Supplemental Material for “Fluid viscoelasticity affects ultrasound
force field induced particle transport”

T. Sujith, L. Malik and A. K. Senf

Micro Nano Bio Fluidics Unit, Department of Mechanical Engineering, Indian Institute of
Technology Madras, Chennai-600036, India

1. Theoretical modelling
1.1. Acoustic boundary layer thickness and viscous wavelength formulation

The continuity and momentum equations are

0p1
—— +poV-v1=0, 1.1
5; TrPoV M1 (1.1)
v 2
o = =Vp1+ V- pe |Vra + (Wv) = 2 (Vo) | (1.2)
where
Hc :ﬂs'*"u—p- (1.3)
l+itw
The equation of state can be expressed as
p1—po = (p1—po) c5, (1.4)

The first order velocity can be represented in terms of potential (¢,) and stream function
(¥) as (Doinikov et al. 2021a):

Vi :V(pp1+VX‘I’1 (15)
Substituting equation (1.5) in equations (1.1), (1.2), and (1.4), further simplification
gives,

VQ()Opl + k?“Ppl =0 (16)
and

VAW, + k2, % = 0. (1.7)

Where k¢ and k,. are wave numbers, given by

~ [pow w iw 4pc "3
kye =(1- d kr=—|1 : 1.8
ve = ( l)‘/Quc and kr=— [ t e 3 ] (1.8)

By following the similar analogy of viscous fluid, magnitude of boundary layer thickness
and viscous wavelength for viscoelastic fluid can be expressed as (Doinikov et al. 2021a),

2
Re {kye}
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1.2. Acoustic radiation force derivation in the far field

We begin the derivation of the acoustic radiation force expression by considering the

time-averaged second-order field equations,

poV - (v2) ==V - (p1v1) (1.10)
and
(P10,71) + po (V1 - V¥1) = =V (pa) + V> (v2) + £V (V- (1)) w1
-7V <v1 . V0'¥6> +7V. ((Vvl)T . o¥e> +7V. (0{6 . Vv1> .
In case of viscoelastic fluid acoustic radiation force can be expressed as
Frad = <f (a'z—povlvl) ndA> (112)
Js
Where the time-averaged second-order stress tensor is represented as
2 .
(2) == () T+ p | V) + (Vi) -2 (V N I| -1 (vi Vo (1.13)
+7 <(Vv1)T o > +7 <0'1€ Vv1>
The first-order viscoelastic stress tensor can be expressed as
o = Mgy v (v = 2 (v v 1. (1.14)
! 1+iwt 3
In Figure 2 of main file, applying far field inviscid condition, u =0 (us =0, up, = 0) gives
=0, equations (1.11) and (1.13) reduces to
(P10:v1) + po(v1-Vvy) ==V (p2) (1.15)
and
(o2) ==(p2) I (1.16)
Substituting equation (1.16) in equation (1.12) and rearranging gives
Fraa== [ dA{p2)n+ po ((n-v1)v)). (1.17)
Considering p = 0, equation (1.2) reduces to
poatvl = —Vpl. (118)
Substituting (1.15) in (1.17) and simplifying using (1.18) and p1 = p1c2 gives
K
Froa = —/dA {[70 (pT) - % (ﬁ)] n+po((n-vi) Vl)} : (1.19)
s

Here, (1.19) is same as Settnes & Bruus (2012). By following the similar analogy we

obtain an expression for F,,g4,
F,oa=-VU,ua,

where

Urad =

fl— <Pm> Sfo— 3p0 < m)]

(1.20)

(1.21)
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A detailed derivation of (1.20), (1.21) from (1.19) is reported in Bruus (2012) and Settnes
& Bruus (2012). For a standing wave (1.21) becomes

An
3

where f] and f; are real part of fi and f> respectively.

3
Urad = a’ f{% <p12n> - fg% <V12n> : (1.22)

1.3. Calculation of scattering coefficients in viscoelastic fluid

In the far-field (see Figure 2 of main file), the total scattering field ¢,., which is given
by ¢sc  Gmp + dap, becomes

a® O pin (1 —1/co)

~fi g AP (1.23)

boe(r. 1) = M]

r

3
_h%vi

where fi is the coefficient of monopole scattering potential and f5 is the coefficient of
dipole scattering potential. The monopole and dipole components have the form

3 1

Pmp(r) = —f1 B%&pm;, (1.24)
a’  cosf
ap(r,0) = f25Vin—3—, (1.25)
and thus, total scattered field becomes
Psc(r,0) =—fi 3a_;atpin% + fQ%SVinC(;—ze- (1.26)
The first-order velocity field is given by,
vi=V¢ (1.27)

and first-order pressure field can be expressed as

P1=—po0ip1 = —ipow (Pin + Psc) - (1.28)

From the incoming and far-field scattered fields, we obtain an expression for the acoustic
radiation force (refer § 1.2), which can be simplified as follows

F.oa=-VU,ua. (1.29)
Where U, .4 is the acoustic potential,
4 K 3
Uraa = ?03 f1?0 <p12n> - 2% <V12n> : (130)

In equation (1.30), fi and f; are unknowns that need to be determined (Bruus 2012;
Settnes & Bruus 2012) to predict the acoustic radiation force. We consider the instanta-
neous velocity of the particle, Vp, with the particle traveling along the polar axis of the
spherical polar coordinate system. The velocity variations depend only on r and 6 due
to the azimuthal symmetry of the problem and can be represented as

v =v,e, +Vvgey. (1.31)

Moreover, the polar axis e, and incoming waves are in the same direction, so v;, can be
represented as v;, = v;ye,. The incoming wave and particle velocity can be represented
as,

Vin = Vin€, = cosf vine, —sinf v eq (1.32)
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and
Vp =Vpe, =cosf Vpe, —sinf V,eq. (1.33)

If a viscoelastic fluid containing a particle is exposed to pressure oscillations, the
particle goes through compression and expansion, resembling the behaviour of the fluid.
When the compressibility of the particle is different from that of the fluid, the particle
will encounter a more or less contraction and expansion than the fluid (Challis et al.
2005). Such a divergence may give rise to a fluid flow towards or away from the particle
depending upon the compressibility contrast. Earlier studies (Challis et al. 2005; Bruus
2012) have reported that a particle could act as a sound emitter, emitting sound waves at
the same frequency as that of the incident compression wave but potentially at a different
phase.

If the particle is considerably smaller than the sound wavelength and has a spherical
shape, the local field around the particle will resemble that of a basic monopole source
(Bruus 2012; Settnes & Bruus 2012; Karlsen & Bruus 2015), shown in Figure 2(b). If
the particle compressibility is more than that of the surrounding viscoelastic fluid, the
compressible particle will cause fluid ejection at a rate of d;m. The ejected mass can be
evaluated by using the scattered first order velocity field, pv,.. To get the total volume
ejection around the particle, pv,. is calculated through a surface ds around the particle
in the near field region.

The total fluid ejection caused by the particle is given by

4
Oym = yg dAe, - (poVsc) = ‘75’ dAe, - <p0V¢mp) = fl?agatpin- (134>
Os Os
The ejected mass can be expressed in terms of incoming density and particle velocity as,

0rm = 0; [(po + pin) ¥p] . (1.35)

Where ¥p is the particle volume. By modifying equation (1.35) using compressibility
k = —(1/¥)(d¥/dp), and introducing particle compressibility xp and viscoelastic fluid
compressibility ko = 1/(poc?), we obtain

dym = [1 - K—P] Vpd: pin. (1.36)
Ko

Comparing equations (1.34) and (1.36), we obtain monopole scattering coefficient ex-
pression as

fi(Kp) = 1=} (1.37)
Where compressibility ratio, k¥ = kp/ko. The expression for f; in a viscoelastic fluid is
similar to that obtained for ideal and viscous fluids (Gorkov 1962; Bruus 2012; Settnes &
Bruus 2012). This is due to the fact that the viscous and elastic properties (u and 7) of
the fluid do not impact mass ejection and f; only depends upon the compressibility ratio
of the particle to viscoelastic fluid. When «p = kg, fi becomes zero and the expansion
and contraction of fluid and particle become same leading to disappearing monopole
scattering.

The viscoelastic properties of the fluid will have a significant effect on the dipole
scattering coefficient, fo that arises due to the density difference between a particle and
the suspending fluid (Bruus 2012). When a particle is denser than the surrounding fluid,
pressure waves undergo cyclic variations in pressure gradient. This variation causes the
particle to undergo oscillatory motion due to differences in inertia between the particle
and the fluid (Challis et al. 2005). Previous studies have indicated that particle movement
in a fluid is influenced by the formation of a viscous boundary layer close to the particle’s
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surface in a viscous fluid (Settnes & Bruus 2012) and by the formation of a viscous and
thermal boundary layer in a thermoviscous fluid (Karlsen & Bruus 2015). Consequently,
the expression for fo, which is a measure of the scattering effect gets modified and there
is a change in the acoustic radiation force, to account for the viscous and thermoviscous
effects.

Here, we develop a modified expression for f5 considering the viscous as well as elastic
effects of a viscoelastic fluid. The basic equation forming the starting point for our
theory for f; is the first-order Navier-Stokes equation (1.2). Here, we derive the first-
order velocity and pressure, v, and p4p, explicitly from equation (1.2) in the boundary
layer region a < r < a+58,.. As discussed earlier, in the boundary layer region, the fluid
is considered incompressible, implying V -v,;, = 0. Taking divergence, equation (1.2) can
be expressed as,

VZpap =0. (1.38

Moreover, considering the dipole part of the solution in ¢,., we modify equation (1.28)
as

Pab = —ipow (¢ln + ¢dp) . (139)
Using equations (1.25) and (1.27) in equation (1.39), we obtain
) 1a3
Pab(r,0) = —ipow |r + 5—2]”2 Vin cOs 0. (1.40)
r

At the surface of particle (r = a), the pressure field becomes

Pav(a,0) = —ipowa

1
1+ §f2] Vin COS 6. (1.41)

We derive v, from the first order Navier-Stokes equation (1.2), by combining the
incompressibility and azimuthal symmetry. We introduce stream function ¥ (r,8) to
express the velocity components inside the boundary layer region that helps to replace
the vector equation for v,; with a scalar equation for ¢ as follows,

Vabr(r,0) =V X [y(r,0)e,] . (1.42)
Taking curl of equation (1.2) and upon simplification, we get
0V X (0vap) = ue V(Y X vap) . (1.43)
Substituting d;v.p» = iwv,p and equation (1.42) in equation (1.43) yields
ipowV? (W (r,0)e,) = u.V*V? (y(r,0)e,) . (1.44)
Upon simplification of equation (1.44), we obtain

v (V2 - ’Zﬂ) [¢(r,0)e,] =0 (1.45)

C

To study the effect of viscoelastic parameters, we collect the complex viscosity term from
equation (1.45) and represented as

ipow

He

qve = «|— (1.46)

By using equation (1.46), equation (1.45) reduces to
V2 (V2 +q7,) [w(r.0)e,] =0. (1.47)
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Considering the expression for 6,,. (equation 2.20 of main file) and A,, (equation 2.21 of
main file), equation (1.46) can be written as follows,

C A=)l 2x\ (1 2n
e =" [(mfﬂve) ’(6ve A)} (1.48)

For a viscous fluid, A,./8ye = 4,/6, = 2n (Doinikov et al. 2021a). Hence, in the absence
of elasticity, equation (1.48) reduces to gve = g, = (1 —1)/6.
If gy # 1, the differential operators in equation (1.47) are different. Therefore, we
introduce ¢ (r,6) = ¢1(r,0) + Y2(r,0) in equation (1.47), obtaining
v? (V2 + q%e) [(1//1(1’, 0) + Yo (r,0)) e¢] =0. (1.49)

Where ¢1 and ¢ satisfies

V2 [y1(r,0)e,| =0 (1.50)
and
(V2 +q2,) [p2(r,0)e,] = 0. (1.51)
The stream function only depends on (r, 8), therefore
V2 [u(r.0)e,] = | V20 - —2—| e, 1.52
[(ﬂ(r )e<P] [ w (FSiIl@)Q €y ( )
Using equation (1.52), we expand equations (1.50) and (1.51) as
2!
Vi, - ——— =0 1.53
V1 (r sin 0)2 (153)
and
VQI,DQ - L = —q2 lﬂg. (154)
(rsin6)2 ve
Solution of equation (1.53) can be expressed in Legendre form,

Ay cos 6

Yi(r,0) = Ajrcos6 + ) (1.55)

2
-
Where A; and Ay are unknowns. However, solution of (1.54) depends upon ¢,,. and can
be expressed in Hankel form,

Wa(r,0) = Bh%(qver)avm sin 0. (1.56)

Here, hl(gy.r) is the spherical Hankel function of first kind of order 1, hl(gyer) =
—e'dver (g,or +1)/(gver)?. Substituting ¢,. from equation (1.48) in Hankel function shows
a decaying variation of Yo with the length scale. Here, hy (gyer) o edve” | By substituting
the expression for g,. and further simplification gives hj (gyer) o e™" /6ve . Therefore,
with an increasing the r spherical Hankel function h} (gyer) decreases and becomes less
than 1% for r ~ 4.66,,.. The exact value of the prefactor is not critical to our analysis.
Therefore we consider 53y, to define the near field region. Furthermore, B is an unknown
and Aj, As and B need to be determined to get the first order scattering field inside the
boundary layer region.

We determine the values of A; and As in equation (1.55) by asymptotic matching
of velocity field in boundary layer region with dipole part of fluid velocity in near field
region, vy, (r = r*,0) = Vx [¢1€<p] (Settnes & Bruus 2012). Using equations (1.25), (1.27)
and (1.32), fluid velocity in the near field region can be written as

3

3
a

Vap (r = r*,0) = [1 —f2—3] cos vip - e, +
r

1 _ a )
1+§f2r—3} (—sin ) vy, - €g. (1.57)




Fluid viscoelasticity affects ultrasound force field induced particle transport 7

Comparing equation (1.57) with V x [y1e,] gives

3
Ya(r,0) = Br - %f—g} Sin g vip. (1.58)

The next step is to represent the velocity field inside the boundary layer using equations
(1.58) and (1.56), vqp =V X [(g[/l +s) e¢], a simplified expression for v, is as follows,

3 hi(s
Vap - €y = [1 - fza—g +2¢,.aB ( i )) ] cosf v, (1.59)
r s
qvel
and
3 Js (shi(s
Vab " €9 = |1+ éa_ + gveaB M (—=sinb) vi,. (1.60)
2 r3 s doer

Furthermore, we determine the value of B by considering no-slip condition at the surface
of particle (r = a). The associated boundary conditions can be written as

vap(a,0) - e, =cosf Vp (1.61)

and
Vab(a,0) - eg = (—sin ) Vp. (1.62)
In the above equations, Vp is the particle velocity and it is also an unknown. Therefore
f2, B and Vp are the unknowns presented in (1.59), (1.60), (1.61) and (1.62). As the
particle is freely suspended, the translational velocity of the particle comes from the force
free condition. Thus, to determine the particle velocity, we consider Newton’s second law
of motion on the particle. The inertial force on the particle is calculated by md,Vp =
pp(4/3)naiwVp. In the next step, we balance the inertial force with total force around
the particle, which comes from pressure and viscoelastic stress,

4
pp=-na’ioVp = / dAn-ogu-e;. (1.63)
3 av
Considering pressure and viscoelastic stress, equation (1.63) can be modified as
4 1
op gna?’iva = 27a® / d(cos 0) [(—pab + (rr“rb) cosf — odb sin 9] . (1.64)
-1

: : b _ b b _ b
Here, the viscoelastic stress components are o;}” = 2u.0,vy” and o’ = ¢ [r(')r (v‘g, /r) +

(1/ r)agv;‘b]. We consider equations (1.59), (1.60) and apply no-slip boundary conditions
at r = a (see equations (1.61) and (1.62)) to obtain

Vp = [1 - fot QBh%(Q\}ea)] Vin (165)
and

Vp =

1
L+ 5 fo+ BOs (shi(S))qvea] Vin. (1.66)

Substituting equations (1.41), (1.59), and (1.60) in %’ and o4?. Further simplification
of (1.64) yields (Settnes & Bruus 2012)

* 1
ppVe = |1+ 5f2 + 2Bh}(qvea)} Vin. (1.67)

Here, p} = pp/po. Solving equations (1.65), (1.66) and (1.67), we obtain values of fa, B
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and V,,. Subtraction of equation (1.65) from equation (1.66) and substituting s (sh}(s)) =
sh(l)(s) — 3hi(s), we get a relationship between f; and B.
Now, we consider following dimensionless variables

* 5 e * /l e
6, = —:l , A, = —:l (1.68)
and introduce
3h}(s)
* . 1.69
Y shé(s) ( )

Where, s = gyea. Substituting equation (1.48) in equation (1.69) and expanding the
expression, we get
31+ [1+0+i(1+P)]

Y (s Ae) = P =i0) : (1.70)
where,
1 2r 1 2n
P= + d = - ) 1.71
e ;e MOt R T 71
Accordingly, we solve equation (1.67) with equations (1.65) and (1.66) to obtain
2[1-9" (850 %) | (0 = 1)
5y 0, A ) = 1.72
f2 (pP ve ve) 2p;)+1_3y* (6\te,/l>\k/e) ( )
The contrast factor is
* * * * 1 *k 1 v * * ES
D@ (Kps Pps Ores Aye) = gfl(KP) + §f2 (0psOres Abe) - (1.73)

2. Numerical modelling

We use numerical simulation models to assess variations in acoustic fluid field pertur-
bations, acoustic energy density, and to do a comparison with radiation force theory.
To establish relative boundary conditions for the 2D numerical models of acoustic
energy density (AED) and radiation force (ARF), we conduct simulations of the entire
experimental acoustofluidic device using COMSOL Multiphysics 6.0 (Dual & Moller 2012;
Dual & Schwarz 2012; Hahn et al. 2015), with the base fluid being DI water. In the
experiments, the input to the device is voltage applied to the transducer. Similarly,
in the full device model, we maintain the same voltage input (U,, = 13.2 V) to the
transducer and adhere to similar design conditions as in the experimental setup. The
numerical model, along with the mesh arrangement, is depicted in Figure 1(a) and (b).
Here, we consider the thermoviscous acoustic module to solve the first-order equations,
with simulation parameters akin to those outlined in Muller & Bruus (2014). Upon
actuating the transducer, we observe first-order pressure variations inside the channel,
as illustrated in Figure 1(c). To maintain a similar range of pressure variations within
the AED and ARF numerical models, we set the boundary conditions accordingly.

2.1. Acoustic energy density (AED) model and validation

We present a 2D model for calculating acoustic energy density in viscoelastic fluids,
following the work by Muller & Bruus (2014). In this model, we consider the cross-
section of the channel as the computational domain and solve the first and second-order
perturbation equations, as depicted in Figure 2. The dimensions of the channel cross-
section closely resemble those of the experimental device, within the channel, we consider
the viscoelastic fluid. To ensure accurate computation, we employ a non-homogeneous
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FiGURE 1. Numerical model for finding the first order pressure variation (a) 3D model of
Glass-Si- Glass acoustofluidic device, illustrating the components and mesh distribution () 2D
sectional view of the Silicon microchannel (c) variation of first order pressure field inside the
channel for the base fluid (DI water). The nodal plane is indicated by white dashed lines.
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FIGURE 2. Numerical model for acoustic energy density calculation (a) 2D cross-section of
channel with width W and depth D. The bottom half of the image depicts the mesh distribution.
An enlarged view of the mesh distribution close to the wall is shown on the right side. The side
walls are actuated by a velocity boundary condition, while the top and bottom walls are applied
to a hard wall boundary condition. The axes x and y are considered at the bottom left corner
of the cross-section. (b) Mesh convergence study for the domain, shows a semi-logarithmic plot
oof the mesh convergence parameter Cps; with the ratio of boundary layer thickness and mesh
size in the boundary layer (8ye/dpq).

mesh in the domain, with a very fine mesh near the acoustic boundary or close to the
channel wall. The first-order perturbation equations are solved using the Thermoviscous
acoustics module in COMSOL Multiphysics 6.0.

We apply the following boundary conditions to the channel walls, for top and bottom
wall:

vy =0. (2.1)

For actuating side walls, the velocity boundary condition reduces to (Bach & Bruus
2018):

v1 = V9 (do) = iwAé,. (2.2)

Where V? is the Lagrangian velocity of the wall, A and w are the amplitude and angular



10 T. Sugith, L. Malik and A. K. Sen
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FIGURE 3. Validation of acoustic energy density model with Hintermuller et al. (2017), the
comparison is done at 7 = 0.1 ms and 0.6 ms for (a) First order field (») Time averaged second
order velocity field.

frequency of vibration, respectively. We solve the second order perturbation equations
using Laminar flow module with the extra viscoelastic stress terms, where following
boundary conditions are considered.

For top and bottom wall: Lagrangian no-slip boundary condition gives,

n- Vo = 0. (23)

For actuating side walls:

ve =—((d1-V)vy) (2.4)
Where, di = u1 /iw, n is the normal vector to the surface and (2.4) is known as the Stokes
drift.

A mesh convergence study is conducted following the approach outlined by Muller
& Bruus (2014). We illustrate the variation of the mesh convergence parameter, Cyy,
with the ratio of the acoustic boundary layer thickness to the mesh size in the boundary
layer (6ye/dpa). The mesh convergence parameter, Cyy, for a solution g with respect to
a reference solution g.¢, is defined as

| [ (8= ger)? dydz
Curlg) _J [ (geer)? dydz

We choose Cyp; = 1073, and both the first and second-order fields converge when 6,¢/dpa
exceeds 1. Therefore, we select the mesh by ensuring 6,./dpg is greater than 1.Further-
more, we validated our numerical model for both first and second-order fluid fields against
the findings of Hintermuller et al. (2017). The comparison results, depicted in Figure 3,
demonstrate a close agreement between our results and theirs.

(2.5)

2.2. Acoustic radiation force model

We compare the derived acoustic radiation force (ARF) theory with the numerical
ARF model. Since the radiation force is obtained through surface integration of stress
terms, we introduce an axi-symmetrical (about z axis) numerical model in COMSOL
Multiphysics 6.0, resembling the theoretical model. The particle is positioned at the
center of the domain surrounded by viscoelastic fluid, with a perfectly matched layer
(PML) provided around the fluid domain. We employ a non-homogeneous mesh with
boundary layer refinement, by following the approach by Baasch et al. (2019), shown
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FIGURE 4. Numerical model for acoustic radiation force measurement in viscoelastic fluid (a)
Computational domain is axi-symmetric about z axis of coordinate system (r,6,z). The mesh
distribution is shown on the right side. (b) Comparative study between our theory and numerical
results on the distribution of ARF along standing wave direction. (¢) Validation of numerical
model with Doinikov et al. (2021b) for two cases of relaxation time 7 = 1073 and 107° s.

in Figure 4(a). The acoustic field is introduced by a background pressure field with a
similar amplitude as in the Acoustic Energy Density (AED) model. We solve the first and
second-order perturbation equations using the thermoviscous acoustics and laminar flow
modules. The ARF is measured at different locations of the particle from one pressure
anti-node to another. A comparison between the theoretical variation of ARF and ARF
from the numerical model for two different cases is depicted in Figure 4(b), showing close
agreement.

Additionally, we validate our numerical model with an existing study by Doinikov et al.
(2021b), provided in Figure 4(c).

3. Experiments and details
3.1. Viscoelastic fluid preparation and properties

Polymer powder at different concentrations by wt.% are dissolved in deionized water
by gentle mixing followed by sonication for 15 min. All solutions were kept on a mixing
stage for 24 h to avoid precipitation and fully dissolve the polymer. Apart from PVP
0.36MDa, we additionally consider PEO 0.4MDa and 1MDa fluids in the experiments,
and their properties are provided in Table 1. We measure the viscosity using Anton-Paar
rheometer MCR 72 and calculate the relaxation times by following Tirtaatmadja et al.
(2006); Ebagninin et al. (2009).

3.2. Relaxation time measurement

The relaxation time (7) of a polymer solution or viscoelastic fluid depends on the
concentration and molecular weight of the polymer. Polymer solutions are categorized
based on concentration and molecular weight into dilute, semi-dilute unentangled, semi-
dilute entangled, and concentrated solutions (Rouse 1953; Zimm 1956; Tirtaatmadja
et al. 2006; Ebagninin et al. 2009). Critical concentrations (C*,C**), and entanglement
concentration (C¢) are introduced in the literature to differentiate between the nature of
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Solutions C [wt.%] u [mPa ] 7 [s] ,u*:,u/,ubf De =71w
PEO (0.4 MDa)  2.50 66.7 6.1x 1073 75.0 7.4%x10%
3.50 180.7 2.1x1072 203.0 2.5 % 10°
PEO (1 MDa) 0.74 18.9 3.0x 1073 21.3 3.7x10%
1.05 40.1 4.7%x1073 15.1 5.7 x 104
1.40 61.8 1.4x 1072 69.5 1.7 x 10°

TABLE 1. Fluid concentration and viscoelastic properties (Rouse 1953; Zimm 1956;
Tirtaatmadja et al. 2006; Ebagninin et al. 2009)

these solutions. In dilute polymer solutions, the elastic properties may not be accurately
captured using Rheometers, as the relaxation time varies beyond the sensitivity of the
instrument. Zimm (1956) formulated the relaxation time of dilute solutions as

FnlM,n,
RT

1%

Az (3.1)

[7] = 0.072M%%  C* = [—]17] (3.2)

Here, for good solvents like water F = 0.463, [n] is intrinsic viscosity, M,, is the molecular
weight of the polymer, ny solvent viscosity, R universal gas constant, T is the absolute
temperature. The effect of concentration on relaxation time was considered by Tirtaat-
madja et al. (2006), reported an effective relaxation time,

0.65

Aeyy = % (CE) 0.01 < C/C* < 1. (3.3)
The relaxation time of various dilute polymer solutions reported in this study is calculated
using Equations (3.1) and (3.3). The transition of polymer solutions from dilute to semi-
dilute unentangled regime causes the rate of increase in the viscoelastic properties with
the concentration of polymer, which can be measured by rheometer and various other
methods reported in the literature (Ebagninin et al. 2009). Most of the body fluids are
having viscoelastic properties similar to the dilute and semi-dilute unentangled solutions,
therefore our experiments are conducted for dilute and semi-dilute unentangled polymer
solutions.

4. Results and discussion
4.1. Contrast factor variation

The total scattering is characterized by contrast factor (®), considering f; and f>. The
contrast factor is calculated from equation (1.73), which relies on the density (p}) and
compressibility («}) ratio between particle and fluid, dimensionless acoustic boundary
layer thickness and viscous wavelength. We represnts the relative change in contrast factor
(@) of particles in a viscoelastic fluid compared to a ideal fluid is depicted in Figure 5.
This change is represented by Q = (@ (kp, ph, 03¢ Ase) = P(&ps 3. 0,0)) /P(k%, 3, 0,0)
in percentage. Specifically, for PS, MESC2.10 cell, MR, PM, silica, and pyrex particles
in viscoelastic fluid with properties: ug =1, uj, = 10, De = 200, p* = 1.005, and ¢* =1, Q
exhibits variations of up to 0.3%, 3.75%, 2.6%, 11.8%, 27%, and 39% respectively.
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FIGURE 5. Theoretical variation of percentage change in relative contrast factor, Q[%], with
0y for (a) PS: pp, = 1.045,k3, = 0.578 (b) MESC2.10 cell: p, = 1.094,«% = 0.929 (c¢) PM:
pp = 1184,k = 0.344 (d) MR: p)p = 1.502,kp = 0.157 (e) Silica: p}p = 1.950,«p = 0.071 (f)
Pyrex: p, = 2.219,«}, = 0.064 (Settnes & Bruus 2012). Particles are suspended in viscoelastic
fluid with properties: pu§ = 1, i, = 10, De = 200, p* = 1.005, and ¢t =1.
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FIGURE 6. Variation of acoustic radiation force (F ) with uj, at different De. (a) De <1 (b)

1 < De <100 (¢) De > 100. The arrow signifies the direction of increase in De and we consider
ps=1,p"=1, pp =1.05 and ¢* = 1.

4.2. Acoustic radiation force variation

We show the variation of F; , with w7, in Figure 6 for three cases: (a)De < 1, (b)1 <
De < 100, and (c)De > 200. Here, F: , follows the same trend of E}. (Figure 5a of
main file) due to the negligible effect of viscoelastic properties on ACF of Polystyrene
particles. Similarly, F , variation with ug, in Figure 7 shows same trend as acoustic
energy density variation as given in main file (Figure 6a of main file).
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FIGURE 7. Variation of dimensionless acoustic radiation force (F: ) with u at different De
(0,0.1,1,10,103,107) and (a) wp=1() up, = 103. Here we consider pp=105p"=1and c* =1.
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FIGURE 8. Experimental and theoretical variation of normalized

acoustic  particle central  migration  time (%) in PEO 1 MDa  of
C =0.74% (u* = 21.3,De = 3.7 x 104, p* = 1.007, ¢* = 1.003), 1.05% (u* = 45.1, De = 5.7 x 10%,
p* = 1.015,¢* = 1.006) and 1.4% ( u* = 69.5, De = 1.7 x 10°, p* = 1.020,c* = 1.010) with (a)
blockage ratio (8) at Uj,,, = 1.14, where T* o B2 (b) dimensionless peak-to-peak voltage y,

at 8 =0.0375, where, T* U;;Q.

»)

4.3. Effect of Particle size and voltage input in particle migration

The effect of particle size (8) and peak-to-peak voltage input (U, ,) to the transducer
on particle migration in different viscoelastic fluids is illustrated in Figure 8. It is observed
that the rate of decrease in T with 8 and U}, , is higher for larger u* and De. This is
because the acoustic boundary layer thickness is greater for u* = 69.5, De = 1.7 x 10°
due to the higher viscosity. At low voltage and for small particles, this boundary layer
effect becomes dominant, and with an increase in 8 and U,,,, the boundary layer effects
reduces at a faster rate.
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