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1. Monte–Carlo simulations in the cylindrical coordinate10

With a standard Monte–Carlo simulation shown below, we have reproduced the key hallmarks11
of the four dispersion regimes predicted by the streamwise dispersion theory, as presented12
in figure 6 in the main text. The numerical scheme is slightly different from that adopted13
by Houseworth (1984), who simulated the transport of particles by an exact analytical14
solution in the radial direction and let it walk randomly in the longitudinal direction. With15
the assumption of isotropic diffusion, the following stochastic differential equations (SDEs)16
and the convection-diffusion equation (CDE) in the Cartesian coordinates (𝑥1, 𝑦1, 𝑧1) are17
considered as equivalent to describe the dispersion process18
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√
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√
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In the cylindrical coordinates (𝜉, 𝑟, 𝜃), the corresponding CDE reads21
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The second-order derivative in the radial direction can be decomposed into one ‘convective’23
term and one dissipative term as24
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𝜕𝑟2 . (1.3)25

The radial convection term has a weak singularity at 𝑟 = 0 and can be processed with an26
a priori step of random walk. By analogy with equation (1.1), the equivalent SDEs in the27
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cylindrical coordinates read28

d𝜉 = Pe𝑢 (𝑟, 𝜃) d𝑡 +
√

2d𝑤1
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𝑟
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√
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d𝜃 =
√

2d𝑤3


29

When concerned with the axisymmetric mean concentration, the three-dimensional CDE30
may be averaged over 𝜃 and the equivalent SDEs reduce to the first two rows of (1.4). The31
rigorous proof of relations between SDEs and CDE under coordinate changes can be found32
in the book (see Section 4.8 of Chirikjian 2009, p. 130). In the present work, the total amount33
of particles is at least 100000 and the time step is less than 10−4 second for illustration in34
the main text and Supplementary Material. The Monte–Carlo simulation outweighs standard35
numerical techniques especially at short times for its absolute stability, simple manipulation36
and above all exact simulation of Dirac delta sources (Houseworth 1984; Guan et al. 2023).37

2. Application to Couette flow in a channel38

In this section, we present results for a channel Couette flow with the velocity profile 𝑢(𝑧)39
between two parallel plates, with 𝜉 and 𝑧 denoting the longitudinal and vertical coordinates,40
respectively. The system is governed by the dimensionless CDE in two dimensions41

𝜕𝐶

𝜕𝑡
+ Pe𝑢(𝑧) 𝜕𝐶

𝜕𝜉
=
𝜕2𝐶

𝜕𝜉2 + 𝜕
2𝐶

𝜕𝑧2 , (2.1)42

under the conditions43
𝐶 |𝑡=0 = 𝛿(𝜉)𝐹 (𝑧) ,∫ ∞
−∞ d𝜉

∫ 1
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𝜕𝐶
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��
𝑧=0 = 𝜕𝐶

𝜕𝑧

��
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
(2.2)44

where 𝐹 (𝑧) is the initial vertical distribution of the solute.45
The spatial moment of concentration could be defined as46

𝐶𝑛 (𝑧, 𝑡) =
∫ ∞

−∞
𝜉𝑛𝐶 (𝜉, 𝑧, 𝑡)d𝜉. (2.3)47

With the conditions of48

𝜉𝑛
𝜕𝑛𝐶

𝜕𝜉𝑛
→ 0 as |𝜉 | → ∞(𝑛 = 0, 1, 2, . . .), (2.4)49

Aris (1956) has demonstrated that 𝐶𝑛 constitutes the solutions of the following problems50
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𝐶𝑛 |𝑡=0 = 𝐹 (𝑧) ,
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𝑧=0

=
𝜕𝐶𝑛

𝜕𝑧

���
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
(2.5)51

As obtained by Barton (1983), the analytical solutions for these moments can be sequentially52
derived through the method of separation of variables in parallel flows where the associated53
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eigenvalue problem possesses a discrete spectrum of eigenvalues. Employing the same54
techniques as outlined in the main text, a streamwise expansion for the concentration can be55
formulated as56

𝐶 (𝜉, 𝑧, 𝑡) = 𝐶0√
2𝜋𝜅2
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]
57
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1/2
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)
+ 𝜅4
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2
He4

(
𝜉 − 𝜅1

𝜅
1/2
2

)
+ . . .

]
, (2.6)58

wherein 𝜅𝑛 is the cumulant of the 𝑛-th order and could be obtained directly through central59
moments, as calculated later in §4. The method can be extended to encompass three-60
dimensional cases with various initial distributions, significantly expanding the spectrum61
of physical problems that can be effectively addressed through the utilisation of this model.62
For brevity, we only apply the fourth-order solution of the streamwise dispersion model for63
the Couette flow in a two-dimensional channel herein.64

Consistent with the case of the tube flow in the main text, we introduce a longitudinal65

coordinate 𝑥′ = 𝜉 −Pe𝑈̄𝑡 at the speed of mean flow velocity 𝑈̄ ≡
∫ 1

0 𝑢(𝑧)𝑑𝑧. For comparison66

with the classical theoretical results, a normalised set of (𝐶̄Pe, 𝑥′/Pe) is adopted. The mean67
concentration from a line source obtained by the streamwise dispersion model within Couette68
flow is illustrated in figure 1, alongside numerical simulations conducted through a Monte-69
Carlo simulation. Figure 1(𝑎) displays the concentration distribution at the initial stage for70
an area source, i.e. 𝐹 (𝑧) = 1 , showcasing a distinctive saddle-shaped pattern. At short71
times, convection emerges as the dominant mechanism governing solute distribution. Solely72
accounting for convection yields a concentration distribution resembling a rectangle under73
uniform shear. However, when the influence of diffusion is factored in, owing to the presence74
of non-penetration boundary conditions, the soluble matter tends to accumulate in proximity75
to the wall, resulting in the formation of concentration peaks at both ends, as shown in figures76
1(𝑎)–(𝑑). This phenomenon is also observed in circular tube flow, but in that context, the peak77
concentration is confined to the wall at 𝑟 = 1, generating a skewed uni-modal concentration78
distribution. In the case of Couette flow, characterised by its anti-symmetrical velocity profile79
about 𝑧 = 0.5, the mean concentration maintains this symmetry. As time elapses, the peaks80
at both ends gradually coalesce, ultimately giving rise to a normal distribution, as illustrated81
in figures 1(𝑒) and ( 𝑓 ).82

3. Effects of Péclet numbers and initial conditions83

Subsequently, we have performed supplementary computations to explore cases at a dimin-84
ished Péclet number of Pe = 100, originating from an area source. As depicted in Figure 2,85
the analytical model demonstrates strong concordance with the numerical findings. In the86
case of soluble matter in a solvent flowing slowly through a tube, the impact of convection is87
promptly attenuated by molecular diffusion, facilitating a more rapid transition from skewed88
profiles to Gaussian distributions. Conversely, at a greater Péclet number, the disparity in89
spatio-temporal scales is so pronounced that capturing the comprehensive evolution of the90
concentration distribution becomes notably intricate (Guan et al. 2021, 2022).91

Furthermore, our discussion has been extended to encompass initial sources at 𝑟0 = 0, 0.5,92
and 1, and an area source with Pe = 100, as depicted in figure 3. For area and ring sources93
released at different radial positions during the intermediate regime, convection dominates94
along each streamline. When it comes to area and ring sources released at diverse radial95
positions during the intermediate regime, convection prevails along every streamline. Given96
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Figure 1: Mean concentration from a line source in a Couette flow.

the different convective velocity at each radial position, the soluble matter cloud is subject97
to distortion by shear, where the initial conditions dictate whether the peak of the mean98
concentration is convected downstream or remains near the wall at a slower pace. This, in99
turn, results in the depiction of right-skewed and left-skewed profiles, as illustrated in figures100
3(𝑎 and 𝑏). Subsequently, the impact of transverse diffusion is more pronounced, causing the101
skewed profiles to become smoother and gradually transition into a Gaussian distribution, as102
illustrated in figures 3(𝑐 and 𝑑).103

4. Correlation and generalisation of long-time asymptotic expansions104

The spirit of the streamwise dispersion theory in local moment space can be applied to105
various long-time asymptotic expansions. We clarify the correlation of the present expansion106
with other long-time asymptotic expansions. Taylor (1953) first separated the scale of time107
and space, and experimentally proved the mean concentration can be governed only by108
longitudinal dispersion for long times in a moving 𝑥′-coordinate as109

𝐾2
𝜕2𝐶̄

𝜕𝑥′2
=
𝜕𝐶̄

𝜕𝑡
, (4.1)110
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Figure 2: Mean concentration from an area source with Pe = 100 in a tube Poiseuille flow.

where 𝐾2 is the second-order effective diffusivity in the consistent notation in the main text.111
Inspired by this simplified model, Taylor proposed in a moving coordinate system as112

𝐶 = 𝐶̄ + 𝑈
∗𝑎∗2

𝐷∗ 𝑔 (1)
d𝐶̄
d𝑥′

(4.2)113

and naturally introduced the second-order derivatives (Taylor 1954). By analogy with (4.2),114
Gill (1967) suggested that 𝐶 can be expanded in an infinite series115

𝐶 = 𝐶̄ +
∞∑︁
𝑛=1

𝑓𝑛 (𝑡)
𝜕𝑛𝐶̄

𝜕𝑥′𝑛
, (4.3)116

where 𝑓𝑛 is the time-dependent coefficients of 𝑛-th order in Gill’s model. The core of complete117
solution of Gill’s model is the series expansion118

𝐶 =

∞∑︁
𝑛=0

𝑓𝑛
𝜕𝑛𝐶̄

𝜕𝑥′𝑛
, (4.4)119
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Figure 3: Axial distributions of mean concentration of a solute with different initial
conditions for Pe = 100 in a tube Poiseuille flow. Sample times: (𝑎) 𝑡 = 0.05, (𝑏) 𝑡 = 0.1,

(𝑐) 𝑡 = 0.3, (𝑑) 𝑡 = 0.5.

and another assumption120

𝜕𝐶̄

𝜕𝑡
=

∞∑︁
𝑚=0

𝐾𝑚

𝜕𝑚𝐶̄

𝜕𝑥′𝑚
(4.5)121

proposed in the work of Gill (1967) can be deduced by substituting (4.3) into the governing122
equation of mean concentration. Jiang & Chen (2018) presented the Taylor–Gill solution up123
to the fourth order124

𝐶̄ = F −1
𝜔̄

{
exp

[ 3∑︁
𝑛=0

(−i𝑥′)𝑛𝜔̄𝑛 + (−i𝑥)′4𝜔̄4

]}
= 𝐶̄(3) ∗

{
1

4√−𝜔̄4
𝑊

[
𝑥′

4√−𝜔̄4

]}
(4.6)125

Here 𝜔̄ is denoted with an overbar to differentiate from the definition of time-dependent co-126
efficient 𝜔 derived by spacial concentration moments. Correspondingly, 𝜔̄ can be calculated127
with mean concentration moments. On the other hand, the change of averaged moments to128
spatial ones embodies the opinion of viewing from streamline perspective, viz.129

𝐶̄ =

∫ 1

0
2𝑟d𝑟

∫ ∞

−∞
d𝜔𝐶0 exp

[ ∞∑︁
𝑛=1

𝜔𝑛 (𝑡) (−i𝜔)𝑛
]

e−i𝜔𝑥′ . (4.7)130
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Figure 4: Comparisons of mean concentration 𝐶̄ at 𝑡 = 0.1 obtained by the present
streamwise expansion (solid purple), third-order extended Gill’s model (dotted red),

fourth-order extended Gill’s model (dashed blue), and third-order extended Gram–Charlie
expansion of Smith (1982) (dash-dotted green) with the numerical results (coarsely dotted

black). In all cases, Pe = 10000 and particles are discharged on the central axis initially.

This difference is significant as spatial concentration moments somewhat introduce a131
modified phase displacement during the transient period.132

Another perspective is to view the concentration in the form of a Gaussian approximation.133
Chatwin (1970) assumed 𝐶 could be expressed by the long-time expansions134

𝐶 ∼ 𝐶 (0)

𝑇
+ 𝐶

(1)

𝑇2 + 𝐶
(2)

𝑇3 + . . . , (4.8)135

wherein 𝐶 (𝑝) for each order 𝑝 could be obtained successively, 𝑇 = 𝑀𝐶 𝑡
1/2 and the constant136

𝑀𝐶 can be determined for algebraic convenience. It is remarked by Chatwin (1972) that137
the difference between 𝐶 and 𝐶̄ does not follow a Gaussian distribution. By substituting138
(4.8) into the advection–diffusion equation, and equating the coefficients to be zero, Chatwin139
eventually yields the long-time approximation140

𝐶 ∼ 𝐶̄ +
(
𝑈∗𝑎2

𝐷∗

)
𝑔 (1)

𝜕𝐶̄

𝜕𝑥′
+

(
𝑈∗𝑎2

𝐷∗

)2

𝑔 (2)
𝜕2𝐶̄

𝜕𝑥′2
+ . . . . (4.9)141

This solution is similar to the Taylor-Gill model, though it only adapts to asymptotically142
long times so that the coefficients are independent of time. The undetermined coefficients143
can be calculated with the aid of concentration moment. Wu & Chen (2014) extended Mei’s144
homogenization method to include an axial correction function accounting for the non-145
Gaussian effect at the initial stage. Their multi-scale perturbation method eventually results146
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in147

𝐶 = 𝐶̄ + 𝐹1
𝜕𝐶̄

𝜕𝑥′
+ 𝐹2

𝜕2𝐶̄

𝜕𝑥′2
+ . . . + 𝐹𝑛

𝜕𝑛𝐶̄

𝜕𝑥′𝑛
+ . . . , (4.10)148

where 𝐹𝑛 is the coefficient only as functions of spatial coordinates, equivalent to Chatwin’s149
results. On the other hand, Chatwin’s long-time expansion is slightly different from the150
normal perturbation method, since the small parameter (of the order of 𝑡−1/2) has to be151
differentiated. Note that Chatwin’s technique is indeed an Edgeworth form of Gram–Charlie152
Type A expansion at asymptotically long times (Chatwin 1970).153

Since Chatwin (1970) has demonstrated an alternative approach regarding cross-154
sectionally averaged concentration in statistical theories, we could likewise extend Gill’s155
dispersion model (Gill 1967) directly to the transverse concentration distribution. In this way156
tedious derivations for Gill’s coupling equations of time-dependent coefficients are avoided.157
With the aid of moment generating function, we obtain158

𝐶̃ =

∫ ∞

−∞
𝐶𝑒i𝜔𝑥′d𝑥′ =

∞∑︁
𝑛=0

(i𝜔)𝑛

𝑛!
𝐶𝑛159

= 𝐶0

[
1 + i𝜔

𝐶1
𝐶0

+ (i𝜔)2

2
𝐶2
𝐶0

+ · · ·
]
. (4.11)160

Applying the Fourier transform to Gill’s transient dispersion model, yields161

𝜕𝐶̃

𝜕𝑡
=

∞∑︁
𝑛=0

𝑓𝑛 (−i𝜔)2𝐶̃, (4.12)162

Given that the initial condition of concentration along 𝑥′-axis is in a special form of Dirac163
delta function, the initial condition of 𝐶̃ can be obtained164

𝐶̃
��
𝑡=0 = (𝐶0) |𝑡=0 (4.13)165

Thus the solution of 𝐶̃ reads166

𝐶̃ = exp

[ ∞∑︁
𝑛=0

𝜔𝑛 (𝑡) (−i𝜔)𝑛
]

(4.14)167

where 𝜔𝑛 =
∫ 𝑡

0 K𝑛 (𝑡′) d𝑡′, 𝐾𝑛 ≡ 𝑓𝑛−2/Pe2 − 𝑢 𝑓𝑛−1 + 2 (𝜕 𝑓𝑛/𝜕𝑟) |𝑟=1, and 𝑓−1 = 𝑓−2 = 0.168

Based on Taylor expansion of the exponential term in (4.14), 𝐶̃ can be expressed as169

𝐶̃ = e𝜔0

[
1 + (−i𝜔)𝜔1 +

1
2
(−i𝜔)2

(
𝜔2 + 𝜔2

1

)
+ · · ·

]
(4.15)170

Comparing (4.11) and (4.15) gives171

𝜔0 = ln𝐶0, 𝜔1 = −𝐶1
𝐶0
, 𝜔2 = 1

2

(
𝐶2
𝐶0

− 𝐶2
1

𝐶2
0

)
, 𝜔3 = − 1

6

(
𝐶3
𝐶0

− 3𝐶1𝐶2
𝐶2

0
+ 2𝐶3

1
𝐶3

0

)
,172

𝜔4 = 1
24

(
𝐶4
𝐶0

− 3𝐶2
2+4𝐶1𝐶3
𝐶2

0
+ 12𝐶2

1𝐶2

𝐶3
0

− 6𝐶4
1

𝐶4
0

)
, · · · (4.16)173

That is, 𝜔𝑛 have been expressed with the aid of spatial concentration moments. With the174
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inverse Fourier transform F −1
𝜔

(
𝐶̃
)
= 1

2𝜋

∫ +∞
−∞ 𝐶̃𝑒−i𝜔𝑥′d𝜔, the solution of 𝐶′ reads175

𝐶 =
𝐶0
2𝜋

∫ ∞

−∞
exp

[ ∞∑︁
𝑛=1

𝜔𝑛 (𝑡) (−i𝜔)𝑛
]

e−i𝜔𝑥′d𝜔, (4.17)176

as an extended Gill’s model from a streamwise perspective.177
The solutions of mean concentration from the extended Gill’s model of the 𝑝-th order is178

defined as 𝐶̄(𝑝) . Analytical solutions of second and third order are respectively179

𝐶̄(2) =

∫ 1

0

𝐶0Pe
√

4𝜋𝜔2
exp

[
− (𝑥′ + 𝜔1)2

4𝜔2

]
2𝑟d𝑟, (4.18)180

and181

𝐶̄(3) =

∫ 1

0

𝐶0Pe�� 3√−3𝜔3
�� exp

(
− 𝜔2

3𝜔3
𝑥′ − 𝜔1𝜔2

3𝜔3
+

2𝜔3
2

27𝜔2
3

)
Ai ©­«

−𝑥′ − 𝜔1 +
𝜔2

2
3𝜔3

3√3𝜔3

ª®¬ 2𝑟d𝑟 (4.19)182

where the first kind of Airy function is Ai(𝑥′) = 1
2𝜋

∫ ∞
−∞ ei( 𝜉 𝑥′+𝜉 3/3)d𝜉. The fourth-order183

solution is derived in the form of convolution184

𝐶̄(4) =
∫ 1

0 F −1
𝜔

{
exp

[
3∑

𝑛=0
(−i𝑥′)𝑛𝜔𝑛 + (−i𝑥′)4𝜔4

]}
2𝑟d𝑟185

=
∫ 1

0 𝐶(3) ∗
{

1
4√−𝜔4

𝑊

[
𝑥′

4√−𝜔4

]}
2𝑟d𝑟 (4.20)186

where𝑊 (𝑥′) ≡ F −1
𝜔

[
exp

(
−𝑥′4

) ]
= 1

2𝜋

[
2Γ

(
5
4

)
0
𝐹2

(
; 1

2 ,
3
4 ; 𝑥′4

256

)
− 1

4𝑥
′2Γ

(
3
4

)
0
𝐹2

(
; 5

4 ,
3
2 ; 𝑥′4

256

)]
187

and 0𝐹2(; 𝑏1, 𝑏2; 𝑥′) is the special form of the generalised hypergeometric function.188
Smith (1982) investigated the Gaussian approximation in terms of Gram–Charlie Type189

A series expansion, with short- and long-time asymptotic results obtained respectively. By190
using the Chebyshev–Hermite polynomials, an extended model of Smith is derived (Smith191
1982; Wang & Chen 2017), as192

𝐶̄ =

∫ 1

0

𝐶0√︁
2𝜋𝜇2

exp
[
− (𝜉 − 𝜇1)2

2𝜇2

] [ ∞∑︁
𝑛=0

𝑎𝑛

𝑛!𝜇𝑛/2
2

He𝑛
(
𝜉 − 𝜇1√
𝜇2

)]
2𝑟d𝑟, (4.21)193

where the central moments 𝜇1 and 𝜇2 are defined as194

𝜇1 =
𝐶1
𝐶0
, 𝜇2 =

𝐶2
𝐶0

−
𝐶2

1

𝐶2
0
. (4.22)195

We emphasise the exact streamwise cumulant of the 𝑛-th order could be computed from196
corresponding dispersion coefficients, as197

𝜅1 = 𝜇1, 𝜅2 = 𝜇2, 𝜅𝑛 =
1
2
(−1)𝑛 𝑛!

(
𝐾𝑛

𝐾2

)
𝜔2−𝑛 +𝑂 (𝜎−𝑛), 𝑛 ⩾ 3. (4.23)198

In summary, the present streamwise solutions includes the accurate description of moments199
up to the fourth order. These different expanding approaches for concentration distribution200
have been extended in the spirit of the streamwise dispersion theory and checked in compar-201
ison to numerical results at 𝑡 = 0.1, as shown in figure 4. The adopted streamwise expansion202
of fourth order in this work outweighs the others for the current application of fundamental203
delta Dirac releases due to its accurate description of moments and superior astringency,204
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showing the generality of the streamwise dispersion theory. Significant discrepancies have205
been produced due to the incorporation of streamwise corrections in contrast with existing206
dispersion models, especially during the transitional regime. This new streamwise perspective207
could advance our understanding of macro-transport processes of passive solutes and active208
suspensions.209
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