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Figure 1. Validation results for the settling velocity of a single sphere, simulated for (a)
CFL = u∆t/h = 0.1 and varying spatial step sizes h, and (b) spatial discretization D/h = 20
and varying CFL numbers. The simulation results are compared to the experimental data of
Mordant & Pinton (2000) for Ga = 49.26 and ρ′ = 2.56.

Supplement 1: single settling sphere validation

To confirm the accuracy of our numerical method, and to estimate the spatial grid
size required for convergence, we include here the case of a single particle settling in
fluid at rest. We consider an experimental case from the literature, of a spherical particle
settling in water (Mordant & Pinton 2000). We choose to compare our numerical model
against their experiment 1, with a particle diameter D = 5×10−4 m, kinematic viscosity
ν = 0.89 × 10−6 m2 s−1, particle density ρp = 2560 kgm−3, and fluid density of water
at 25oC, ρf = 997.05 kgm−3. In our notation this corresponds to a sphere settling at
Ga = 49.26, which is on the same order as the values of the Galileo number considered
in the present experiments. We vary both the grid resolution and the time step, to assess
their influence on the settling velocity.
Figure 1(a) shows that we find a good quantitative agreement between the numerical

values and the experimental values obtained for the particle velocity. We also find that
increasing the resolution from D/h = 10 to D/h = 20 improves the accuracy of the
velocity obtained in the numerical model. However, there does not appear to be a
significant increase in accuracy if the grid is refined beyond D/h = 20.
To determine the fluid time step size ∆t, as a stability condition, we define the

Courant–Friedrichs–Lewy (CFL) number

CFL =
u∆t

h
, (0.1)

where u indicates the maximum vertical velocity value within the system at any given
time step. Figure 1(b) demonstrates that CFL values below 0.5 give stable and accurate
results for the single sphere case.
In figure 2 we compare the results of simulations performed with D/h = 20 for a single

settling particle to our own experimental results. We also compare the results to the
predicted terminal velocity uterm/uref , where uterm is the dimensional terminal velocity
obtained via balancing the buoyancy and drag forces

uterm =

√
4g (ρ′ − 1)D

3CD
. (0.2)
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Figure 2. Comparison of experimental and simulation data for the time-dependent settling
velocity of a single sphere, for D/h = 20. The predicted velocity value shown by the horizontal
dashed line is obtained from equation (0.2), for a particle of size D = 11.1mm and density
ρp = 1135 kgm−3 in a fluid of dynamic viscosity µf = 0.0942Pa s and density ρf = 864 kgm−3,
with Ga = 18.81.

Figure 3. Terminal settling velocity of a single sphere obtained numerically compared to the
corresponding data from Yang et al. (2015) (equation (42) in their paper), obtained with with
D/h = 20 and CFL = 0.1. The terminal settling velocity is normalized by the Stokes settling
velocity uSt. A good quantitative agreement is observed across the entire range of Re.

Here CD is the drag coefficient as defined in equation (2.2) in the main text. The
simulation results match the experimental data well with regard to the terminal set-
tling velocity. The observed discrepancy during the initial, transient phase reflects the
difficulties experimentally in starting the aggregate fully at rest.
Due to the potential for stability issues due to the discretization of the viscous term

in the governing equations for low Reynolds (and Galileo) numbers, we additionally
consider the behavior of the simulations at Re < 1. Figure 3 presents a comparison of
our simulation results for the terminal settling velocity with corresponding results by
Yang et al. (2015) (equations (33)-(42) in their paper), across the range Re ∈ [0.01, 75]
of interest here. In the figure the settling velocity is normalized by the Stokes settling
velocity

uSt =
2
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(ρp − ρf)
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. (0.3)

Figure 3 demonstrates that good agreement is observed across the entire range of
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Reynolds numbers, showing the accuracy of the numerical method used here for a single
settling sphere.
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