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A. Intermediate steps in deriving Eq. 2.19

In Eq. 2.18 of the main manuscript we derived an expression of 𝑐′ (𝑥, 𝑟, 𝑡) in terms of
𝜕⟨𝑐⟩
𝜕𝑥

. We here present some details of the derivation. The followings are expressions for
each of the terms in Eq. 2.11:
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Substituting each term into Eq. 2.11 and we arrive at Eq. 2.19 of the main manuscript.
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B. Derivation of the dominant error term in Eq. 2.31

As stated in the main manuscript, the ODE for the dynamics of 𝜎2
𝑥 can be written

as
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Here (·)′ =
d( ·)
d𝑥 ; Skew𝑥 is the axial skewness of the solute zone, defined as Skew𝑥 =

(𝑥 − 𝑥)3/𝜎3
𝑥 ; Kurt𝑥 is the axial kurtosis of the solute zone, defined as Kurt𝑥 = (𝑥 − 𝑥)4/𝜎4

𝑥 .
The second term gives rise to the error listed in Eq. 2.31 of the main manuscript.
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Table S1. Parameters for Brownian dynamics simulation.

- Shared parameters:
𝑈0 = 1, 𝑎0 = 1, 𝐷 = 𝑈0𝑎0/𝑃𝑒𝑎0 .
Time step d𝑡 = 𝑃𝑒𝑎0/40. Number of timesteps = 40𝑁𝑡0 + 1.
Number of points = 5000.
All simulations repeated with random seed 0 - 4.

- Figure 3:
diverging: 𝑎(𝑥) = 𝑎0 + 𝛽𝑥, 𝑎0 = 1, 𝛽 = 10−3.
𝑃𝑒𝑎0 = 10, 𝑁𝑡0 = 500, 𝜎2

𝑥0 = 10
converging: 𝑎(𝑥) = 𝑎0 + 𝛽𝑥, 𝑎0 = 1, 𝛽 = −10−3.
𝑃𝑒𝑎0 = 10, 𝑁𝑡0 = 26, 𝜎2

𝑥0 = 10

- Figure 4-6, S1:
𝑎(𝑥) = 1 + 0.2 sin(𝑥/400), 𝑁𝑡0 = 500, 𝜎2

𝑥0 = 10
Figure 4: 𝑃𝑒𝑎0 = 10
Figure 5: 𝑃𝑒𝑎0 = 100
Figure 6: 𝑃𝑒𝑎0 = 1000

- Figure 7:
𝜆 = 200, 𝛿 = 0.05, 𝑁𝑡0 = 500, 𝜎2

𝑥0 = 10
𝑃𝑒𝑎0 = 0.1, 1, 10, 100, 1000
Left: 1 + 𝛿 sin(2𝜋𝑥/𝜆)
Middle: 1 + 3𝛿

2𝜆mod(𝑥, 𝜆) − 9𝛿
2𝜆 (mod(𝑥, 𝜆) − 2

3𝜆)𝐻 (mod(𝑥, 𝜆) − 2
3𝜆)

Right: 𝛿
𝑒 exp(sin(2𝜋𝑥/𝜆)) + (1 − 𝛿

𝑒 )

- Figure 8:

𝑎(𝑥) = 1 + 0.2𝑒−(𝑥−500)2/8000 + 0.1𝑒−(𝑥−800)2/20000 + 0.2𝑒−(𝑥−2000)2/100000 − 0.1𝑒−(𝑥−3500)2/2000000

𝑃𝑒𝑎0 = 10, 𝑁𝑡0 = 500, 𝜎2
𝑥0 = 10

- Figure 9:
constant axial variance:
𝑃𝑒𝑎0 = 10, 𝑁𝑡0 = 120,𝜎2

𝑥0 = 300
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sinusoidal axial variance:
𝑃𝑒𝑎0 = 10, 𝑁𝑡0 = 120,𝜎2

𝑥0 = 300.
𝛿 = 50, 𝜆 = 600, 𝜎2

𝑥 (𝑥) = 300 + 𝛿 sin(2𝜋𝑥/𝜆).
Solve Equation 2.35.

C. Summary of simulation parameters

This section lists the parameters used for the Brownian dynamics simulations in the
main manuscript.
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Figure S1. Taylor-Aris dispersion in a channel with a sinusoidal (periodic) radius distribution,
𝑎(𝑥). The channel is the same as that of Figure 4-6, with initial Peclet numbers 𝑃𝑒𝑎0 of 10
(blue, 𝑡 = 500𝑎20/(2𝐷)), 100 (orange, 𝑡 = 50𝑎20/(2𝐷)) to 1000 (green, 𝑡 = 5𝑎20/(2𝐷)). The top plot
shows results from a Brownian dynamic simulation. The bottom plot shows the concentration
distribution normalized by local cross-sectional area. For a fixed distance of travel, the solute
zones subjected to greater Peclet numbers disperse faster and the solute distribution becomes
more skewed.

D. Supplementary figures

Figure S1 shows plots of the Brownian dynamics simulations (top) and the concen-
tration distribution weighted by local cross-sectional area (bottom) for the channel with
a sinusoidal radius distribution (the same channel as in Figure 4-6), with initial Peclet
number 𝑃𝑒𝑎0

varying from 10, 100 to 1000 and the mean axial location 𝑥 the same. As
expected, the solute zone subjected to a higher Peclet number spreads faster, and the
axial concentration distribution is more skewed.
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E. Comparison of effective dispersion coefficient in periodic channels
with solutions by Adrover et al.

Adrover et al. comprehensively analyzed effective dispersion coefficient in a wide range
of wavelengths for a periodic channel with a specific radius 𝑅(𝑥) = 𝑅0 (1+𝛿 sin(2𝜋𝑥/(𝜆𝑅0)))
(Adrover et al. 2019). For our current model, the Taylor dispersion analysis requires that
the flow field in the channel be well approximated by lubrication theory. This constraint
in turn requires the ratio (𝜆) of the channel wavelength to channel radius be significantly
greater than unity. In this limit, Adrover et al. provided the following asymptotic formula
for the effective dispersion coefficient in the axisymmetric sine-wave channel as

𝐷∞∗
eff = 𝐷∗

0 + 𝜖2𝐷∗
1 + 𝜖4𝐷∗

2 + ...

lim
𝑃𝑒𝜆→∞

𝐷∗
0 =

16 + 120𝛿2 + 90𝛿4 + 5𝛿6

16(1 + 𝛿2/2)

𝐷∗
1 =

𝑃𝑒2
𝜆

48

(1 + 3𝛿2 + 3𝛿4/8)
(1 + 𝛿2/2)3

𝐷∗
2 = 𝑃𝑒2𝜆

43𝜋2𝛿2 (1 + 3𝛿2/2 + 𝛿4/8)
480(1 + 𝛿2/2)3

(S1)

Here, 𝜖2 = 𝜆−2 and 𝑃𝑒𝜆 = 𝜆
𝑈𝑅0

𝐷
is the Peclet number defined based on wavelength.
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