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I. Model Solution

In this appendix, we describe in detail the agents’ dynamic maximization problem
in each state of the economy, the model equilibrium, the solution approach, and the

implementation of the Pakes and McGuire (2001) algorithm.

A Agents’ Dynamic Maximization

There is a set of states s € {1,2,... , S} that describes the market conditions in the
economy. These market conditions are observed by each agent before she makes any
decision. The state s that an agent observes is described by the contemporaneous
limit order books, L; and Lo, the agent’s private value o and, in the case that the
agent has previously submitted a limit order to any of the books, the status of that
order in Ly or Lo, i.e., its original submission price, its queue priority in the book,
and its type (i.e., buy or sell). The fundamental value of the asset, v, is implicitly
one of the variables that describe state s, since agents interpret limit order prices
relative to the fundamental value. For convenience, we set the arrival time of an

agent to zero in the following discussion.

Let a € ©(s) be the agent’s potential trading decision, where ©(s) is the set of
all possible decisions that an agent can take in state s. Suppose that the optimal
decision given state s is @ € O(s). Let n(h|a, s) be the probability density that the
optimally submitted order is executed at time h. Let y(v|h) be the density function

of v at time h, which is exogenous and characterized by the Poisson process of the



fundamental value of the asset with rate A\,. Thus, the expected value of the optimal
order submission a € O(s), if the order is executed prior to the agent’s reentry time

h,, is

hy oo
(1) 7(hye,a,s) = /0 /_ e (a4 vy — Pp)Z) - y(vn|h) - n(hla, s)dvydh

where p is the submission price and Z is the order direction indicator (i.e., T = 1
if the agent buys and & = —1 if the agent sells) and both are components of the
optimal decision a. The expression (a + v, — p)Z is the instantaneous payoff, which

is discounted back to the trader’s arrival time at rate p.

Let ©(sp, |hr, @, s) be the probability that state s;, is observed by the agent at her
reentry time h,., given her decision a taken in the previous state s. The probability
¥(+) depends on the states and potential optimal decisions taken by other agents up
to time h,. In addition, let R (h,) be the cumulative probability distribution of the
agent’s reentry time, which is exogenous and described by the Poisson process A,.
Thus, the Bellman equation that describes the agent’s problem of maximizing her

total expected value, V(s), after arriving in state s, is given by

(., 5) + e / Vi) - 0(snlhe @, s)dsn. | dR(h)

Sh,,,ES

Vi(s) = max/
a E@(S) 0

where S is the set of possible states. The first term is defined in equation (1), and

the second term describes the subsequent payoffs in the case of reentries.



B Equilibrium

In equilibrium, each agent behaves optimally by maximizing her expected utility,
based on the observed state that describes the market conditions (as in equation (2)).
Thus, optimal decisions are state-dependent. They are also Markovian, because the
state observed by an agent is a consequence of the previous states and the historical
optimal decisions taken in the trading game. As there is competition between agents,
the equilibrium is competitive (although there is no competition between venues).
A competitive equilibrium means that competing agents will respond to an agent’s
local deviation in a way that leads to a reduction in the deviating agent’s expected
utility. We obtain a stationary and symmetric equilibrium, as in Doraszelski and
Pakes (2007). In such an equilibrium, optimal decisions are time-independent, i.e.,

they stay the same when an agent faces the same state in the present or in the future.

The trading game is also Bayesian in the sense that an agent knows her intrinsic
private value to trade but does not know the private values of other agents who
are part of the game. Hence, our solution concept is a Markov perfect Bayesian
equilibrium (see Maskin and Tirole, 2001). In the trading game, there is a state
transition process in which the probability of arriving in state s;, from state s is
given by ¥(sp,|a, s, h,). Thus, two conditions must hold in the equilibrium: agents
solve equation (2) in each state s, and the equilibrium beliefs are consistent for each

state over time.

As mentioned earlier, the state s is defined by the four-tuple (Ly;, Loy, o, status

of previous limit order), where all variables that describe the state are discrete.



Moreover, each agent’s potential decision a is taken from ©(s), which is the set of
all possible decisions that can be taken in state s. This set of possible decisions is
discrete and finite, given the features of the model. Consequently, the state space
is countable and the decision space is finite; thus, the trading game has a Markov

perfect equilibrium (see Rieder, 1979).

C Solution Approach

Given the large dimension of the state space, we use the Pakes and McGuire (2001)
algorithm to compute a stationary and symmetric Markov perfect equilibrium. The
intuition behind this algorithm is that the trading game by itself can be used as
a tool through which agents learn how to behave in each state. Thus, we set the
initial beliefs about the expected payoffs of potential decisions in each state. Agents
take the trading decision that provides the highest expected payoff conditional on
the state they observe. Subsequently, agents dynamically update their beliefs by
playing the game and observing the realized payoffs of their trading decisions. In
this sense, the algorithm is based on agents following a learning-by-doing mechanism.
The Pakes and McGuire (2001) algorithm is able to deal with a large state space

because it reaches the equilibrium only in the recurring states class.

The equilibrium is reached when there is nothing left to learn, i.e., when the beliefs
about the expected payoffs have converged. We apply the same procedure as was
used by Goettler, Parlour, and Rajan (2009) to determine whether the equilibrium

has been reached. Once we reach the equilibrium, after making the agents play the



game for at least 10 billion trading events, we fix the agents’ beliefs and simulate a
further 20 million events. All theoretical results presented in Section 77 are computed

from the latter.

D Pakes and McGuire Algorithm

Here, we explain the implementation details associated with the Pakes and McGuire
(2001) algorithm, along with some additional steps taken to reduce the state space
of our model. In order to reduce the dimensionality of the state space, we center
each limit order book at the contemporaneous fundamental value of the asset, i.e.,
by setting p® = v;. Suppose, at time ¢ = 0, the fundamental value is vy, but after
a period 7 the fundamental value has experienced some innovations and is now v,
with v, — vy = qd, where ¢ is a positive or negative integer. In this case, we shift
both books by ¢ ticks to center them at the new level of the fundamental value v,.
Thus, we move the queues of existing limit orders in both books to take the relative
difference with respect to the new fundamental value into account. This implies that
the prices of all orders are always relative to the current fundamental value of the
asset and agents always make decisions in terms of prices relative to the fundamental

value.

1 Updating Process to Reach the Equilibrium

For any state s of the economy, there is a set of possible actions, O(s), that a trader

can take. Suppose that a given trader arrives for the first time or reenters the market



at time ¢ and observes the state s. In our model setup, the trader has beliefs about the
expected payoff of each possible action that could be taken given the observed state
s. Suppose that U;(als) is the expected payoff at time ¢ that is associated with the
action a € O(s). Suppose that the trader decides at time ¢ to take the optimal action
a* that provides the maximum expected payoff out of all possible actions. As a first
case, suppose that the optimal action @* is not a market order (e.g. a limit order, or
a cancellation and resubmission). Later on, at time ¢,, the same trader reenters the
market, but the market conditions have changed. The trader observes a new state
st in which she follows the optimal strategy a** that also gives a maximum payoff
given the new market conditions. Consequently, the original decision a* induces a
realized continuation of optimal actions and expected payoffs; and thus the updating

process of beliefs can be written as:

~ % Ngx,s ~ % 1 — — ~ ok
U, (a*[s) = mUt(a |s) + e =D (U G| sy,

where ng« ¢ is a counter that increases by one when the action a* is taken in the state

st

Alternatively, as a second case, suppose that the optimal decision a* is a market
order (i.e. there is no future time ¢, as in the previous case). Then, the updating pro-
cess of the expected payoff of the optimal action a* in this scenario can be expressed

as:

!The value of ngz- s affects how quickly we reach the model equilibrium (a large value in ng- ¢
is associated with a slow convergence). Therefore, we reset ng» s intermittently to improve the
convergence speed.



~ % n[i*,s ~ % ]- ~\ ~
U (a%|s) = a1 1Ut(a |s) + I 1(a + v, — D).

Here p is the submission price, « is the private value of the trader, v; is the funda-
mental value of the asset, and 7 is equal to one (minus one) when the trader submits

a buy (sell) order.

As a third case, suppose that the optimal decision a* is a limit order; however,
later on at time ¢, this limit order is executed because another trader submits a
market order. The updating process for the first trader with the optimal action a*

is reflected in the following equation:

~ % Ng* s ~ % 1 _ — ~\ ~
Un(@'ls) = 2 Ul@'ls) + o g e et v, = D)3

where « is the private value of the first trader. Similarly, for the second trader,
who submits the market order that executes the limit order of the first trader, the

updating process can be expressed as:

~ N’ sy, ~ 1 ~ ~
Ut’!' (a/|8t7') - Nors t_i_ 1 Ut(a’llstr) + Nrs + 1 (O{l + vtr - p)(_x)7
a’,Sty a’,Sty

where o and @’ are the private value and the optimal decision of the second trader,
respectively. In this case, @’ is a market order which is chosen at time ¢, by the second
trader when the state s; is found. In this last case, it is important to observe that
any market order implies the execution of a previously submitted limit order. Thus,

in the presence of market orders the updating process in beliefs always involves two



traders: the trader who submits the market order, and the trader who submitted the

limit order which is executed by the market order.?

2 Convergence Criteria

We use the same convergence criteria as Goettler et al. (2009); thus, further details
can be found in their study. We check for convergence after running the trading
game for at least 10 billion trading events. Subsequently, we check the evolution
of agents’ beliefs for convergence after every 500 million simulations. Let us assume
that the first group of 500 million simulations after we start checking for convergence
finishes at time ¢; and the second group of 500 million simulations finishes at time
ty. Let Uy (als) and U (als) be the expected payoffs that are associated with the
action a when the state s is present at times ¢; and %o, respectively. In addition,
suppose that k:gl’gl is the number of times that the action a was taken between
t; and t, when traders face s. We evaluate the change in the expected value of
the expression |Uy,(a|s) — Uy, (als)| for all pairs (a, s) weighted by kgf;tl after every
500 million simulations. Once this weighted absolute difference is smaller than 0.01
(suggesting that the model has converged), we apply two further convergence criteria

in line with Pakes and McGuire (2001) and Goettler et al. (2009).

2The initial beliefs about the expected payoffs Uy(als) of the possible actions a € ©(s) that a
trader can take given that she faces state s are set as follows. Suppose one of the possible actions
for a trader with private value « in the state s is to submit a limit sell order at price p when the
fundamental value is v. We set the initial expected payoff of this action as p — v — « discounted
by p until the expected time at which a new fast trader will arrive in the market. This value is
only a first approximation since we assume that v is constant, which is not true in the model, and
there is a chance that the next trader may submit another limit order instead of a market order
that executes the limit order of the previous trader. In the case of a market sell order, the expected
payoff is simply p — v — o without any discount. Similar values are obtained for buy orders.



After reaching a small weighted absolute difference in the change in the expected
values as described in the previous paragraph, we fix the agents’ beliefs concerning
the expected payoffs, U*(+), and simulate the trading game for another 500 million
events. Then, we calculate the realized payoffs of all order submissions after they
have been executed. Let us denote these realized payoffs as J(-). J(-) is a direct
measure of the realized benefits of trading. First, we require that the correlation
between beliefs U*(-) and realized outcomes .J(-) is higher than 0.99. Second, we
require that the mean absolute error in beliefs, i.e. the difference between U*(-) and
J(-) weighted by the number of times that a specific action has been selected in a
given state within the last 500 million simulated events, is less than 0.01 (i.e. in a
similar way to the previous paragraph when we evaluated the change in the expected
value between Uy, (als) and Uy, (als) weighted by kéf;tl). If any convergence criterion
is not reached, we continue simulating the trading game and updating the beliefs

until all convergence criteria are satisfied.

II. Parameter Benchmarking

In order to ascertain the suitability of our model parameter choices, we employ the
Hollifield, Miller, Sandas, and Slive (2006) approach to empirically estimate the
trader arrival rate, asset volatility, and private value in limit order markets for two
FTSE-100 stocks listed on the London Stock Exchange (LSE): Vodafone (VOD) and
Hargreaves Lansdown (HRGV). The two stocks belong to the largest and smallest

market value quartile of the FTSE-100 index, respectively. We use message-level
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data from the LSE’s rebuild order book service for the month of January 2015. The
data contain a record of the submission, cancellation, and execution of each visible

order submitted to the LSE. Each message is time-stamped to the millisecond.

Hollifield et al. (2006) model traders’ order submission decisions in limit order
markets as a function of their private valuations, expected execution probabilities and
picking-off risk, and market conditions. They employ a two-step process to compute
the model parameters. In the first step, they estimate the execution probabilities and
picking-off risk of different orders as a function of variables capturing the state of the
limit order book, past order submission activity, order characteristics, and market
conditions. In the second step, they use the execution probabilities and picking-off
risk to estimate the trader arrival rates, private value distributions, and execution

costs using maximum likelihood estimation.

Hollifield et al. (2006) estimate the gains from trading using this approach with
data from the Vancouver Stock Exchange — primarily a venture capital exchange —
for the period between May 1990 and November 1993. Due to differences in the
specific markets, data, and time periods analyzed, we deviate from their approach

in the following ways:

1. We identify all unexecuted immediate-or-cancel and fill-or-kill limit orders as
those that have the same order submission and order cancellation timestamp

and exclude them from our analysis.
2. We exclude multi-day orders from our analysis.

3. For computational reasons, we estimate the parameters independently for each

11



day of our sample. Consequently, we exclude the exogenous variables used by

Hollifield et al. (2006), as these are only updated on a daily basis.

. When estimating the conditional distributions of time to execution and time
to cancellation, we treat all limit orders that survive longer than two hours as
censored observations. The corresponding time period in Hollifield et al. (2006)

is two days.

. Similarly, we compute the probability of execution within two hours instead of

two days for each limit order type.
. We set execution costs to zero.

. We exclude all opening, closing, intraday, and volatility auctions from our

analysis and focus only on the continuous trading session.

Apart from these deviations, we exactly follow the Hollifield et al. (2006) two-step

estimation approach. We do not compute individual and market-wide trading gains,

as our focus is to identify the optimized model parameters. Specifically, we compute

the trader arrival rate A\, fundamental volatility A,, and private value distribution

We start by calibrating the speed of time clock update. In our model, this value

is linked with the trader arrival rate for the asset. The fundamental value volatility

and traders’ reentry rate are further determined relative to this trader arrival rate.

Goettler et al. (2009), based on data from Hollifield et al. (2006), use a time clock

update frequency of approximately one minute and link this rate to the daily number

12



of trades. We rely on the same intuition, but instead use the daily number of trades
to compute the new trader arrival rate in seconds. In our model — similar to that
of Goettler, Parlour, and Rajan (2005); Goettler et al. (2009) — all traders remain
part of the trading game until their orders are executed. Hence the number of trades
acts as a proxy for the number of new trader arrivals. We compute the average time

clock speed, ClockSpeed,, on day t as:

8.5 x 3600

lock d; =
(3) ClockSpeed; 2 x No. Of Trades;

where the numerator corresponds to the number of seconds in a trading day. We
multiply the number of trades in the denominator by 2 as each trade involves an

aggressive order trading against a passive order sitting in the limit order book.

The intensity of the Poisson process governing the change in the fundamental
value )\, corresponds to the expected number of time units after which the funda-
mental value v changes by one tick. This translates to the return volatility on day ¢,

defined as the standard deviation of open-to-close returns, denoted by:

. 8.5 x 3600 . .
(4) Volatility, = \/ClockS’peedt 7 Rel. Tick Size,

where k denotes the frequency with which the fundamental value changes. In our
simulations, k = 8 (k = 1.6) in the low (high) volatility setting, i.e., the fundamental
value changes, on average, after every 8 (1.6) trader arrivals. We compare this with

the standard deviation of the midpoint prices on day t.

In our model, the distribution of private values F, is discrete. However, Holli-
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field et al. (2006) parameterize the agents’ private values as a mixture of two normal
distributions with standard deviation denoted by oy and o5, and their correspond-
ing weights denoted by p and (1 — p), respectively. Specifically, the private value

distribution F, is parameterized as:

5) oo (L) ra-n (2

where y; is the common value of the stock on day ¢, proxied by the opening price.
We assign the probability mass for all private values in the interval [—oo, —6],
[—6,—2], [—2,2], [2,6], and [6, 00|, respectively to the five discrete values of o €
{—8,—4,0,4,8} in our model.

Table B1 contains the parameter values. Consistent with VOD and HRGV be-
longing to the largest and smallest market value quartiles of the FTSE-100 index,
respectively, the former has a lower time between trader arrivals and lower volatility
than the latter. For VOD (HRGV), the average time between new trader arrivals \;
is 1.3 (7.7) seconds. Based on these estimates, we obtain average low (high) estimates
of the standard deviation of open to close returns of 1.2% (2.7%) for VOD and 1.4%
(3.2%) for HRGV.? These estimates are comparable to realized intraday volatility
of 1.4% for VOD and 1.8% for HRGV and suggest that our arrival rate and funda-
mental value volatility scale reasonably well under the assumption of a unit of time
in our model being equivalent to a few seconds of calendar time. This is consistent

with an increase in trading speed due to widespread electronification, investments in

3These estimates are based on the actual value of one tick, which is approximately 2bps for VOD
and 6bps for HRGV.
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technology by exchanges and market participants, and the use of algorithmic trad-
ing in global equity markets. Finally, the fractions of traders with absolute private
value |a| =8, |a| =4, and |a| = 0 are respectively equal to 24%, 42%, and 34% for
VOD, and 14%, 38%, and 48% for HRGV. On the one hand, in our parameter set,
traders with |a| = 8 (|a] = 0) have a higher (lower) weight than the corresponding
fractions for VOD and HRGV. On the other hand, our chosen value for traders with
|a| = 4 is close to the corresponding values for VOD and HRGV. In conclusion, our
chosen parameters appear largely comparable to those of modern electronic equity

exchanges such as the LSE.

Table B1. Calibrated Model Parameters

This table presents the model parameters calibrated using message-level data for two FTSE-
100 stocks from the London Stock Exchange. We report mean values of all parameters for
the 21 trading days of January 2015. Trade Count is the number of transactions during
the daily continuous trading session. ClockSpeed; is the number of seconds between two
trader arrivals. Relative Tick Size is the ratio of one tick (in GBP) and the daily opening
price. Low (High) Volatility A (Af) is the average daily volatility assuming a change in
the fundamental value, on average, after every 8 (1.6) trader arrivals. Empirical Volatility
is the daily volatility computed based on one-minute returns. Fly—g, Floj=4, Fa=0 is the
fraction of traders with |o| = 8, |a| = 4, a = 0, respectively. We report the mean values
for all parameters across the 21 trading days in January 2015.

VOD HRGV
Trade Count 12,156 2,149
ClockSpeed; in seconds 1.3 7.7
Relative Tick Size 2bps 6bps
Low Volatility (Volatilityl) 1.2% 1.4%
High Volatility (Volatility!) 2.7% 3.2%
Empirical Volatility 1.4% 1.8%
Floj—s 24% 14%
Flo)=4 42% 38%
F.—o 34% 48%
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IT1. Alternative Model Parameterizations

In this appendix, we report the results of the following four alternative parameteri-

zations of our model:

1. Triple reentry rate for a« = 0 traders: This setting captures the impact of
having faster intermediaries (HFTs) compared to the speed of natural liquidity

trades (|a| > 0). Table C1 contains the results.

2. Capacity constraints: This setting investigates the effect of relaxing the con-

straint of agents trading one share only. Table C2 reports the results.

3. Clientele effect: In this setting, we run our simulations by requiring 10% of the
agents to only trade in one of the two order books in the fragmented setting.

Table C3 reports the results.

4. Double @ = 0 agents: In this setting we double the population of intermediaries.

Table C4 contains the results.

Under all alternative specifications, intermediaries extract a larger welfare com-
pared to our main specificatio. This is because these agents are not exposed to delay
costs, can trade on either side of the market, and can exploit small price changes.
In the setting involving the faster reentry of such agents, they additionally benefit
from their inherent speed advantage over other agents. In the specification featuring
two-share traders, they are the primary beneficiaries of the high picking-off risk in

the market. In the specification featuring captive traders, the order routing fric-
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tion allows them to charge a wider spread in the less liquid market while trading

aggressively in the more liquid market.
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