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Alternative modeling with a no-stress boundary

Figure 1: Different boundary conditions imposed for the Moffatt eddy flow field. Top:
no-slip BCs at 𝑦 = −1 and 𝑦 = +1. Bottom: noslip BC at 𝑦 = −1 and no-stress BC at
𝑦 = 0.

In this work, we have focused on particles seeded in the lower half of the channel,
being transported in a vortex bounded by the lines 𝑦 = −1 (lower wall) and 𝑦 = 0, in
a channel spanning twice that width to a second no-slip wall at 𝑦 = +1 (see the upper
panel of Fig 1). It is tempting to instead simplify the problem by taking as the modeling
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domain only the lower half of the channel to start with, while modeling the boundary
at 𝑦 = 0 as a stress-free boundary (this property is true for the background flow and
follows from symmetry). The lower panel of Fig 1 shows this scenario.

The influence of a nearby no-stress boundary on the wall-normal velocity of a
spherical particle in an arbitrary Stokes flow was quantified in Rallabandi et al. (2017)
alongside the results for a no-slip wall. The only difference between these two cases is
that the hydrodynamic resistances in the formulae for the velocity correction W have
different functional forms, which we denote A𝐼 𝐼 , B𝐼 𝐼 , C𝐼 𝐼 and D𝐼 𝐼 . In the following,
we will exclusively look at particle trajectories with large Δ with respect to any wall.
The asymptotic expressions for the no-stress resistances at Δ ≫ 1 are

A𝐼 𝐼,𝑙𝑎𝑟𝑔𝑒 ≈ 1 + 3
4
Δ−1 (1)

B𝐼 𝐼,𝑙𝑎𝑟𝑔𝑒 ≈
5
8
Δ−2 (2)

C𝐼 𝐼,𝑙𝑎𝑟𝑔𝑒 ≈
7

16
Δ−3 (3)

D𝐼 𝐼,𝑙𝑎𝑟𝑔𝑒 ≈
1
3
+ 1

4
Δ−1 (4)

Figure 2: Non-dimensional minimum gap Δ𝑚𝑖𝑛 between particle and wall on stable
limit cycle trajectories, for both boundary condition scenarios depicted in Fig. 1. Results
are indistinguishable for 𝑎𝑝 ⪅ 0.02.

2



We use equation (2.10) from the main text with these expressions as well as the
no-slip expressions (A𝑙𝑎𝑟𝑔𝑒, B𝑙𝑎𝑟𝑔𝑒, C𝑙𝑎𝑟𝑔𝑒 and D𝑙𝑎𝑟𝑔𝑒) with respect to the 𝑦 = −1
wall to solve for stable limit cycles. By varying particle sizes, we compare their closest
distances to the wall with those stable limit cycles calculated for the scenario with two
no-slip walls (Fig 2). The two calculations are indistinguishable up to 𝑎𝑝 = 0.02, but
noticeable differences appear for somewhat larger particles.

Note that the disturbance flow due to the presence of the particle modifies the
background flow in such a way that 𝑦 = 0 is not a strict line of symmetry anymore,
and the no-stress boundary condition is not strictly applicable. In contrast, the no-slip
boundaries at 𝑦 = ±1 remain unchanged. As 𝑎𝑝 increases, the effect of the disturbance
flow of the particle becomes more and more important, and the violation of the no-stress
boundary condition becomes more pronounced. Thus, the simplified no-slip/no-stress
approach should not be used for particles of even moderate size (𝑎𝑝 ⪆ 0.05), while the
no-slip/no-slip scenario remains physical.

Calculation of limit cycles with uncertainty bandwidths

Figure 3: An exemplary limit cycle (𝑎𝑝 = 0.1) with eight different angles 𝜃𝑘 . Each
angle is used as the initial condition for further limit cylce computations, resulting in
quantifications of uncertainty bandwidths.

Using a polar coordinate system with the origin at the Faxen field vortex center
(𝑥𝐹 , 𝑦𝐹), we choose eight different fixed angles 𝜃𝑘 (Fig 3). At each 𝜃𝑘 , we collect
the radial coordinates of limit cycles computed from 𝑁 different initial conditions,
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obtaining the mean and standard deviation of these radial positions in the usual way,

1
𝑁

𝑁∑︁
𝑖=1

𝑟𝐿𝐶 (𝜃𝑘 , x0,𝑖) = 𝑟𝐿𝐶,𝑘 , (5)

√√√(
1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝐿𝐶 (𝜃𝑘 , x0,𝑖) − 𝑟𝐿𝐶,𝑘)2

)
= 𝜎𝐿𝐶,𝑘 (6)

We take 𝜎𝐿𝐶,𝑘 as a quantitative measure of the bandwidth of the limit cycle at angle 𝜃𝑘
(for a given particle size). The bandwidths change with 𝜃𝑘 (but remain within the same
order of magnitude). In the main text, we focus on 𝜃𝑘 = −𝜋/2, to estimate the error
in the closest approach of the particle to the wall. We find that this error grows as 𝑎𝑝

decreases and becomes too large to distinguish the wall approach distance of the limit
cycles for 𝑎𝑝 = 0.008 and 𝑎𝑝 = 0.005.
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