- 59 To determine ruminal fermentation kinetics, three incubation runs of 96 h were carried out. In each
- run, three glass flasks per sample were used. Also, three non-sample flasks in each run were
- considered as blank for correction of gas produced from previous particles left in rumen fluid. Rumen

- 62 fluid samples were extracted and filtered in a triple layer of cheesecloth gauze, and homogenized
- 63 with CO₂ for 5 min. Then, filtered samples were mixed and used as inoculum. Flasks were incubated
- 64 in a water bath at 39 °C. Gas volume was recorded at 0, 3, 6, 9, 12, 24, 36, 48, 72, and 96 h of
- 65 incubation using a Delta pressure transducer (Model 8804 HD, Padova, Italy) at every reading time
- and gas production was corrected for blank incubations. At 96 h of incubation, samples were filtered,
- washed under tap water, and dried (65°C, 48 h) until analysis.
- After *in vitro* incubation periods, dry matter dissapearance (IVDMD, mg/100 mg) was determined.
- 69 Samples were filtered and dried (48 h, 60 °C) and then organic matter dissapearance (OMd, mg/100
- mg) was determined (4h 550 °C). Gas yield production was determined at 24 h (GY24), with the gas
- 71 volume (ml g/g DM) produced after 24 h of incubation divided by the amount of IVDMD (g)
- 72 calculated as follows (Gonzalez Ronquillo et al., 1998): Gas production (GP24) = [(ml gas 24h / g
- 73 DM) / g IVDMD].
- Relative gas production (RGP, ml gas 96h/g IVDMD 96h) was calculated according to González-
- Ronquillo et al. (1998). Short chain fatty acids concentration (SCFA) was calculated according to
- 76 Getachew et al. (2002) as: SCFA (mmol/200 mg DM) = 0.0222 GP 0.00425. Where: GP is the 24 h
- net gas production (ml/200 mg DM).
- Microbial biomass production (MP) was calculated according to Blümmel et al. (1997) as: MP (mg/g
- 79 DM) = mg IVDMD (ml gas \times 2.2 mg/ml). Where 2.2 mg/ml is a stoichiometric factor, which
- 80 expresses mg of C, H and O required for the SCFA gas associated with production of one ml of gas
- 81 (Blümmel *et al.*, 1997).
- 82 In vivo trial
- 83 The experimental protocol and implemented procedures were conducted in accordance with the
- 84 guidelines of the National Council for Animal Control and Experimentation (Olaiz, 2015). This study
- was approved by the Ethics Committee on Animal Experimentation of the School of Veterinary
- 86 Medicine and Animal Science of the Universidad Autónoma del Estado de Mexico (Protocol ID
- 87 UAEMex 4974/2020).
- Nine Suffolk × Texel dairy ewes were used [DIM=45 \pm 6 d, BW=79.9 \pm 10 kg, average daily milk
- yield= 0.550 ± 0.14 kg (average \pm SD)] were grouped in a replicated 3×3 Latin square design (n =
- 90 3), that included three 21-d periods of which 14 days were used for diet adaptation and the last 7 d for
- sample collection. Dietary treatments consisted of forage [Corn silage (CS), sunflower silage (SFS),
- 92 or their 50:50 mixture (CS-SFS) and concentrate (30% corn grain and 70% soybean meal)
- 93 supplemented with vitamins and minerals (Multitec of Malta®; Celaya; Mexico)]. Three different

94 diets consisting of 50/50 concentrate and corn silage, sunflower silage, or their mixture, formulated to

95 be isocaloric (2.70 Mcal/kg metabolizable energy) and isonitrogenous (14% crude protein) and to

meet NRC (2007) requirements of dairy ewes. All animals were fed 47 g/kg live weight (LW)^{0.75}

- 97 concentrate and *ad libitum* forage silage (Table 1S). Forage and concentrates were manually mixed in
- 98 each individual trough and offered twice per day (0800h and 1600h), with free access to water.
- Animals were kept in a roofed pen with individual metabolic cages $(1.0 \times 1.2 \times 1.2 \text{m})$ with slatted
- 100 floor. The study lasted 63 days in which the first 14 days were used for diet adaptation and the last 7
- d for sample collection during three consecutive periods.
- The amounts of feed offered and refused, feces, urine, and milk during the last 7 days were recorded
- daily to determine nutrient intake, digestibility, and milk yield. Individual daily milk samples were
- taken at 16.00h, and individual daily samples of feed, orts, faces, and urine were taken t 08.00h. The
- 105 collected feces were then well mixed, weighed, and a subsample was preserved at 20 °C until the
- next analysis. Feces samples were dried for 48 h at 65° C in a forced-air oven and then ground to pass
- through a 1-mm screen in a Wiley mill (Arthur H. Thomas Co., Philadelphia, PA) before analysis.
- The analytical procedures followed those described earlier in the chemical analysis section. The
- nutrient digestibility was measured based on the amount of nutrient consumed and excreted. Urine
- was collected in a sulphuric acid solution (10 %; pH < 3). Only 10 % of the total sample collected for
- feces and urine was used for analysis. Dry matter (DM) intake (kg/day), organic matter (OM), neutral
- detergent fiber (NDF) N intake, and N balance (excretion of feces, urine, and milk) were estimated
- and expressed as g/kg. Dry matter intake (DMI, g/d) and individual milk yields (kg/d) were recorded
- every day but only data from the last 7 days of each period were used for statistical analysis.
- 115 Calculations and statistical analysis
- The accumulated gas volume of each sample was determined using the model proposed by France et
- 117 al. (1993):
- 118 $\mathbf{Y} = A[\mathbf{1} exp(-B(t-T) cC(\sqrt{t \frac{A}{T}}))]$
- Where: Y, is the cumulative gas production (mL); t, is the incubation time (h); A, is the asymptote
- 120 curve (total gas produced, mL); B (h-1), and C (h- $\frac{1}{2}$) are the gas production constants; T, is the time
- of delay (h) that colonize the microorganisms to begin the fermentation.
- Fat-corrected milk (FCM) was calculated at 3.5%, FCM (kg/d) = [milk (kg/d) \times 0.432] + [fat kg/d) \times
- 123 16.216], energy corrected milk (ECM) was calculated as, ECM = $[\text{milk } (\text{kg/d}) \times 0.327] + [\text{fat } (\text{kg/d})]$
- \times 12.86] + [protein (kg/d) \times 7.65] (Tyrrell and Reid, 1965). The feed efficiency (FE) was calculated

- using the following formula: FE = milk yield (kg/d)/dry matter intake (kg/d). Adjusted FE was
- calculated using the following formula = 3.5% FCM (kg/d)/dry matter intake (kg/d).
- 127 A completely randomized design was used for in vitro gas production parameters and in vitro
- microbial fermentation using the procedure of Statistical Analysis System 9.2 software (SAS, 2002).
- $129 \qquad Y_{ij} = \mu + T_{xi} + \epsilon_{ij}$
- Where Y_{ij} = is each observation of treatments it; μ is the general mean; $T_{x (i=3)}$ is the treatment effect;
- and ε_{ij} is the experimental error.
- 132 In vivo data were analysed using a completely latin square design repeated 3×3 , with the factors
- being the silage suplementation (n = 3) using the following equation:
- $Y_{ij} = \mu + A_i + P_j + T_k + e_{ijkl}$
- Where Y_{ij} is the dependent variable, μ is the general average, A_i is the animal, P_j is the period, T_k is
- the silage supplementation treatment and e_{ijkl} the error term.
- 137 The analyses were carried out by SAS (2002). For both in vitro and in vivo data, least square means
- 138 (LSM) separation was performed using the PDIFF statement by Tukey's test (Steel et al., 1997) and
- presented as LSM \pm SEM. Significance was declared at p < 0.05 and trends at p < 0.10 and p > 0.05
- 141 **Reference**

- AOAC (2015) Official Methods of Analysis. 15th Ed. Association of Official Analytical Chemists,
- 143 Arlington, VA.
- Blümmel M, Steingas H and Becker K (1997) The relationship between in vitro gas production, in
- vitro microbial biomass yield and 15N incorporation and its implications for the prediction
- of voluntary feed intake of roughages. *British Journal of Nutrition* **77(6)**, 911-921.
- 147 France J, Dhanoa MS, Theodorou MK, Lister SJ, Davies DR and Isac D (1993). A model to
- interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds.
- *Journal of theoretical biology* **163(1)**, 99-111.
- 150 Franco Martinez JRP, Huerta AG, Lopez DDJP, Cuevas RS, Salem AZ, Jimenez LER and
- 151 **Ronquillo MG** (2020) Effect of xylanase, cellulase and natural maguey extract on the
- chemical composition of corn silage and in vitro rumen gas production. Ciencia e
- investigación agraria: revista latinoamericana de ciencias de la agricultura **47(1),** 23-34.
- 154 Getachew G, Makkar HPS and Becker K (2002) Tropical browses: contents of phenolic
- compounds, in vitro gas production and stoichiometric relationship between short chain
- fatty acid and in vitro gas production. *Journal of agriculture science* **139(3)**, 341-352.

157	Gonzalez Ronquillo M, Fondevila M, Urdaneta AB and Newman Y (1998) In vitro gas							
158	production from buffel grass (Cenchrus ciliaris L.) fermentation in relation to the cutting							
159	interval, the level of nitrogen fertilisation and the season of growth. Animal Feed Science							
160	and Technology 72(1-2) 19-32							
161	Haigh PM and Hopkins JR (1977) Relationship between oven and toluene dry matter in grass							
162	silage. The Journal of the Science of Food and Agriculture 28, 477-480.							
163	Menke KH and Steingass H (1988) Estimation of energetic feed value obtained from chemical							
164	analyses and in vitro gas production using rumen fluid. Animal. Research and							
165	Development 28, 7–55.							
166	Moon NJ, Ely LO and Sudweeks EM (1981) Fermentation of wheat, corn, and alfalfa silages							
167	inoculated with Lactobacillus acidophilus and Candida sp. at ensiling. Journal of Dairy							
168	Science 64(5) , 807-813.							
169	National Research Council (2007) Nutrient Requirements of Small Ruminants: Sheep, Goats,							
170	Cervids and New World Camelids. National Academy Press, Washington, DC.							
171	Olaiz BG (2015) Aspectso bioeticos de la experimentacion animal. En: Gaceta Conbioetica 16, 21-							
172	23							
173	SAS (2002). SAS/STAT software: Changes and Enhancements through Release 9.2. SAS Institute,							
174	Cary, NC, USA.							
175	Sniffen CJ, O'connor JD, Van Soest PJ, Fox DGn and Russell JB (1992) A net carbohydrate and							
176	protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal							
177	of Animal Science 70(11) 3562-3577.							
178	Steel RDG, Torrie JH and Dickey DA (1997) Principles and Procedures of Statistics: A Biomedical							
179	Approach, 3 rd ed. McGraw-Hill Book, New York, NY.							
180	Theodorou MK, Williams BA, Dhanoa MS, McAllan AB and France J (1994) A simple gas							
181	production method using a pressure transducer to determine the fermentation kinetics of							
182	ruminant feeds. Animal Feed Science and Technology 48, 185-197.							
183	Tyrrell HF and Reid JT (1965) Prediction of the Energy Value of Cow's Milk1, 2. Journal of Dairy							
184	Science 48, 1215-1223.							
185	Vaca García VM, Domínguez López ., González Huerta A, Morales Rosales EJ, Franco Mora							
186	O and Gutiérrez Rodríguez F (2014) Assessment of soil compaction under different							
187	management regimes using double-cycle uniaxial compression test. Terra							
188	Latinoamericana 32(2) 119-126							

189	Van Soest PJ, Robertson JB and Lewis BA (1991) Methods for dietary fiber, neutral detergent
190	fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy
191	Science 74 , 3583-3597.
192	Vargas-Bello-Pérez E, Robles-Jimenez LE, Ayala-Hernández R, Romero-Bernal J, Pescador-
193	Salas N, Castelán-Ortega OA and González-Ronquillo M (2020) Effects of Calcium
194	Soaps from Palm, Canola and Safflower Oils on Dry Matter Intake, Nutrient Digestibility,
195	Milk Production, and Milk Composition in Dairy Goats. Animals 10, 1728.
196	

Table S1. Chemical composition (g/kg DM) of concentrate supplement, corn silage (CS), sunflower silage (SFS) and their mixture (CS-SFS) in sheep diets

Item	Diets						
nem	Concentrate ¹	CS	SFS	CS-SFS			
Dry matter ²	910.0	286.1	209.8	247.8			
Chemical composition							
Organic matter	886	950	870	910			
Crude protein	188.8	78.2	105.1	91.6			
Ether Extract	79.4	51.9	108.1	88.6			
NFC^3	617.8	819.9	656.8	729.8			
Neutral detergent fiber	229.1	615.4	554.6	571.2			
Acid detergent fiber	87.0	439.0	493.5	450.3			
Acid detergent lignin	25.2	68.0	122.2	86.7			
ME, Kcal/kg DM	2873	2508	2600	2554			
pН		4.0	4.6	4.3			
$NH_3 - N (g kg^{-1} Total N)^4$		112	121	116			
Volaty fatty acids (mol/100 mol)							
Lactic acid		68.2	40.2	54.4			
Acetic acid		13.0	13.9	13.5			
Propionic acid		16.3	2.4	9.5			
Butiric acid		2.6	1.2	2.0			
Lactate/ acetate ratio		5.2:1	2.9:1	4.0:1			

¹ Contained (g/kg of DM) = Sorghum grain 472, Soyabean meal 250, Canola meal 50, Wheat bran 160, Vitamin and trace mineral 68. Chemical composition (g/kg DM), Sorghum grain 970 OM, 80 g CP; 60 g NDF, 27 g ether extract; SBM 934 g OM, 440 g CP, 313 NDF, 24 g ether extract; Canola meal 924 g OM; 360 g CP, 278 g NDF, 35 g ether extract; Wheat bran contain 930 g OM, 170 g CP, 456 g NDF, 45 g ether extract and trace mineral and vitamin premix (Gold line Hitec-nutrition; Multitec Malta Cleyton; Celaya, Mexico) containing vitamin A (250,000 IU/kg), vitamin D (50,000 IU/kg), vitamin E (1,500 IU/kg), manganese (2.25 g/kg), calcium (120 g/kg), zinc (7.7 g/kg), phosphorus (20 g/kg), magnesium (20.5 g/kg), sodium (186 g/kg), iron (1.25 g/kg), sulfur (3 g/kg), copper (1.25 g/kg), cobalt (14 mg/kg), iodine (56 mg/kg) and selenium (10 mg/kg).

²Expressed of fresh matter

³ Non-fibrous carbohydrates (NFC) were estimated according to the equation: NFC = 1000 - (NDF + CP + EE + Ash).

⁴NH₃-N - ammonia nitrogen

Table S2. In vitro rumen gas kinetics (mL gas/ g DM) and fermentation profile of in dairy ewes supplemented with corn silage (CS), sunflower (SF) and their mixture (CS-SFS).¹

Item ²	Diets					
Item	Concentrate	CS	SFS	CS-SFS	- SEM ³	<i>p</i> -value
In vitro gas kinetics						
A	257.06 ^a	223.22 ^b	118.20 ^d	171.05 ^c	6.165	0.0001
В	0.051^{a}	$0.037^{\rm b}$	0.033 ^b	0.038^{b}	0.001	0.0004
C	-0.062 ^b	-0.043 ^{ab}	-0.036^{a}	-0.041 ^{ab}	0.004	0.0219
Lag time	1.69	1.69	1.44	1.36	0.253	0.7051
	oduction, mL gas	/g DM				
3h	9.33 ^a	5.33 ^b	3.67^{b}	6.33 ^{ab}	0.882	0.0112
6h	28.67 ^a	19.00 ^b	10.67 ^c	17.33 ^{bc}	1.554	0.0001
9h	57.00^{a}	38.67 ^b	19.00^{c}	31.00^{b}	2.505	0.0001
12h	62.67 ^a	62.67 ^b	30.00^{c}	48.67 ^b	3.266	0.0001
24h	158.67 ^a	113.33 ^b	55.33 ^d	86.00^{c}	4.368	0.0001
36h	191.67 ^a	143.67 ^b	72.67^{d}	110.67 ^c	4.910	0.0001
48h	218.67 ^a	170.00^{b}	86.33 ^d	132.67 ^c	5.809	0.0001
60h	235.67 ^a	187.67 ^b	96.00^{d}	145.67 ^c	6.076	0.0001
72h	247.33 ^a	201.33 ^b	103.33 ^d	155.33 ^c	6.405	0.0001
96h	215.67 ^a	215.67 ^b	111.67 ^d	163.00^{c}	5.744	0.0001
DMD96h	89.00^{a}	73.67 ^b	$46.67^{\rm d}$	57.00^{c}	0.623	0.0001
RGP96h	289.33 ^a	292.33 ^a	239.33 ^b	285.33^{a}	17.061	0.0022
GP24h200	32.00^{a}	22.67^{b}	11.33 ^d	17.33 ^c	1.000	0.0001
GY24h500	79.33 ^a	56.33 ^b	27.33^{d}	43.00°	2.160	0.0001
GY24h	177.67 ^a	153.33 ^a	118.00^{b}	150.67 ^a	26.151	0.0010
SCFA	25.00^{b}	11.00^{d}	29.00^{a}	20.00^{d}	1.356	0.0001
MCP	776.67 ^a	642.67 ^b	418.00^{d}	497.67 ^c	5.291	0.0001

Within row, different letters (a, b) indicate difference between diets ($p \le 0.05$).

¹ Values are least-square means.

² A = total gas production (ml gas/g DM incubated); B = fermentation rate (h⁻¹); C = fermentation rate $(h^{-1/2})$; Lag time = the initial delay before gas production begins (h); DMD96 = DM degraded substrate (mg/g DM); GY24 = gas yield at 24 h (mL gas/g DMD); SCFA = short chain fatty acids (mmol/g DM); MCP = microbial CP production (mg/g DM).

³ SEM = pooled standard error of the mean.

Table S3. Intake and nutrient digestibility in dairy ewes supplemented with corn silage (CS), sunflower (SF) and their mixture (CS-SFS).¹

T. 2		Diets		GEN 43		
Item ²	CS SFS CS-S		CS-SFS	SEM^3	<i>p</i> -value	
Intake (g/d)						
DMI, Concentrate	1384.52 ^a	1200.54 ^b	1247.37 ^{ab}	43.248	0.0166	
DMI, Silage	1181.97	1348.68	1209.42	84.176	0.3404	
Ratio Concentrate:silage	0.46^{b}	0.52^{a}	0.49^{ab}	0.015	0.0116	
DMI, Total	2566.49	2549.23	2456.79	111.018	0.7565	
OM intake	2390.57	2289.78	2249.97	101.369	0.6062	
Fat intake	171.27 ^c	241.11 ^a	206.19 ^b	9.647	0.0001	
NDF intake	1044.58	1023.02	976.59	53.554	0.6612	
ADF intake	639.34	770.02	653.12	40.535	0.0616	
ADL intake	115.26 ^b	195.06 ^a	136.29 ^b	8.475	0.0001	
Digestibility (kg/kg)						
Dry matter	0.72^{a}	0.69^{ab}	0.63^{b}	0.021	0.0357	
Organic matter	0.74^{a}	0.71^{ab}	$0.67^{\rm b}$	0.019	0.0500	
NDF	0.59	0.57	0.49	0.030	0.0926	
ADF	0.54	0.55	0.43	0.035	0.0674	
ADL	0.27^{ab}	0.32^{a}	0.14^{b}	0.041	0.0138	
Body Weight						
Body weight (BW), kg	91.00^{a}	70.33 ^b	78.33^{ab}	3.680	0.0022	
Metabolic BW ^{0.75}	29.45	24.77	26.22			

Within row, different letters (a, b) indicate difference between diets ($p \le 0.05$).

¹ Values are least-square means.

² Dry matter intake, DMI; natural detergent fiber, NDF; acid detergent fiber, ADF; Acid detergent lignin, ADL.

 $^{^{3}}$ SEM = pooled standard error of the mean.

Table S4. Nitrogen balance in dairy ewes supplemented with corn silage (CS), sunflower (SF) and their mixture (CS-SFS).1

Item ²		Diets		CEM3	
nem-	CS	SFS silage	CS-SFS	SEM ³	p -value
N intake (g/d)	56.48	58.83	55.29	2.187	0.5164
Fecal N excretion (g/d)	19.30	15.41	19.54	1.331	0.0673
Urine N excretion (g/d)	32.49	34.49	32.10	1.216	0.3432
Milk N excretion (g/d)	5.38 ^a	2.81 ^b	4.42^{ab}	0.523	0.0069
N balance (g/d)	-0.697^{b}	6.102^{a}	-0.774 ^b	1.359	0.0017
Fecal N excretion (%)	34.22^{a}	26.26^{b}	35.45 ^a	2.109	0.0101
Urine N excretion (%)	9.67^{a}	4.78^{b}	8.30^{ab}	1.061	0.0097
Milk N excretion (%)	57.54 ^b	58.67 ^a	58.10^{ab}	0.237	0.0096

Within row, different letters (a, b) indicate difference between diets ($p \le 0.05$).

¹ Values are least-square means.
² Nitrogen, N; nitrogen intake, N intake; nitrogen balance, N balance.
³ SEM = pooled standard error of the mean.