
1

Evanescent and inertial-like waves in
rigidly-rotating odd viscous liquids -

Supplementary Materials

E. Kirkinis† and M. Olvera de la Cruz

Department of Materials Science & Engineering, Robert R. McCormick School of Engineering
and Applied Science, Northwestern University , Evanston IL 60208 USA

Center for Computation and Theory of Soft Materials, Northwestern University , Evanston IL
60208 USA

We provide some illustrative examples of the axisymmetric case (m = 0) and a dis-
cussion of plane polarized waves in two-dimensional compressible and three-dimensional
incompressible odd viscous liquids.

S-I. Inertial-like waves in a three dimensional rigidly-rotating
incompressible odd viscous liquid

Consider an inviscid odd viscous liquid rotating rigidly about the ẑ axis with angular
velocity Ω (cf. Fig. S-I). For an axially symmetric wave propagating along the axis the
time and axial dependence are given by the factor exp[i(kz−ωt)] where the frequency ω
and wave number k along the axis are both real. We consider cylindrical polar coordinates
r, φ, z, and fields that are independent of φ. We neglect the nonlinear terms by assuming
small-amplitude motions. The odd viscous stress in polar cylindrical coordinates (cf. Fig.
S-I) associated with one of the odd viscosity coefficients (we refer the reader to (Kirkinis
& Olvera de la Cruz 2023) for the general form) is of the form

σ′ = ηo

 − (∂rvφ − 1
rvφ + 1

r∂φvr
)

∂rvr − 1
rvr −

1
r∂φvφ 0

∂rvr − 1
rvr −

1
r∂φvφ ∂rvφ − 1
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r∂φvr 0

0 0 0

 , (S1)

where ηo(> 0) is the coefficient of dynamic odd viscosity. Here the liquid is three-
dimensional, and the velocity field satisfies the incompressibility condition

∂r(rvr) + r∂zvz = 0. (S2)

The constitutive law (S1) implies that an axis of anisotropy has, by some fortuitous
mechanism, been established pointing in the ẑ direction.

The Navier-Stokes equations take the form
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−iωvz = − ik
ρ
p′, (S5)
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Figure S-I: Three-dimensional odd viscous liquid rotating with angular velocity Ω about
the ẑ axis. In cylindrical coordinates the velocity field is v = vr r̂+vφφ̂+vz ẑ in the frame
of reference rotating with the liquid.

Figure S-II: Left panel: Roots of Eq. (S12) & (S14) in the parameter space (α, β) defined
in Eq. (S13). In the absence of rotation (Ω = 0, so β > 0) only the two real and
two imaginary roots are possible as discussed in Kirkinis & Olvera de la Cruz (2023).
Rich behavior exists in the presence of rotation. This includes the oscillatory Bessel
functions for real κ, exponentially increasing/decreasing Bessel functions for κ imaginary
and exponential-oscillating Bessel functions for complex κ. These behaviors are displayed
in the right four panels where arbitrary units are employed.

where p′ is the variable part of the pressure in the wave and νo ≡ ηo/ρ is the coefficient
of kinematic odd viscosity. The incompressibility condition (S2) becomes

1

r

∂

∂r
(rvr) + ikvz = 0. (S6)

It is possible to simplify system (S3)-(S5). Combining Eq. (S5) and (S6) we obtain p′/ρ =
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α2 + β α β Type of root κ
+ + two real, two imaginary
+ + − four real
+ − − four imaginary
− two complex conjugate pairs

Table S-I: Types of roots κ from Eq. (S12)/(S14) νoκ
2 = α±

√
α2 + β according to the

sign of the parameters α = ω2

2Ωo
− 2Ω and β = ω2 − (2Ω)2 defined in Eq. (S13)
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(
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)
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r2 appearing in the square brackets of (S3) and (S4) can
be replaced by

L = ∂2r +
1

r
∂r −

1

r2
. (S7)

Thus, the r and φ momentum equations become

−iωvr = −i ω
k2

Lvr − (νoL− 2Ω) vφ, (S8)

−iωvφ = (νoL− 2Ω) vr. (S9)

Expressing the velocities vr and vφ in terms of Bessel functions, vr = AJ1(κr), vφ =
BJ1(κr), etc., (where A and B are constants to be determined by the boundary conditions
and κ is an eigenvalue) the system (S8) and (S9) has a solution when the determinant of
the coefficients of the resulting linear system

i
(
νoκ

2 + 2Ω
)
B k2 −Aκ2ω

k2ω
−A = 0, −

iA
(
νoκ

2 + 2Ω
)

ω
−B = 0, (S10)

vanishes. This leads to a quartic equation for the determination of κ

−κ4k2ν2o +
(
−4Ω k2νo + ω2

)
κ2 − (2Ω − ω) (2Ω + ω) k2 = 0, (S11)

with solutions

κ =

[
−4Ω k2νo + ω2 ±

√
4k4ν2oω

2 − 8Ω k2νo ω2 + ω4

2ν2ok
2

]1/2
. (S12)

Here the frequency ω and wave number k along the axis are both real quantities. κ can
be real, imaginary or complex and it is this behavior of κ that gives rise to the diverse
character of the velocity fields discussed in this paper.

To understand the structure of solutions we define an “odd” frequency and cumulative
(frequency and frequency squared, respectively) parameters α and β of the form

Ωo = νok
2, α =

ω2

2Ωo
− 2Ω, β = ω2 − (2Ω)2. (S13)

With this notation Eq. (S12) becomes

νoκ
2 =

ω2

2Ωo
− 2Ω ±

√(
ω2

2Ωo
− 2Ω

)2

+ ω2 − (2Ω)2 ≡ α±
√
α2 + β. (S14)

Velocity fields obtained according to the type of κ are displayed in Fig. S-II and Table
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S-I. Their functional form is

vr = AJ1(κr)ei(kz−ωt), vφ = −iAνoκ
2 + 2Ω

ω
J1(κr)ei(kz−ωt), vz = iA

κ

k
J0(κr)ei(kz−ωt).

(S15)
When the type of the eigenvalue κ has been decided upon, one can write down the
dispersion relation

ω = ±
k
(
νo κ

2 + 2Ω
)

√
k2 + κ2

(S16)

which becomes nonconvex when νoΩ < 0 and κ is real, and can thus be associated with
unconventional behavior when nonlinear terms are included. A detailed discussion of this
point is delegated to the polarized inertial wave section S-IV and to its two-dimensional
counterpart in section S-VI.2.

S-II. Illustrative examples

S-II.1. Oscillating inertial waves

Consider the case where ω ∼ 2Ω and thus νoκ
2 ∼ 2α = 4Ω

(
Ω
Ωo
− 1
)

or νoκ
2 = 0 from

Eq. (S14). Two real roots exist as long as Ω > Ωo ≡ νok
2 and the velocity field is given

by (S15). This motion comprises regions between concentric cylinders of radius rn such
that

rnκ = γn (S1)

and γn are the zeros of J1(x). Both vr and vφ vanish at these cocentric circles and the
fluid does not cross them. This case resembles one in (Kirkinis & Olvera de la Cruz 2023)
and we only include the final results. We consider a liquid enclosed in a cylinder of radius
r = b. This boundary will be a streamline located at an integral number of cells in the
radial direction. Writing down the streamfunction

ψ(r, z) =
κ

3.83
rJ1(κr) sin(kz), vz =

1

r

∂ψ

∂r
, vr = −1

r

∂ψ

∂z
, (S2)

we display the instantaneous streamlines in Fig. S-III where we chose κb = γ2 ∼ 7.0156,
the latter being the second zero of J1(x). Here the amplitude is modulated by the first
zero of the Bessel function J1(x) in a manner analogous to the rigidly-rotating case of a
(non-odd) viscous liquid Fig. 7.6.4 of (Batchelor 1967, p.561).

S-III. Helicity in rigidly rotating odd viscous liquids

When the roots κ of Eq. (S12) are real, one can easily show that the the vorticity of
axisymmetric waves developed in section S-I is proportional to the velocity of the liquid.
This generalizes the case of odd viscous liquid without rotation developed in (Kirkinis &
Olvera de la Cruz 2023) and the results obtained here are identical to the non-rotating
case

curlv = ∓
√
k2 + κ2v, and v · curlv = ∓

√
k2 + κ2|v|2, (S1)

with the understanding that the frequency ω in the present case satisfies the relation

ω = (νoκ
2+2Ω)k√
k2+κ2

.

We now show that vorticity is parallel to the velocity when κ is imaginary (the case of
evanescent waves). From Eq. (S15) with κ = iκ̃ imaginary and κ̃ real, we find that the
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Figure S-III: Instantaneous streamlines in the r − z plane with streamfunction (S2),
representing a simple harmonic wave propagating in the z− direction with phase velocity
cp = ω/k. The line r = 0 is the central axis of the cylinder and the line r = 7.0156(= b) is
the surface of the enclosing cylinder where the radial velocity vr vanishes (we’ve chosen
κ = 1 in arbitrary units).

vorticity

curlv = k
νoκ̃

2 − 2Ω

ω
vr r̂ +

ω

νoκ̃2 − 2Ω

k2 − κ̃2

k
vφφ̂ + k

νoκ̃
2 − 2Ω

ω
vz ẑ. (S2)

The coefficients multiplying the velocities in (S2) are equal to each other if

ω2 =
k2(νoκ̃

2 − 2Ω)2

k2 − κ̃2
(S3)

and this is exactly the relation we obtain from (S12) by solving for ω2 when κ is imaginary.
Eq. (S3) introduces a constraint on the wavenumbers, that is, k2 > κ̃2 for the frequency
to remain real. Thus, overall we can write that

curlv = ∓
√
k2 − κ̃2v, k > κ̃. (S4)

replacing curlv = ∓
√
k2 + κ2v that holds when κ as a root of (S12) is real.

S-IV. Plane-polarized waves induced in a rigidly-rotating liquid by
odd viscosity

S-IV.1. The effect of the ηo viscous stress

Plane-polarized waves in rigidly-rotating liquids support inertial-like waves (Landau &
Lifshitz 1987, §14) and (Davidson 2013). In a previous communication we showed that
plane polarized waves are also supported in a (non-rotating) odd viscous liquid (Kirkinis
& Olvera de la Cruz 2023). It turns out that inertial-like waves that arise when rotation
and odd viscosity are combined, present some special characteristics. For instance, below
we show that the group velocity develops extrema where the propagation wavevector k is
not perpendicular to the rotation/anisotropy axis. This takes place when the dispersion
ω has an inflection point, which coincides with the vanishing of the determinant of the
matrix ∂2ω/∂ki∂kj . This implies that in such problems we are dealing with a non-convex
dispersion relation. Nonconvex dispersions have been associated with the appearance of
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Figure S-IV: Plane-polarized wave dispersion ω (Eq. (S4)) versus angle θ between the
wavevector k and the z- (anisotropy/rotation) axis (setting k = νo = 1 in arbitrary
units). Of interest is the dashed curve denoting the existence of non-convex dispersion for
the displayed parameters. At its inflection points the group velocity becomes maximum
(cf. Fig. S-V) and the second derivative |∂2kikjω| vanishes (cf. Fig. S-VI), implying the
presence of caustics and a breakdown of the longtime asymptotics.

caustics leading to self-focusing of nonlinear waves. It is thus of some interest to classify
the locations at which such behavior may arise.

The linearized vorticity equation of an odd viscous liquid subject to the constitutive
law (S1) obtains the form

∂tcurlv = (2Ω − νo∇2
2)
∂v

∂z
, (S1)

where ∇2
2 = ∂2x + ∂2y . We seek plane-wave solutions of the form

v = Aei(k·r−ωt), (S2)

which leads to the requirement that A · k = 0 from the incompressibility condition.
Substituting the plane-wave solution into (S1) we obtain

ωk× v = i
[
2Ω + νo(k

2
x + k2y)

]
kzv. (S3)

From this equation and its counterpart obtained by taking the cross product of both sides
with k we obtain the dispersion relation (to avoid repetitiveness we skip the derivation
details which can be found in (Kirkinis & Olvera de la Cruz 2023))

ω = ±
[
2Ω + νo(k

2
x + k2y)

]
kz

k
, or ω = ±

[
2Ω + νok

2 sin2 θ
]

cos θ (S4)

where k =
√
k2x + k2y + k2z and in the latter equation θ is the angle between the k and

the anisotropy/rotation z-axis. In Fig. S-IV we plot the dispersion ω (Eq. (S4)) versus
angle θ. From the second of Eq. (S4) it is clear that the dispersion not only vanishes at
θ = π/2 as the case was for an inviscid fluid rotating with angular velocity Ω, but also
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Figure S-V: Plane-polarized wave group velocity (S11) versus angle θ between the
wavevector k and the z- (anisotropy) axis, setting k = νo = 1 in arbitrary units.
Of interest is the dashed curve denoting the existence of non-convex dispersion for
the displayed parameters since the group velocity becomes maximum and the second
derivative |∂2kikjω| vanishes (cf. Fig. S-VI), implying the presence of caustics and a
breakdown of the longtime asymptotics. The behavior denoted by the dashed line has
implications on the helicity of the flow, since the maximum group velocity is found at
a polar angle θ not equal to π/2 (which is the angle of maximum group velocity for a
rigidly-rotating (not odd) liquid, cf. (Davidson 2013)).

vanishes when

θ = cos−1
√
νo(k2νo + 2Ω)

kνo
, (S5)

for suitable values of the parameters, as is apparent in Fig. S-IV (dashed line).

With the unit vector k̂ = k
k in the direction of the wave-vector and the complex

amplitude A = a + ib where a and b are real vectors, Eq. (S3) and the dispersion

relation (S4) lead to k̂ × b = a, that is, the two vectors a and b are perpendicular to
each other, are of the same magnitude and lie in the plane whose normal is k. Thus, the
velocity field is circularly polarized in the plane defined by a and b and is of the form

v = a cos(k · r− ωt)− b sin(k · r− ωt), a ⊥ b. (S6)

Employing the negative sign of the dispersion relation (S4), the above analysis leads to

the same velocity field (S6) but with the sense of the vectors a and b reversed: k̂×b = −a.

It is of interest to calculate the group velocity. We obtain(
∂ω

∂kx
,
∂ω

∂ky

)
=
kz
[
νo(k

2 + k2z)− 2Ω
]

k3
(kx, ky),

∂ω

∂kz
=

[
2Ω + νo(k

2
x + k2y)

]
(k2x + k2y)

k3
,

(S7)
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Figure S-VI: Determinant of the matrix ωkikj ≡ ∂2kikjω in (S12) versus angle θ between

the wavevector k and the z- (anisotropy) axis, setting k = νo = 1 in arbitrary units.
Of interest is the dashed curve for the indicating parameter values, which, for the

negative values of Ω vanishes at angle θ = cos−1
√

F
5νok2

(cf. second line of Table S-

II) corresponding to the inflexion points of the dispersion relation (cf. Fig. S-IV) and
the extrema of the group velocity (cf. Fig. S-V), indicating the presence of caustics
(overlapping of space-time rays (Ostrovsky & Potapov 1999, Fig. 6.3)). The vanishing

of the positive Ω curve at θ = cos−1
√

2Ω−k2νo
νok2

(cf. first line of Table S-II) does not

correspond to maxima of the group velocity.

or, taking the z axis to be the axis of anisotropy we obtain(
∂ω

∂kx
,
∂ω

∂ky

)
= sin θ cos θ

νok
2(1 + cos2 θ)− 2Ω

k
(cosφ, sinφ), (S8)

∂ω

∂kz
=
νok

2 sin2 θ + 2Ω

k
sin2 θ. (S9)

In contrast to the case of waves in a rotating fluid where the energy propagates per-
pendicularly to the wave-vector (along the axis of rotation) here the energy propagation
direction has a component along the k axis:

∂ω

∂k
= νok

{
k̂(ẑ · k̂)

[
1 + (ẑ · k̂)2

]
+ ẑ

[
1− 3(ẑ · k̂)2

]}
+

2Ω

k

[
ẑ− k̂(ẑ · k̂)

]
, (S10)

thus the group velocity is not perpendicular to the phase velocity (direction of propaga-
tion) in contradistinction to the rigidly-rotating liquid case. The modulus of the group
velocity is∣∣∣∣∂ω∂k

∣∣∣∣ =
sinθ

√
5 (cos4 θ) k4ν2o − 2k2νo (k2νo + 6Ω) (cos2 θ) + (k2νo + 2Ω)

2

k
. (S11)
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θ: root of Eq. (S12) group velocity cg evaluated at a root θ of Eq. (S12)

cos−1
√

2Ω−k2νo
νok2

4(k2νo−Ω)
k

ẑ

cos−1
√

F
5νok2

√
F (5νok2−F )(5νok

2+F−10Ω)

25νok3
(cosφx̂ + sinφŷ) + (F−5νok

2−10Ω)(F−5νok
2)

25νok3
ẑ

π
2

k2νo+2Ω
k

ẑ

Table S-II: Summary of functional expressions attained by group velocity at its extrema
determined by the roots of Eq. (S12). The group velocity thus has extrema that differ
from the known cases of zero rotation or zero odd viscosity, displayed in the third line.

In Fig. S-V we plot the group velocity magnitude (S11) versus angle θ (formed between
the wavevector k and the z- (rotation) axis, setting k = νo = 1).

The determinant of the second derivative of the dispersion relation ∂2kikjω becomes

|∂2kikjω| =
1

k6
cos θ sin2 θ

(
5k4ν2o cos4 θ − 4νok

2
(
k2νo + 4Ω

)
cos2 θ −

(
k2νo − 2Ω

)2)
×
(
k2νo cos2 θ + k2νo − 2Ω

)
(S12)

The extrema of the group velocity related to the roots of |∂2kikjω| are displayed in Table

S-II. In its third line we recognize the group velocity k2νo+2Ω
k ẑ with energy propagating

along the axis of rotation/anisotropy known from the literature (Davidson 2013; Kirkinis
& Olvera de la Cruz 2023) when the wavevector is perpendicular to this axis (θ = π/2).
From the first and second lines of the Table we however see that depending on the
parameter values and signs for odd viscosity ν0 and angular velocity Ω there might be
different wavenumber directions (θ 6= π/2) with the energy propagating along the axis
or at an angle to it.

S-IV.2. Effects of both ηo and η4 odd viscous stresses

Apart from Eq. (S1), there is also a second odd viscous (non-dissipative) constitutive
law that may be employed to describe the properties of an odd viscous liquid (Lifshitz
& Pitaevskii 1981, §58)

σ′ = η4

 0 0 −( 1
r∂φvz + ∂zvφ)

0 0 ∂rvz + ∂zvr
−( 1

r∂φvz + ∂zvφ) ∂rvz + ∂zvr 0

 . (S13)

Although combination of the two constitutive laws (S1) and (S13) with rigid-rotation of
angular velocity Ω is complicated, its consequences on fluid-flow behavior can be obtained
by performing the substitution

νo → νo − ν4, and 2Ω → 2Ω + ν4k
2 (S14)

in the results already obtained in section S-I. This can be seen, for instance, from the
reduced form of Eq. (S8)

−iωvr = −i ω
k2

Lvr −
[
(νo − ν4)L− 2Ω − ν4k2

]
vφ, (S15)

−iωvφ =
[
(νo − ν4)L− 2Ω − ν4k2

]
vr (S16)

and this is exactly the form of the Navier-Stokes equations when constitutive laws (S1)
and (S13) are jointly employed. Thus, considering velocity fields vr, vφ ∝ J1(κr) as in
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section S-I, we obtain exactly the same type of κ roots as those described in Fig. S-II
and Table S-I by making the substitution (S14). We thus do not need to discuss this case
further.

For plane polarized waves one can perform the substitution (S14) and obtain the same
results as in section S-IV.1 with the exception of the group velocity and higher order
derivatives of ω with respect to kz. We briefly discuss the governing equations since they
can be expressed in a concise form and lead to certain conclusions about the helicity of
the flow. Another reason for wanting to discuss both odd viscosity coefficients νo and
ν4 is that certain combinations have been employed in the literature to simplify the
discussion cf. (Markovich & Lubensky 2021; Khain et al. 2022) and in particular the
combination ηo = 2η4 which we call elliptic. Also the (parabolic) combination ηo = η4
simplifies the discussion significantly. The names elliptic or parabolic are inherited from
the form obtained by the governing differential operator S that will be defined below.

Expressing both odd stress tensors (S1) and (S13) in Cartesian coordinates we obtain

σ′ =

 −ηo (∂xv + ∂yu) ηo(∂xu− ∂yv) −η4(∂yw + ∂zv)
ηo(∂xu− ∂yv) ηo(∂xv + ∂yu) η4(∂xw + ∂zu)
−η4(∂yw + ∂zv) η4(∂xw + ∂zu) 0

 . (S17)

Let

S = (νo − ν4)∇2
2 + ν4∂

2
z or equivalently, S = (νo − ν4)∇2 + (2ν4 − νo)∂2z . (S18)

With ζ = ∂xv−∂yu denoting the component of vorticity in the z direction and a modified
pressure p̃ = p+η4ζ, the Navier-Stokes equations of a rigidly-rotating liquid, characterized
by the constitutive law (S17), become

Dv

Dt
= −1

ρ
∇p̃+ (S− 2Ω)ẑ× v. (S19)

The linearized vorticity equation (S1) is thus replaced by

∂tcurlv = −(S− 2Ω)
∂v

∂z
. (S20)

With v = Aei(k·r−ωt), the dispersion relation becomes

ω = ± [2Ω − S(k)]
kz
k

or ω = ± cos θ
{
k2
[
νo − ν4 − (νo − 2ν4) cos2 θ

]
+ 2Ω

}
(S21)

where k =
√
k2x + k2y + k2z and

S(k) = −(νo − ν4)(k2x + k2y)− ν4k2z or S(k) = −(νo − ν4)k2 − (2ν4 − νo)k2z . (S22)

The group velocity becomes(
∂ω

∂kx
,
∂ω

∂ky

)
= ±

[
k
(
(νo − 2ν4) cos2 θ + νo − ν4

)
+ 2Ω

]
sin θ cos θ(cosφ, sinφ), (S23)

∂ω

∂kz
= ±k

(
(νo − 2ν4) cos4 θ + (−2νo + 5ν4) cos2 θ + νo − ν4

)
± 2Ω. (S24)

As can be seen, the above relations simplify significantly in the limits νo = 2ν4 or νo = ν4.
The former recovers Eq. (8) of Markovich & Lubensky (2021),

ω = ν4kkz + 2Ω
kz
k
, (S25)

now for an odd viscous liquid rotating rigidly with angular velocity Ω.
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Figure S-VII: Two-dimensional odd viscous compressible liquid rotating with angular
velocity Ω. In plane polar coordinates the velocity field is v = vr r̂ + vφφ̂ in the frame
rotating with the liquid at constant angular velocity Ω.

Helicity is conserved for an odd viscous liquid that incorporates the constitutive law
(S17). We show this by considering the linearized vorticity equation (S20) written in the
form

−iωB = iAkz [2Ω − S(k)] , (S26)

when curlv = Bei(k·r−ωt) and S(k) is defined in Eq. (S22). Since ω = ± [2Ω − S(k)] kzk
(from (S21)) we obtain B = ∓kA, or

curlv = ∓kv. (S27)

Thus, the helicity of the flow field determined by the odd stress tensor (S17) is conserved

v · curlv = ∓k|v|2 (S28)

which can be seen from the form of the velocity field (S6) for a ⊥ b.

S-V. Inertial oscillations in a rigidly-rotating compressible
two-dimensional odd viscous liquid

S-V.1. Axisymmetric inertial-like waves

A two dimensional compressible liquid endowed with odd viscosity obeys the consti-
tutive law (Lapa & Hughes 2014; Ganeshan & Abanov 2017)

σ′ = ηo

(
−
(
∂rvφ − 1

rvφ + 1
r∂φvr

)
∂rvr − 1

rvr −
1
r∂φvφ

∂rvr − 1
rvr −

1
r∂φvφ ∂rvφ − 1

rvφ + 1
r∂φvr

)
, (S1)

and the continuity equation

∂tρ
′ + ρdivv = 0 for ρ′ � ρ, (S2)

where ρ′ is the variable part of the density and ρ a constant background level. As in section
S-I, consider an axisymmetric geometry, now described by plane polar coordinates r, φ (cf.
Fig. S-VII) the fields are independent of φ, we neglect nonlinear terms (assuming small-
amplitude motions) and the time dependence is given by the factor exp[−iωt] where ω is
a real frequency. Employing the constitutive law (S1), the linearized equations of motion
become (Lifshitz & Pitaevskii 1981, §89)
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−iωvr = −c
2

ρ

∂ρ′

∂r
+ 2Ωvφ − νo

[
1

r

∂

∂r

(
r
∂vφ
∂r

)
− vφ
r2

]
, (S3)

−iωvφ = −2Ωvr + νo

[
1

r

∂

∂r

(
r
∂vr
∂r

)
− vr
r2

]
, (S4)

−iωρ′ = −ρ1

r

∂

∂r
(rvr) , (S5)

where c is the speed of sound. Because of Eq. (S5) we obtain

∂ρ′

∂r
=

ρ

iω

∂

∂r

(
1

r

∂

∂r
(rvr)

)
. (S6)

We again employ the identity ∂
∂r

(
1
r
∂
∂r (rvr)

)
= 1

r
∂
∂r

(
r ∂vr∂r

)
− vr

r2 , and the linear operator
L = ∂2r + 1

r∂r −
1
r2 we introduced in Eq. (S7). The r and φ momentum equations (S3),

(S4) become

−iωvr = − c
2

iω
Lvr − (νoL− 2Ω)vφ, (S7)

−iωvφ = (νoL− 2Ω)vr. (S8)

Expressing the velocities vr and vφ in terms of Bessel or modified Bessel functions,
vr = AJ1(κr), vφ = BJ1(κr), or vr = AI1(κr), vφ = BI1(κr), etc., (where A and B are
constants to be determined by the boundary conditions and κ is an eigenvalue) the system
(S7) and (S8) has a solution when the determinant −κ4ν2o − 4Ω κ2νo − c2κ2 − 4Ω2 + ω2

of the coefficients of the resulting linear system

−
i
(
−κ2νo − 2Ω

)
Bω −Ac2κ2

ω2
−A = 0, and

iA
(
−κ2νo − 2Ω

)
ω

−B = 0 (S9)

vanishes. Consider first the case where the origin is included in the domain. It is not
difficult to show that the solution is the Bessel function J1(κr) for which κ satisfies

κ2 =
−4Ωνo − c2 +

√
8Ω c2νo + c4 + 4ν2oω

2

2ν2o
. (S10)

As with Eq. (S12) of the three-dimensional case of section S-I, Eq. (S10) here is a relation
between the allowed (possibly complex) eigenvalue κ and the (real) frequency ω. We can
cast Eq. (S10) in a form resembling (S12) and (S14). Thus,

νoκ
2 = − c2

2νo
− 2Ω ±

√(
− c2

2νo
− 2Ω

)2

+ ω2 − (2Ω)2 ≡ α±
√
α2 + β (S11)

where we carried-out the substitution

α = − c2

2νo
− 2Ω, β = ω2 − (2Ω)2, (S12)

to be compared with the definition of α and β in (S13). Therefore the classification of
the roots κ of Eq. (S12) displayed in, Fig. S-II and Table S-I, carry-over in the present
section unchanged by making the substitution (S12). We display the parameter regimes
again in Fig. S12 with respect to the new meaning of the parameter α.

Thus, overall we found that inertial-like waves in a compressible two dimensional and
rigidly rotating odd viscous liquid exist and have the velocity fields and density

vr = AJ1(κr)e−iωt, vφ = −iA2Ω + νoκ
2

ω
J1(κr)e−iωt, ρ′ = −iAρκ

ω
J0(κr)e−iωt

(S13)
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Figure S-VIII: Roots of Eq. (S10) in the parameter space (α, β) defined in Eq. (S12).
Rich behavior exists in the presence of rotation. This includes the oscillatory Bessel
functions for real κ, exponentially increasing/decreasing Bessel functions for κ imaginary
and exponential-oscillating Bessel functions for complex κ (see Fig. S-II for the qualitative
form of these Bessel functions)

and these resemble their three-dimensional counterparts of Eq. (S15).

S-VI. Illustrative examples

S-VI.1. Inertial oscillations of a two-dimensional odd viscous liquid in a disk

Consider the case where ω ∼ 2Ω and thus νoκ
2 ∼ 2α = 2

(
− c2

2νo
− 2Ω

)
or νoκ

2 = 0

from Eq. (S11). Two real roots exist as long as 4Ω < −c2/νo and the velocity field is
given by (S13). This motion comprises regions between concentric circles of radius rn
such that

rnκ = γn (S1)

and γn are the zeros of J1(x). Both vr and vφ vanish at these concentric circles and the
fluid does not cross them. Introducing the polar form for the amplitude A = aeiθ, where
a and θ are real amplitude and phase, we can cast the complex fields of (S13) in real
form

vr = aJ1(κr) cos(θ−ωt), vφ = a
2Ω + νoκ

2

ω
J1(κr) sin(θ−ωt), ρ′ = a

ρκ

ω
J0(κr) sin(θ−ωt).

(S2)
We consider the liquid confined within a solid cylindrical surface located, say, at r = b,

that would be realistic in a laboratory setting. This boundary will be a streamline located
at an integral number of cells in the radial direction. If by γn we denote the n-th zero of
the Bessel function J1, Eq. (S11) with the condition κb = γn lead to the constraint

b

(
−4Ωνo − c2 +

√
8Ω c2νo + c4 + 4ν2oω

2

2ν2o

)1/2

= γn (S3)

and n denotes the number of cells in the radial direction (cf. Fig. S-III). From Eq. (S3)
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Figure S-IX: Left panel: Colorbar: density ρ′ (arbitrary units) in (S2) for a two-
dimensional compressible odd viscous liquid contained in a disk of radius b = γ3/κ where
γ3 = 10.173 is the third zero of the Bessel function J1. Right panel: Instantaneous
streamlines in the x− y plane (measured in arbitrary units) of the velocity field vr and
vφ in (S2) , representing oscillations of an odd viscous liquid with frequency ω. The liquid
is contained in the disk denoted by the thick black circle. The two interior thin black
circles have been included only as a guide to the eye and denote the location of the zeros
of the Bessel function J1, that is, the location where the velocity vanishes. For a liquid
that extends beyond the disk, its streamlines are as shown in the region outside the thick
black circle.

one can relate the frequency of oscillation ω with the cylinder radius b

ω2 = (νoκ
2 + 2Ω)2 + (cκ)2, κ =

γn
b
, (S4)

where n denotes the number of cells in the radial direction.
In Fig. S-IX we plot the density ρ′ in (S2) when the liquid is contained in a disk

of radius b = γ3/κ where γ3 = 10.173 is the third zero of the Bessel function J1 and
the corresponding instantaneous streamlines of the velocity field vr and vφ in (S2).
The streamlines contained between two adjacent concentric circles change direction
periodically with period T = 2π/ω.

S-VI.2. Polarized waves

When the wavenumber κ in (S4) is real one can develop the counterpart of the three-
dimensional plane polarized waves of section S-IV. The important point is that for
certain parameter regimes the dispersion relation (S4) can become non-convex. At an
inflection point of the dispersion relation (S4) the group velocity is maximum and the
determinant of ∂ki∂kjω vanishes. This implies that rays (characteristics) of the nonlinear
transport equation ∂tω + cg(ω) · ∇ω = 0 carrying an initial frequency profile, overlap
at a specific interval of space and time giving rise to a caustic curve (Lighthill 1978;
Ostrovsky & Potapov 1999). Although this behavior is still physically realistic, the
ray theory (where slow variations of wavenumber are assumed) employed to calculate
Fourier integrals in wavenumber space breaks down; the method of stationary needs
to be modified by employing higher order derivatives of ω with respect to k (usually
third order derivatives) in these Fourier integrals. When nonlinear terms are added to
these linear systems, unusual behavior is observed such as oscillatory soliton tails and
dispersive shocks (Lowman & Hoefer 2013; Sprenger & Hoefer 2017) arising as radiation
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Figure S-X: Dispersion relation (S6) versus wavenumber k = kx (evaluated at ky = 0 for
clarity and measured in arbitrary units). Of primary interest is the dashed curve denoting
the existence of non-convex dispersion for the displayed parameters (Ωνo < 0). At its
inflection points the corresponding group velocity attains its maximum value (cf. Fig.
S-XI) and the second derivative |∂2kikjω| vanishes (cf. Fig. S-XII), implying the presence

of caustics and a breakdown of the longtime asymptotics. The dotted line (Ω = 0, νo 6= 0)
is also of interest since the dispersion curve develops a cusp at k = 0. Thus, the group
velocity develops a jump as one traverses kx from negative to positive values (cf. Fig.
S-XI).

due to motion of the medium emanating when the velocity of particles moving in it
is larger than the phase velocity of waves that propagate in this medium (Cherenkov
radiation, cf, (Landau & Lifshitz 1960; Kuznetsov & Dias 2011)). Here we will not pause
to display these nonlinear effects, most of which are well-known in the literature. We
will establish the existence of planar inertial-like waves and discuss the behavior of the
dispersion that may give rise to the aforementioned effects.

Let ψ = k1v2−k2v1 and χ = k1v1+k2v2 where vi are the velocity components of a two-
dimensional compressible odd viscous liquid in Cartesian coordinates. Thus, ψ = curlvt

and χ = divvl (in coordinate space), are the derivatives of the transverse and longitudinal
velocity components, respectively. Then, we can replace the balance of linear momentum
with two equations for χ and ψ (see for instance (Landau & Lifshitz 1980, §89))

dχ

dt
= −ik2c2 ρ

′

ρ
+ (2Ω + νok

2)ψ,
dψ

dt
= −(2Ω + νok

2)χ,
dρ′

dt
= −iρχ (S5)

where we employed the notation χ, ρ and ψ to denote quantities in both coordinate and
momentum representation. We can derive a single second order linear oscillator equation

for χ, namely d2χ
dt2 + ω2χ = 0, where

ω2 = (kc)2 + (2Ω + νok
2)2, for k =

√
k2x + k2y. (S6)
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Figure S-XI: k = kx component of the group velocity (S7) (setting ky = 0 for clarity and
measured in arbitrary units). Of interest is the dashed curve for the indicating parameter
values, which attains local maxima and minima corresponding to the inflexion points
of the dispersion relation (cf. Fig. S-X) and the vanishing of the determinant second
derivative |∂2kikjω| (cf. Fig. S-XII), indicating the presence of caustics (overlapping of

space-time rays (Ostrovsky & Potapov 1999, Fig. 6.3)). Of interest is also the dotted line
(odd viscosity in the absence of rotation) which displays a jump at k = 0.

The group velocity associated with dispersion (S4) becomes

cg =

(
2k2ν2o + c̃2

)√
k4ν2o + c̃2k2 + 4Ω2

(kx, ky) (S7)

where c̃2 = 4Ωνo + c2 whose significance will be discussed in section S-VI.3, and the
determinant of the matrix ∂2kikjω is

|∂2kikjω| =
[
2k2ν2o (ν2ok

4 + 12Ω2) + c̃2(3ν2ok
4 + 4Ω2)

] (
2k2ν2o + c̃2

)
(k4ν2o + c̃2k2 + 4Ω2)

2 , (S8)

and comparison of (S7) with (S8) shows that they share a common zero.
With respect to the dashed curve in Figures S-X-S-XII, representing the dispersion,

group velocity and second derivative of dispersion of a rigidly-rotating odd viscous liquid
with Ωνo < 0 we point-out the following characteristics.

(i) At the inflection point of the dispersion curve (S6) the group velocity is maximum
and |∂2kikjω| vanishes.

(ii) At the bottom of the well (the minimum of the dispersion curve) in (S6) the group
velocity vanishes and |∂2kikjω| vanishes as well.

With respect to the dotted curve in Figures S-X-S-XI, representing the dispersion
and group velocity of a rigidly-rotating odd viscous liquid with Ω ≡ 0 we point-out the
following characteristics.

(i) The dispersion curve (S6) has a cusp at k = 0, ω ∼ c|k|.
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Figure S-XII: Determinant of the matrix ∂2kikjω in (S8) vs. k = kx (setting ky = 0

for compatibility with the two previous figures and measured in arbitrary units). Of
interest is the dashed curve for the indicating parameter values, which vanishes near
kx ∼ ±0.5 corresponding to the inflexion points of the dispersion relation (cf. Fig. S-X)
and the extrema of the group velocity (cf. Fig. S-XI), indicating the presence of caustics
(overlapping of space-time rays (Ostrovsky & Potapov 1999, Fig. 6.3)).

(ii) The group velocity is equal to ∓c, as we approach the k = 0 line from the left
(negative sign) and the right (positive sign).

The determinant |∂2kikjω| in (S8) vanishes at two locations as indicated in Fig. S-XII.

First, at the zero k2 = 4Ωνo+c
2

−2ν2
o

it shares with the group velocity, and second at

k2 =

(
4c

2
3Ωνo + c

8
3

) (
8Ωνo + c2

) 2
3 + c4 + 8Ωc2νo + c

4
3

(
8Ωνo + c2

) 4
3

−2 (8Ωνo + c2)
2
3 c

2
3 ν2o

. (S9)

Only specific values of the parameters give rise to real observables in these relations.

S-VI.3. Topologically protected waves

The analysis of section S-V.1 can be applied to describe qualitatively the behaviour of
density waves that do not scatter off an obstacle and propagate unidirectionally, (refered
to here as cases I & II, displayed in Table S-III) studied numerically in (Souslov et al.
2019, Eq. (3)).

In (Souslov et al. 2019) three parameter regimes are chosen to demonstrate three
distinct behaviours, the first two giving rise to unidirectional wave propagation along
the circular boundary and no scattering off a single obstacle. We tabulate the material
parameters of these two cases in Table S-III. In case I, the first set of values (c,Ω, νo, ρ) =
(8,−20, 0.1, 1) gives in our parametric representation introduced in Eq. (S12)

(α, α2 + β) = (−280, ω2 + 76800), (S10)

which implies that equationn (S11) has four imaginary roots κ, by looking at the diagram
in Fig. S-VIII (for ω ≡ 0 these are κ ∼ ±5.36i,±74.64i). Thus, the exponentially
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Figure S-XIII: Theoretical qualitative predictions of the model (S3)-(S5) for the behavior
of the density ρ′ in (S2) of a compressible odd viscous liquid in a disk. Left two panels
(Case I of Table S-III): Density for imaginary κ, displayed in linear and logarithmic
vertical axes respectively, obtained as solution of Eq. (S11). The horizontal axis denotes
distance from a circular boundary located at r = b. When κ is complex, the rightmost
panel (Case II of Table S-III) gives the characteristic behavior of the density. These
profiles are to be compared with the numerical results of (Souslov et al. 2019) displayed
in their Fig. 3(b) and 3(d). Thus, the density profile resembles an evanescent wave (see
discussion at the end of section S-VI.3).

c Ω νo ρ α α2 + β Effect Renormalized c
Case I 8 −20 0.1 1 −280 ω2 + 76800 no scattering c̃I = 7.48
Case II 15 −500 2 1 3775/4 ω2 − 1749375/16 no scattering
Case III 8 20 0.1 1 −360 ω2 + 128000 scattering c̃III = 8.48

Table S-III: Parameter values (c,Ω, νo, ρ) employed in (Souslov et al. 2019) to
numerically demonstrate the existence of topological waves. α and β are the parameters
defined in Eq. (S12) to classify the system behaviours displayed in Fig. S-VIII. Parameter
Cases I & II above leading to radial Navier-Stokes eigenvalues κ obtained as roots of
Eq. (S10), are displayed in the left and right panel of Fig. 4 in the main manuscript,
respectively, for arbitrary value of the frequency ω. Odd viscosity coupled to rigid rotation
renormalizes the speed of sound of the medium and leads disturbances to propagate
with supersonic (no scattering from a solid obstacle) or subsonic (scattered from a solid
obstacle) speed, cf. Fig. S-XIV.

increasing (from the origin of the disk) solution representing the density ρ′ of the
liquid will have, in the radial direction, the form of the modified Bessel function I0 (see
Supplemental Material for the form of the density). We display in the left two panels
of Fig. S-XIII the modified Bessel function I0 in linear and logarithmic vertical axes, as
a function of the radial coordinate b − r, that is, measuring distance from a boundary
located at r = b. These two panels qualitatively capture the two graphs of Figure 3(b) in
(Souslov et al. 2019) giving rise to the protected density waves of Fig. 3(a) of the same
reference.

We repeat the above analysis for the second set of parameters employed in the analysis
of (Souslov et al. 2019) (c,Ω, νo, ρ) = (15,−500, 2, 1), since there is some interesting
qualitative behaviour that can also be captured by our analysis. The parametric space
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implied by Fig. S-VIII becomes in this case

(α, α2 + β) = (3775/4, ω2 − 1749375/16). (S11)

It can be seen from Eq. (S11) that the four κ’s can be two complex conjugate pairs, all real
or two real and two imaginary. For small ω ∼ 0 (as was considered in (Souslov et al. 2019))

we obtain two complex conjugate pairs (for ω ≡ 0 these are κ = ±5
√

151± 3i
√

311/2).
Now the density ρ′ of the liquid will have, in the radial direction, the form of the Bessel
function J0(κr) for complex κ. We display in the rightmost panel of Fig. Fig. S-XIII its
real part as a function of the radial coordinate b − r, that is, measuring distance from
a boundary located at r = b. Although the density is restricted by an exponentially
decaying envelope, it also oscillates (characteristic behaviour of the Kelvin functions).
Thus, the right-most panel of Fig. Fig. S-XIII qualitatively captures Figure 3(d) in
(Souslov et al. 2019) giving rise to the protected density waves of Fig. 3(b) of the same
reference. This oscillatory behaviour is most visible in the video provided by (Souslov
et al. 2019).

The behaviours outlined above are displayed in Fig. 4 of the main manuscript for
the real frequency ω vs. the real and imaginary parts of κ, drawn from (S11). See the
discussion in the main manuscript.

There is also a third case of material parameters considered in (Souslov et al. 2019)
where Ωνo > 0 (note that although the dispersion curve becomes non-convex when Ωνo <
0 and kx, ky are real in Eq. (S6), here the wavenumber is imaginary and the significance
of the sign of νoΩ reverses since now ω2 = (−νoκ̃2 + 2Ω)2− c2κ̃2 for κ = iκ̃ with κ̃ being
a real number). We tabulate the material parameters in Table S-III. Thus, in case III,
the set of values (c,Ω, νo, ρ) = (8, 20, 0.1, 1) gives in our parametric representation

(α, α2 + β) = (−280, ω2 + 128000), (S12)

which implies that equations (S10) or (S11) have four imaginary roots κ, by looking
at the diagram in Fig. S-VIII (for ω ≡ 0 these are κ ∼ ±4.72i,±84.72i). Thus, the
exponentially increasing (from the origin of the disk) solution representing the density ρ′

of the liquid will have, in the radial direction, the form of the modified Bessel function
I0.

There are however, qualitative differences between case I and case III. In case I one
visually determines waves that do not scatter off from an obstacle, while in case III
the waves do scatter (Souslov et al. 2019, SI-movie). We thus proceed to provide an
alternative explanation to the topological numbers argument of (Souslov et al. 2019) for
the above behaviour. Rewrite the dispersion relation in the form

ω2 = ν2o κ̃
4 −

[
4νoΩ + c2

]
κ̃2 + 4Ω2, (S13)

where, for cases I & III, we’ve set κ = iκ̃, κ̃ being a real number. The speed of sound in
the medium has been renormalized by the product of odd viscosity with angular velocity
Ω. Thus, let

c̃ =
√

4νoΩ + c2, (S14)

be the renormalized speed of sound. Using the parameter values of Souslov et al. (2019),
displayed in Table S-III, Case I yields c̃I = 7.48 (since Ωνo < 0) and Case III yields
c̃III = 8.48 (Ωνo > 0). A disturbance propagating with a speed lying between these two
values, moves with supersonic speed in the medium of case I, while it moves with subsonic
speed in the medium of case III. Supersonic flow is distinctly different from subsonic
flow. A disturbance of the latter eventually reaches every point in the medium and the
presence of an obstacle will affect the (subsonic) flow both upstream and downstream.
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Figure S-XIV: A disturbance at a point O felt by a uniform flow of compressible rigidly-
rotating odd viscous liquid with constant velocity v propagates with velocity v + c̃n̂,
where n̂ is an arbitrary unit vector (since the disturbance propagates relative to the
liquid with the speed of sound c̃ in any direction cf. (Landau & Lifshitz 1987, §82)).
Left panel: Explanation of scattering behaviour of topological waves from an obstacle
(Souslov et al. 2019) (Case III, Table S-III). A subsonic disturbance (v < c̃) at point O
propagates with velocity v + c̃n̂ along the surface of the sphere depicted on the left, and
eventually reaches any point in the medium (v is the velocity of the medium, n̂ a unit
vector and c̃ the renormalized speed of sound defined in Eq. (S14)). Thus, a subsonic
flow meeting an obstacle will be affected both upstream and downstream. Right panel:
Explanation of non-scattering behaviour of topological waves from an obstacle (Souslov
et al. 2019) (Case I, Table S-III). A supersonic disturbance v > c̃ at point O can only
propagate downstream within the cone depicted on the right panel and thus, supersonic
flow meeting an obstacle will only propagate downstream. Compare with (Landau &
Lifshitz 1987, Fig. 50).

On the other hand, a disturbance in supersonic flow propagates only downstream and lies
within a cone, while the flow outside the cone remains unaffected. When supersonic flow
meets an obstacle, it propagates downstream leaving the upstream region unaffected; the
upstream region does not “know” about the presence of the obstacle. Fig. S-XIV displays
these two distinctive behaviours and is adopted from (Landau & Lifshitz 1987, Fig. 50).
These are predictions of linear analysis with axial symmetry and are expected to become
somewhat modified in the presence of nonlinear and azimuthally-dependent fields. This
is discussed now in terms of the liquid vorticity.

Finally, depending on the type of the liquid (whether shear viscosity is included or
not) there will be a boundary layer that will bring a velocity component, increasing
exponentially in the bulk abruptly, down to zero near the boundary. We do not discuss
here the manner by which this decay will take place and it is left for future investigations.
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