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This is supplementary material for the article Bayesian parameter estimation in glacier mass-1

balance modelling using observations with distinct temporal resolutions and uncertainties2

Kamilla H. Sjursen, Thorben Dunse, Antoine Tambue, Thomas V. Schuler, Liss M. Andreassen3

CONVERGENCE OF MARKOV CHAIN MONTE CARLO (MCMC)4

SIMULATIONS5

For each glacier and simulation case we run four Markov chains with 10,000 samples, giving a total of6

40,000 samples from the joint posterior distribution of each parameter set. To facilitate the comparison7

of parameter distributions across the observational experiments, we must be confident that chains have8

converged to stationary posterior distributions in each case and that the number of independent samples9

is sufficient to produce stable estimates of the statistics of the marginal posterior distributions. Nearby10

samples in a Markov chain are inherently correlated, meaning that a substantial number of steps are11

needed to generate a sufficient number of independent samples from the target distribution. In addition,12

the initial part of a Markov chain is often discarded as burn-in (our 2,000 tuning iterations) as these13

samples rely heavily on the starting point of the chain and cannot be assumed to be drawn from the14

target distribution. Arbitrarily increasing the chain length to ensure convergence comes at the expense of15

additional computational resources.16

Several empirical diagnostic tools have been developed to assess convergence of Markov chains and to17

evaluate the quality of estimators (e.g., mean and quantiles) of the posterior distribution (see e.g. Gelman18

and others, 2014, Chapter 11). As no single diagnostic can be used to conclusively establish the convergence19

of an MCMC sampler, evaluation should rely on multiple tools that enable the detection of convergence20

problems. In our analysis, we employ three main diagnostics of convergence and accuracy available in the21

ArviZ statistical package (Kumar and others, 2019): the rank-normalized R̂ statistic, the effective sample22

size, ESS, and the Monte Carlo standard error, MCSE. In addition to numerical convergence diagnostics23

(Tables S1–S3), we apply diagnostic visualizations to assess MCMC performance (Figs. S1 and S2).24

By running multiple, independent chains we can compute the R̂ diagnostic, which compares the variance25

within and between chains (Gelman and Rubin, 1992). We use the rank-normalized R̂ proposed by Vehtari26

and others (2021), which offers improved divergence detection by identifying cases of poor chain mixing that27

cannot be uncovered by traditional R̂ (e.g. Gelman and Rubin, 1992). The R̂ statistic is below the upper28
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limit of 1.01 (Vehtari and others, 2021) for all simulation cases (Tables S1–S3) implying equal variance29

within and between chains and thus the absence of convergence issues.30

Rank plots can be used to assess the relative amount of time that each chain spends exploring a region31

(see Vehtari and others, 2021). Samples from the four chains are ranked from lowest to highest value and32

the frequency of the ranks in each chain are shown relative to where a uniform distribution would lie. Ranks33

are close to uniform across chains for all cases (Fig. S1), which indicates good mixing and that chains are34

targeting the same stationary distribution.35

Fig. S1. Rank plot of Markov chains for Nigardsbreen showing simulation experiments Bw/s (a, d, g), Ba (b, e, f)

and B10yr (c, f, i) and parameters MFsnow (a–c), Pcorr (d–f) and Tcorr (g–i). The horizontal axis shows rank, from

lowest sample (1) to largest sample (40,000) in the four chains. The vertical axis represents the frequency of ranks

in each bin of a histogram of the ranks, relative to where a uniform distribution would lie (dashed line).

ESS is a measure of the number of independent samples of the posterior distribution in an MCMC36

simulation (Gelman and others, 2014). Generally, the quality of the inference increases with ESS. Vehtari37

and others (2021) proposes a rank-normalized version of ESS, which offers improved detection of non-38

convergence across several cases where traditional ESS estimates fail. Since chain convergence is not uniform39

across the distribution, they argue that ESS should be assessed not only for the bulk of the distribution but40

also for the tails (extreme quantiles), to ensure robust estimates of how well both the center and quantiles41

of the distribution are resolved. A threshold of ESS > 100 has been considered sufficient for reasonable42
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accuracy in most cases (Gelman and others, 2014). More samples could be needed if the goal of the analysis43

requires increased stability and higher precision of the posterior summaries. A minimum threshold of 40044

for the rank-normalized ESS (bulk and tail) is recommended by Vehtari and others (2021) to ensure that45

enough independent samples are generated to produce a reliable estimate of R̂. We follow their advice, while46

also considering that increased precision is favorable since comparison of marginal posterior distributions47

across cases is a central component of our assessment. ESS is well above the recommended threshold of 40048

for all simulation experiments (Tables S1–S3). For the melt factor for snow, ESS increases approximately49

linearly with the number of iterations (Fig. S2a–c), with a minimum of ESS bulk (tail) of 1892 (3354),50

2509 (4043) and 2320 (2292) for the cases Bw/s, Ba, and B10yr, respectively. The stable increase in ESS with51

chain length indicates that chains have converged to a stationary distribution, such that running a longer52

chain would result in more samples from the same distribution. Tails of the distributions are efficiently53

explored with ESS > 2000 for all quantiles (Fig. S2d–f).54

MCSE is a measure of the quality, or precision, of the estimators (mean and quantiles) of the posterior55

distribution. MCSE of a point estimate does not indicate convergence but is a measure of the error56

associated with estimating the quantify from a finite number of samples of the distribution. A high degree57

of precision (low MCSE) comes at the expense of computational cost and is not necessarily required in58

practical inference (Gelman and others, 2014). MCSE limits should be assessed on a case-by-case basis59

(Vehtari and others, 2021) and reported to allow for objective assessment of the accuracy of simulations60

(Flegal and others, 2008).61

MCSE is mostly uniform across quantiles of the distribution (Fig. S2g–i), which is indicative of efficient62

exploration across the distribution. MCSE is below 0.025 for the simulation experiments Bw/s and Ba, and63

below 0.05 across quantiles for B10yr. In the latter case, MCSE is generally higher, particularly for lower64

and higher quantiles of the distribution. This could be a consequence of a relatively wide and long-tailed65

posterior distribution, which would be as expected given the limited constraints imposed by B10yr.66

MCSE for the mean (standard deviation) of the marginal posterior distributions is ≤ 5% (≤ 2%)67

for < 90% (100%) of all parameters and glaciers (Tables S1–S3). For the current analysis, we68

consider the simulations to provide reasonable accuracy and sufficiently stable estimates of posterior69

quantities. As an example, the marginal posterior distribution for MFsnow for Gr̊asubreen using70

B10yr has an estimated mean (standard deviation) of 3.813 (1.215) mm w.e.◦C−1d−1 and associated71
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Fig. S2. Convergence diagnostics for the melt factor for snow (MFsnow) for all glaciers and MCMC simulation cases

Bw/s (a, d, g), Ba (b, e, f) and B10yr (c, f, i). Top row (a–c) shows evolution of effective sample size (ESS), bulk

and tail, with increasing chain length. Middle row (d–f) and bottom row (g–i) shows ESS and Monte Carlo standard

error (MCSE) for different quantiles of the distributions, respectively. In panels a-f the grey dashed line shows the

recommended threshold of ESS = 400.

MCSE of 0.024 (0.017) mm w.e.◦C−1d−1. We would thus be comfortable reporting an estimate of72

3.8 ± 1.2 mm w.e.◦C−1d−1 for this parameter.73
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Table S1. Summary statistics of marginal posterior distributions and Markov chain Monte Carlo simulations (4

chains of 10,000 steps) for each glacier and parameters: precipitation correction factor, Pcorr (–), melt factor for

snow, MFsnow (mm w.e.◦C−1d−1), and temperature bias correction, Tcorr (◦C), for the Bw/s experiment. SD, HDI,

MCSE, and ESS refer to standard deviation, high density interval, Monte Carlo standard error, and effective sample

size, respectively. R̂ (–) refers to rank-normalized R̂ (Vehtari and others, 2021). Units for mean, SD, HDI, and MCSE

correspond to parameter units, while unit for ESS is number of samples.

Parameter Glacier Mean Median SD HDI2.5% HDI97.5% MCSEMean MCSESD ESSbulk ESStail R̂

Alf 4.852 4.854 0.249 4.385 5.340 0.0056 0.0039 1989 3903 1.003

Han 4.404 4.408 0.212 3.972 4.815 0.0043 0.0030 2451 4027 1.001

Nig 4.213 4.212 0.417 3.413 5.048 0.0075 0.0053 3070 4519 1.001

MFsnow Aus 3.534 3.513 0.284 2.997 4.092 0.0057 0.0040 2507 4302 1.001

Sto 3.028 3.024 0.164 2.699 3.344 0.0037 0.0026 2021 3354 1.003

Hel 3.187 3.170 0.223 2.788 3.627 0.0044 0.0031 2534 4202 1.002

Gra 3.732 3.731 0.182 3.383 4.084 0.0042 0.0030 1892 3363 1.001

Alf 1.552 1.551 0.032 1.492 1.613 0.0007 0.0005 1995 4445 1.004

Han 1.498 1.496 0.031 1.438 1.563 0.0006 0.0005 2374 3210 1.002

Nig 1.173 1.171 0.027 1.121 1.227 0.0005 0.0003 3307 5141 1.001

Pcorr Aus 1.096 1.096 0.024 1.050 1.143 0.0005 0.0004 2352 4098 1.001

Sto 1.722 1.722 0.033 1.657 1.786 0.0007 0.0005 2291 3673 1.001

Hel 1.255 1.254 0.026 1.207 1.308 0.0005 0.0004 2695 4333 1.001

Gra 1.064 1.064 0.019 1.027 1.100 0.0005 0.0003 1501 2951 1.001

Alf −0.609 −0.621 0.280 −1.122 −0.050 0.0060 0.0043 2177 4216 1.003

Han −0.627 −0.643 0.264 −1.146 −0.097 0.0054 0.0039 2373 3835 1.002

Nig −0.808 −0.838 0.449 −1.636 0.112 0.0080 0.0057 3165 5073 1.001

Tcorr Aus −0.382 −0.370 0.378 −1.129 0.336 0.0076 0.0054 2499 4470 1.001

Sto 1.005 1.002 0.246 0.515 1.487 0.0054 0.0038 2048 3596 1.003

Hel 0.484 0.494 0.298 −0.073 1.047 0.0059 0.0042 2545 4297 1.002

Gra −0.101 −0.104 0.185 −0.453 0.258 0.0042 0.0029 1973 3522 1.001

74
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Table S2. Summary statistics of marginal posterior distributions and Markov chain Monte Carlo simulations (4

chains of 10,000 steps) for each glacier and parameters: precipitation correction factor, Pcorr (–), melt factor for

snow, MFsnow (mm w.e.◦C−1d−1), and temperature bias correction, Tcorr (◦C), for the Ba experiment. SD, HDI,

MCSE, and ESS refer to standard deviation, high density interval, Monte Carlo standard error, and effective sample

size, respectively. R̂ (–) refers to rank-normalized R̂ (Vehtari and others, 2021). Units for mean, SD, HDI, and MCSE

correspond to parameter units, while unit for ESS is number of samples.

Parameter Glacier Mean Median SD HDI2.5% HDI97.5% MCSEMean MCSESD ESSbulk ESStail R̂

Alf 4.675 4.668 0.341 4.031 5.358 0.0064 0.0045 2870 4152 1.001

Han 4.016 4.013 0.302 3.411 4.590 0.0058 0.0041 2721 4567 1.001

Nig 3.413 3.373 0.565 2.322 4.520 0.0108 0.0077 2690 4526 1.001

MFsnow Aus 3.235 3.204 0.451 2.399 4.154 0.0084 0.0060 2847 4942 1.000

Sto 4.522 4.520 0.583 3.389 5.589 0.0116 0.0082 2509 4043 1.002

Hel 3.685 3.657 0.363 3.025 4.430 0.0064 0.0046 3263 4047 1.001

Gra 4.159 4.151 0.288 3.609 4.718 0.0056 0.0040 2616 4078 1.001

Alf 1.325 1.322 0.087 1.152 1.492 0.0016 0.0012 2896 4702 1.001

Han 1.196 1.196 0.083 1.041 1.364 0.0015 0.0011 2959 4330 1.002

Nig 0.811 0.810 0.095 0.626 0.995 0.0017 0.0012 2959 3995 1.002

Pcorr Aus 0.860 0.859 0.086 0.688 1.023 0.0016 0.0012 2770 4109 1.001

Sto 1.045 1.038 0.127 0.807 1.302 0.0026 0.0018 2368 3654 1.002

Hel 0.782 0.781 0.088 0.613 0.959 0.0017 0.0012 2791 4821 1.001

Gra 0.805 0.803 0.067 0.675 0.936 0.0012 0.0008 3212 5345 1.001

Alf −1.032 −1.039 0.396 −1.804 −0.266 0.0072 0.0051 3025 4580 1.001

Han −1.102 −1.114 0.362 −1.843 −0.411 0.0068 0.0048 2857 4189 1.002

Nig −1.395 −1.387 0.767 −2.929 0.093 0.0142 0.0101 2958 4345 1.001

Tcorr Aus −0.961 −0.949 0.687 −2.307 0.380 0.0129 0.0091 2840 3893 1.001

Sto −1.809 −1.867 0.633 −2.925 −0.519 0.0128 0.0091 2477 3663 1.002

Hel −1.199 −1.180 0.464 −2.137 −0.304 0.0085 0.0061 2982 4027 1.001

Gra −1.026 −1.025 0.315 −1.618 −0.396 0.0059 0.0042 2854 4596 1.001

75
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Table S3. Summary statistics of marginal posterior distributions and Markov chain Monte Carlo simulations (4

chains of 10,000 steps) for each glacier and parameters: precipitation correction factor, Pcorr (–), melt factor for

snow, MFsnow (mm w.e.◦C−1d−1), and temperature bias correction, Tcorr (◦C), for the B10yr experiment. SD, HDI,

MCSE, and ESS refer to standard deviation, high density interval, Monte Carlo standard error, and effective sample

size, respectively. R̂ (–) refers to rank-normalized R̂ (Vehtari and others, 2021). Units for mean, SD, HDI, and MCSE

correspond to parameter units, while unit for ESS is number of samples.

Parameter Glacier Mean Median SD HDI2.5% HDI97.5% MCSEMean MCSESD ESSbulk ESStail R̂

Alf 4.294 4.248 1.096 2.174 6.492 0.0207 0.0146 2748 3245 1.002

Han 4.274 4.245 1.076 2.166 6.331 0.0195 0.0138 2962 3085 1.002

Nig 2.738 2.661 1.037 0.849 4.812 0.0208 0.0147 2320 2292 1.001

MFsnow Aus 3.535 3.462 1.100 1.339 5.601 0.0215 0.0152 2504 2509 1.001

Sto 3.784 3.734 1.182 1.556 6.132 0.0228 0.0161 2534 3179 1.001

Hel 3.500 3.417 1.151 1.432 5.864 0.0216 0.0153 2740 3756 1.001

Gra 3.813 3.741 1.215 1.540 6.180 0.0239 0.0169 2478 2942 1.003

Alf 1.555 1.524 0.452 0.697 2.449 0.0083 0.0059 2843 3238 1.003

Han 1.627 1.597 0.470 0.756 2.565 0.0087 0.0062 2788 2929 1.001

Nig 0.749 0.741 0.244 0.262 1.198 0.0049 0.0034 2464 2984 1.000

Pcorr Aus 1.068 1.054 0.315 0.461 1.699 0.0062 0.0044 2433 2694 1.001

Sto 1.425 1.406 0.542 0.422 2.508 0.0106 0.0075 2479 2451 1.002

Hel 0.999 0.972 0.440 0.154 1.819 0.0086 0.0061 2438 2542 1.002

Gra 1.037 1.002 0.503 0.068 1.943 0.0118 0.0084 1584 1441 1.002

Alf −0.119 −0.153 1.252 −2.603 2.286 0.0226 0.016 3073 4491 1.001

Han −0.216 −0.250 1.245 −2.591 2.275 0.022 0.0156 3208 4760 1.001

Nig −0.831 −0.824 1.395 −3.493 1.910 0.0248 0.0176 3146 4344 1.002

Tcorr Aus −0.480 −0.503 1.318 −3.059 2.102 0.0242 0.0172 2959 4894 1.001

Sto −0.368 −0.393 1.227 −2.886 1.936 0.0223 0.0158 3031 4302 1.001

Hel −0.435 −0.465 1.277 −2.926 2.062 0.0241 0.0170 2821 4502 1.002

Gra −0.256 −0.257 1.228 −2.777 2.115 0.025 0.0177 2408 4113 1.003

76
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SENSITIVITY TO CHANGES IN CLIMATE FORCING77

We investigated the effect of posterior distributions on sensitivities of SMB to changes in climate forcing78

by running posterior predictive simulations over the period 1960–2020 with +1 K increase in temperature79

and +10% increase in precipitation. Average sensitivities (Table S4) are comparable across experiments,80

generally higher for maritime than continental glaciers, and in line with values found in previous studies (e.g.81

Rasmussen and Conway, 2005; Schuler and others, 2005; De Woul and Hock, 2005). However, uncertainty82

(standard deviation) in mass-balance sensitivity in the B10yr experiment is considerably higher than the83

other experiments (by a factor of 1.2 – 3.1 compared to Bw/s) due to higher parameter uncertainty.84
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Table S4. Surface mass balance (SMB) sensitivities (mean ± standard deviation) from posterior predictive

simulations (1960–2020) with +1 K temperature increase (dSMB/dT) and +10% precipitation increase (dSMB/dP)

for each glacier and experiment Bw/s, Ba, and B10yr. Glaciers are sorted from west to east along a maritime to

continental climate gradient.

Experiment Glacier SMB dSMB/dT dSMB/dP

(m w.e. a−1) (m w.e. a−1 K−1) (m w.e. a−1 10%−1)

Alf −0.31 −1.37 ± 0.49 0.44 ± 0.49

Han −0.54 −1.33 ± 0.49 0.42 ± 0.49

Nig −0.10 −0.78 ± 0.50 0.24 ± 0.50

Bw/s Aus −0.75 −0.78 ± 0.44 0.22 ± 0.44

Sto −0.30 −0.70 ± 0.26 0.19 ± 0.26

Hel −0.40 −0.60 ± 0.23 0.15 ± 0.22

Gra −0.43 −0.54 ± 0.15 0.10 ± 0.15

Alf −0.31 −1.22 ± 0.50 0.39 ± 0.50

Han −0.49 −1.12 ± 0.50 0.35 ± 0.50

Nig −0.04 −0.57 ± 0.51 0.17 ± 0.51

Ba Aus −0.62 −0.65 ± 0.47 0.18 ± 0.46

Sto −0.25 −0.63 ± 0.28 0.14 ± 0.28

Hel −0.38 −0.51 ± 0.23 0.10 ± 0.23

Gra −0.42 −0.49 ± 0.15 0.08 ± 0.15

Alf −0.35 −1.35 ± 0.86 0.43 ± 0.78

Han −0.58 −1.40 ± 0.84 0.43 ± 0.77

Nig −0.03 −0.49 ± 0.62 0.15 ± 0.59

B10yr Aus −0.68 −0.76 ± 0.71 0.21 ± 0.65

Sto −0.27 −0.67 ± 0.52 0.17 ± 0.48

Hel −0.38 −0.54 ± 0.47 0.12 ± 0.43

Gra −0.42 −0.52 ± 0.45 0.10 ± 0.41

85
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86

INFERENCE WITH STUDENT-T DISTRIBUTIONS FOR LIKELIHOOD87

We investigated the use of Student-t distributions for the likelihood in the Bw/s and Ba experiments88

to investigate the effect on inferred posterior parameter distributions and robustness of modelled mass89

balances (Gelman and others, 2014, Chapter 17). We performed two tests with Student-t distributions for90

the likelihood both with four degrees of freedom and three and five times the reported observation variance91

used in the original Bw/s and Ba experiments (e.g. as shown for the example of Ålfotbreen annual balances92

in Fig. S3). The tests were performed for the three glaciers that showed the worst performance in the93

original experiments: Ålfotbreen, Hansebreen, and Nigardsbreen.94

For both experiments Bw/s (Fig. S4 and Fig. (S6) and Ba (Fig. S5 and Fig. (S7) posterior parameter95

distributions show a larger spread, but are roughly centred around the same values as in the original96

experiments. For some experiments, especially those with the largest variance for Ba (Fig. (S7), posteriors97

of MFsnow show some shift towards lower values. This shift is compensated by a similar shift in the posterior98

of Tcorr toward more positive values, such that the decrease in melt from applying a lower value of MFsnow99

is compensated by higher temperatures. The mode of the distributions of Pcorr are generally aligned with100

posteriors in the original cases, but the spread in the distributions is greater.101

Fig. S3. Example of normal distribution (black solid line) and Student-T distributions with four degrees of freedom

and three (blue dashed line) and five (red dash-dotted line) times reported observation variance.

Posterior predictive probability density functions (PDFs) of modelled mass balances reflect the increased102

spread of the posterior distributions (Figs. S8, S9, S10, and S11). In some cases (e.g. Ålfotbreen;103

Fig. S8c and Fig. S9c) modelled mass balances are somewhat improved in terms of the PDFs of posterior104
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predictive samples to a greater degree capturing the PDF of observations. We would thus expect predictions105

to be somewhat more robust. However, the long tails of the posterior distributions also result in a106

greater number of extreme predicted values, e.g. positive summer balances and negative winter balances107

(e.g. Fig. S10h,g and Fig. S11h,g). This indicates that additional restrictions in our likelihood formulation108

(e.g. as those used in Rounce and others (2020)) may be necessary to constrain modelled mass balances109

within plausible ranges. The underestimation of the magnitude of seasonal balances for Ba is still found110

using Student-t distributions for the likelihood (Fig. S9 and Fig. S11).111

Fig. S4. Comparison of posterior parameter distributions for Bw/s using Student-T distributions with scale parameter

computed from three times reported observation variance (blue dashed line) and normal distributions with reported

observation variance (black solid line).
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Fig. S5. Comparison of posterior parameter distributions for Ba using Student-T distributions with scale parameter

computed from three times reported observation variance (blue dashed line) and normal distributions with reported

observation variance (black solid line).

112
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Fig. S6. Comparison of posterior parameter distributions for Bw/s using Student-T distributions with scale parameter

computed from five times reported observation variance (red dash-dotted line) and normal distributions with reported

observation variance (black solid line).

113

Fig. S7. Comparison of posterior parameter distributions for Ba using Student-T distributions with scale parameter

computed from five times reported observation variance (red dash-dotted line) and normal distributions with reported

observation variance (black solid line).
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Fig. S8. Probability density functions (PDFs) for mass balances in the Bw/s experiment for 1000 posterior predictive

samples (blue lines) using Student-T distributions with scale parameter computed from three times reported

observation variance for the likelihood.

Fig. S9. Probability density functions (PDFs) for mass balances in the Ba experiment for 1000 posterior predictive

samples (blue lines) using Student-T distributions with scale parameter computed from three times reported

observation variance for the likelihood.
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Fig. S10. Probability density functions (PDFs) for mass balances in the Bw/s experiment for 1000 posterior predictive

samples (red lines) using Student-T distributions with scale parameter computed from five times reported observation

variance for the likelihood.

Fig. S11. Probability density functions (PDFs) for mass balances in the Ba experiment for 1000 posterior predictive

samples (red lines) using Student-T distributions with scale parameter computed from five times reported observation

variance for the likelihood.
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