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Table S1. The minimum (Min.), maximum (Max.) and optimum temperature (in °C) for hatching of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions. See Mkandawire et al., (2022), for an extensive review on the hatching processes and the involved intrinsic and extrinsic factors. 
	Host
	Parasite
	Min. °C
	Max. °C
	Optimum  °C
	Reference
	Comment

	Sheep
	Haemonchus contortus
	9
	36
	
	(Crofton, 1965)
	Shortest hatching time at 36 °C.

	Sheep
	Ostertagia circumcincta
	4
	34
	
	(Crofton, 1965)
	Shortest hatching time at 34 °C.

	Sheep
	Trichostrongylus axei, Trichostrongylus vitrinus
	 8-9
	36
	
	(Crofton, 1965)
	Shortest hatching time at 36 °C.

	Sheep
	Cooperia curticei, 
Cooperia oncophora, Bunostomum trigonocephalum
	16
	38
	
	(Crofton, 1965)
	Shortest hatching time at 38 °C.

	Sheep
	Chabertia ovina
	6
	36
	
	(Crofton, 1965)
	Shortest hatching time at 36 °C.

	Sheep, cattle, deer (Unspecified)
	Teladorsagia circumcincta, Ostertagia leptospicularis, Ostertagia ostertagi
	
	
	23
	(C. Rossanigo & Gruner, 1995)
	Optimum development temperature of 23 °C (with faecal moisture content FMC of 60%), within range of 5-33°C in faeces. 

	Sheep 
	Trichostrongylus colubriformis
	
	
	25-28
	(C. Rossanigo & Gruner, 1995)
	Optimum development temperature at 25-28°C (with FMC of 60%), within range of 5-33°C in faeces.

	Wombat
	Oesophagostomoides eppingensis
	
	
	26
	(Smales et al., 2001)
	Hatching occurred between 18 and 30 °C, with and optimum of 26 °C. Hatching did not occur at 4°C (with temperature of 4, 18, 22, 26 and 28 °C).

	Sheep
	Nematodirus battus
	11
	17
	13
	(van Dijk & Morgan, 2008)
	Hatching was higher after a chill treatment at 4 °C.

	Sheep (Lamb)
	Nematodirus filicollis
	6
	17-20
	13
	(van Dijk & Morgan, 2009)
	Hatching required chilling.

	Reindeer
	Marshallagia marshalli
	2
	
	
	(Carlsson et al., 2013)
	Eggs didn't hatch at temperatures below 0 °C, or at mean temp of 0 °C. Hatching rate at 13 °C was quicker (11 days)  than eggs at 8 °C (22 days). Eggs hatching at 2 °C took on average 113 days. 

	Sheep (Lamb)
	Nematodirus filicollis
	
	
	
	(Oliver et al., 2016)
	Greater proportion of eggs hatched with chill accumulation.

	Sheep
	Nematodirus battus
	
	
	
	(Melville et al., 2020)
	In most populations, higher hatching proportion of larvated eggs that experienced chilling than at non-chilling, but for some populations hatching rate was higher at non-chilling than chilling conditions. 





Table S2. The minimum (Min.), maximum (Max.) and optimum temperature (in °C) for development of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions.
	Host
	Parasite
	Min. °C
	Max.°C
	Optimum °C
	Reference
	Comment

	Cattle
	Multiple (5 species)
	6
	32
	25
	(Ciordia & Bizell, 1963)
	

	Sheep,  deer (Unspecified)
	Teladorsagia circumcincta, Ostertagia leptospicularis
	
	
	23
	(C. Rossanigo & Gruner, 1995)
	At faecal moisture content of 60% and in a temperature range between 5 and 33 °C.

	Cattle
	Ostertagia ostertagi
	
	
	23
	(C. Rossanigo & Gruner, 1995)
	At faecal moisture content of 60% and in a temperature range between 5 and 33 °C (in sheep and cow faeces).

	Sheep
	Trichostrongylus colubriformis
	
	
	 25-28
	(C. Rossanigo & Gruner, 1995)
	At faecal moisture content of 60% and in a temperature range between 5 and 33 °C. 

	Possum
	Parastrongyloides trichosuri
	
	
	
	(Stankiewicz, 1996)
	Infective larvae were only observed at incubation at room temperature (20-23°C) and 26 °C (vs. incubation at 4, 10 °C). 

	Sheep, cattle, deer (Unspecified)
	Multiple (four species)
	
	
	
	(C. E. Rossanigo & Gruner, 1996)
	L3 were longer at optimal development temperatures. This had no consequence for survival. 

	Sheep
	Haemonchus contortus
	
	
	15 (vs. 5 and fluct -1 and 15)
	(Troell et al., 2005)
	Eggs did not develop at 5 °C or at fluctuating temperatures between -1 °C and 15°C

	Sheep
	Nematodirus battus
	11,5
	~28
	15
	(van Dijk & Morgan, 2008)
	

	Sheep (Lamb)
	Nematodirus filicollis
	12
	25
	
	(van Dijk & Morgan, 2009)
	Optimum temperature was at lower end of temperature range.

	Reindeer
	Ostertagia gruehneri
	< 5
	30-35
	
	(B. Hoar, 2012)
	Development rate increased with increasing temperature, but with lower rate of increase for development from L2-L3 than the other stage transitions. Also, developmental stage duration (time spent in that specific stage), decreased with increasing temperature, but was longer for L2 than for the other stages.

	Chicken (Hens)
	Ascaridia galli
	> 15
	< 35
	20-30
	(Tarbiat et al., 2015)
	

	Horse
	Strongyloides westeri
	
	
	25
	(Gugosyan et al., 2018)
	The optimum temperature for embryonic development was 25 °C with less optimal culture circumstances at the lower and higher temperatures. 

	Cattle
	Trichuris globulosa
	
	
	25
	(V. O. Yevstafieva, Melnychuk, et al., 2020)
	Temperature of 20 °C and 30 °C resulted in lower viability of eggs.

	Horse
	Oxyuris equi Schrank
	
	
	25
	(V. O. Yevstafieva, Prykhodko, et al., 2020)
	Optimal temperature of embryogenesis was 25 °C, while survival decreased at 15 and 20 °C. 25 °C also resulted in fastest development.

	Rabbits
	Passalurus ambiguus
	
	
	35 (within range of 20-35) 
	(V. Yevstafieva et al., 2022)
	At lower temperatures, development time increased and egg viability decreased. 

	Sheep
	Trichostrongylus vitrinus
	9
	39
	23
	(Gyeltshen et al., 2022)
	From egg to intra-pellet infective larvae.

	Sheep
	Teladorsagia circumcincta
	10
	39
	23
	(Gyeltshen et al., 2022)
	From egg to intra-pellet infective larvae.

	Sheep
	Trichostrongylus colubriformis
	10
	38
	20
	(Gyeltshen et al., 2022)
	From egg to intra-pellet infective larvae.

	Sheep
	Trichostrongylus vitrinus
	9
	44
	24
	(Gyeltshen et al., 2022)
	Development from egg to pre-infective larvae.

	Sheep
	Teladorsagia circumcincta
	7
	44
	23
	(Gyeltshen et al., 2022)
	Development from egg to pre-infective larvae.

	Sheep
	Trichostrongylus colubriformis
	9
	47
	28
	(Gyeltshen et al., 2022)
	Development from egg to pre-infective larvae.




Table S3. The optimum temperature (in °C) for survival of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions.
	 Host
	Parasite 
	Optimum °C
	Reference
	Comment

	Rat
	Strongyloides ratti
	
	(Gardner et al., 2004)
	Optimum life span (mean and maximum) of virgin free-living females reduced significantly with increasing temperatures from 10 to 30 °C. 

	Sheep
	Haemonchus contortus
	
	(Troell et al., 2005)
	Long term survival of infective larvae decreased especially at 15 °C (in comparison with 5 and fluctuating -1 and 15°C).

	Sheep
	Ostertagia(Teladorsagia) circumcincta
	
	(Walker et al., 2007)
	L3 larvae survived at 45 °C for at least 90 minutes, but were inactivated with higher temperatures. 

	Sheep
	Nematodirus battus
	
	(van Dijk & Morgan, 2008)
	Larval death rate increased towards and above hatching threshold. For chilled L3 larvae, mortality rates decreased above 17 °C. For non-chilled L3 larvae, mortality rates were higher at 13, 15 and 17 °C than for chilled L3 larvae, and mortality increased with increasing temperatures. 

	 Sheep (Lamb)
	Nematodirus filicollis
	9-11 (vs. 9-30)
	(van Dijk & Morgan, 2009)
	Mortality of L3 was significantly lower at 9 and 11 °C than other temperatures within a range of 9 to 30 °C. Larvae survived longer at 13 °C than at 17 °C, and mortality increased quickly above 20 °C. 

	Reindeer
	Ostertagia gruehneri
	
	(B. Hoar, 2012)
	Maximum recovery of larvae occurred at 5 °C and 20 °C, which suggested a trade-off between survival and development in which respectively slow and high development was compensated by high and lower survival. 

	Unspecified (Cattle)
	Cooperia oncophora
	
	(Knapp-Lawitzke et al., 2016)
	Higher temperature (20-33 °C  vs. 17-22.6 °C) and exposure duration negatively affected  the overall recovery of L3 (proxy for survival). L3 recovery in soil was negatively affected by temperature, while recovery of L3 on grass was negatively affected by time.

	Horse
	Oxyuris equi Schrank
	25
	(V. O. Yevstafieva, Prykhodko, et al., 2020)
	Highest survival rate of infectious eggs.  

	Sheep
	Marshallagia marshalli
	
	(Aleuy et al., 2020)
	Survival decreased with increased freezing temperature (from -9 to -20 and -35 °C) and freeze duration. At low temperatures (-9 and -20 °C) survival rates of L3 and eggs were higher than for L1. Survival of unhatched L1 was higher than of hatched L1. 

	Barren-ground caribou
	Ostertagia gruehneri (pre-infective stage)
	
	(Peacock et al., 2022)
	Mortality was lowest at 5 °C and highest at 30 °C  (within range of 5-40 °C) . 

	Barren-ground caribou
	Ostertagia gruehneri (infective stage)
	
	(Peacock et al., 2022)
	No consistent pattern (within range of 5-40 °C) with lowest mortality at 25  °C and highest at 30 °C. Mortality of infective larvae was lower than for pre-infective stages. 

	Chicken
	Ascaridia galli
	
	(Shifaw et al., 2022)
	Overall treatment storage of eggs at 4 °C had higher percentage of total viable eggs than those stored at 26 °C, but viability depended strongly on storage condition and medium with optimal storage at 4 °C with anaerobic conditions and at 26 °C and aerobic conditions. 

	Sheep
	Teladorsagia circumcincta
	
	(Hamilton et al., 2022)
	Recovery of L3 decreased after storage at 4 °C, but no comparison with other temperatures.

	Cattle (Beef)
	Ostertagia ostertagi
	
	(Wang et al., 2022)
	L3 survival was high between 0 and 30 °C (within tested range of -15 until 30 °C) in soil and faeces.

	Cattle (Beef)
	Cooperia oncophora
	
	(Wang et al., 2022)
	L3 survival was high between 0 and 30  °C (within tested range of -15 until 30 °C) but, mortality was higher in faeces than in soil.

	Sheep
	Trichostrongylus vitrinus
	23
	(Gyeltshen et al., 2022)
	Predicted decrease of egg survival with increasing temperature. Survival of pre-infective larvae was largely insensitive to temperature and survival of infective larvae was predicted to increase with increasing temperatures and had temperature optimum. 

	Sheep
	Teladorsagia circumcincta
	34
	(Gyeltshen et al., 2022)
	‘’

	Sheep
	Trichostrongylus colubriformis
	27
	(Gyeltshen et al., 2022)
	‘’

	Cattle
	Dictyocaulus viviparus
	
	(McCarthy et al., 2022)
	Mortality of parasitic larvae increased below 0 °C  (in range of - 4 until 30 °C).




Table S4. The effect of temperature on the development path of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions.
	Host
	Parasite
	Reference
	Comment

	Rats
	Strongyloides ratti 
	(Viney, 1996)
	Homogonic development (development until L3 stage in which larvae are infective to hosts again) occurred mostly at 13 °C while at 30 °C heterogonic development (development to adult stage outside the host) occurred more often.

	Rats
	Strongyloides ratti 
	(Harvey et al., 2000)
	Incubation temperature only affected the developmental pathway of females and not of males. Developmental path was also affected by host immune status (and by the interaction between temperature and host immune status for females).

	Horse
	Strongyloides westeri
	(Gugosyan et al., 2018)
	Optimal development temperature for the form of the free-living adults was 20 °C, while 30 °C for filariform larvae (that can infect host).

	Sheep
	Marshallagia marshalli
	(Aleuy et al., 2019)
	The larval stage at hatching depended on incubation temperature; above 20 °C larvae hatched as L3 (in contrary to as L1), with higher L3 hatching proportions at higher temperatures.




Table S5. The effect of fluctuating versus constant temperatures on life history traits of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions.
	Host
	Species 
	Reference
	Comment

	Pheasants
	Heterakis gallinarum
	(Saunders et al., 2000b)
	Faster egg development under fluctuating temperatures between 12°C and 22°C than at constant 17 °C, but slower than under constant 22 °C.  

	Pheasants
	Heterakis gallinarum
	(Saunders et al., 2002)
	Earlier embryonation in stochastic daily cycles (12 °C and 17 °C) than in deterministic cycles (with similar mean temperature).

	Sheep
	Nematodirus battus
	(van Dijk & Morgan, 2008)
	Proportion of hatched eggs did not differ between fluctuating 11-15 °C and 14-20 °C from constant 15 °C. Development was less and slower at constant 20 and 25 °C than at constant 11, 13 and 15 °C and fluctuation between 14 – 20  °C (which did not differ from each other). Larva survival was higher at fluctuation of -5 and 6 than at 6 °C. At fluctuating 14-20 °C chilled larvae became hyperactive and died quicker than at 17 °C, while there was no difference for non-chilled larvae.  

	Sheep (Lamb)
	Nematodirus filicollis
	(van Dijk & Morgan, 2009) 
	Hatching percentage was similar between fluctuating 7-13 °C and constant 11 °C, and between 14-20 °C versus constant 13 °C. L3 mortality increased above 20 °C, and L3 survival at fluctuating temperatures of 14-20 °C was similar low to constant 20 °C and 25 °C.

	Rabbit (European rabbit)
	Graphidium strigosum, Trichostrongylus retortaeformis
	(Hernandez et al., 2013)
	Higher hatching rate at constant temperatures than cycle or stochastic temperatures, but more eggs hatched in stochastic than cycle trials and at the warm than cold temperatures due to higher thermal energy accumulation.




Table S6. The effect of temperature on life history traits of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under field conditions.
	Host
	Parasite
	Reference
	Stage
	Comment

	Reindeer 
	Ostertagia gruehneri 
	(B. M. Hoar et al., 2012)
	L3
	Broad thermal range and upper threshold for development to L3 was suggested. However, there was no difference in abundance found between the different plots, as recovery rates were low.

	Rabbit (European rabbit) 
	Graphidium strigosum, Trichostrongylus retortaeformis
	(Hernandez et al., 2013)
	L3
	More L3 larvae were recovered from faeces with eggs placed in the turf-grass within open top chamber OTC (with higher thermal energy accumulation) than plot without OTC, while the pattern was driven by recovery of T.retortaeformis.




Table S7. Effect of moisture and precipitation on life history traits of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions. FMC: Faecal moisture content.
	Host
	Species 
	Reference
	Factor
	Comment

	Sheep, cattle, deer (Unspecified)
	Gastrointestinal nematode (8 species)
	(C. Rossanigo & Gruner, 1995)
	FMC
	Optimal FMC for development was between 60 and 70% at 23 °C.

	Sheep, cattle, deer (Unspecified)
	Multiple (8 species)
	(C. E. Rossanigo & Gruner, 1996)
	Moisture
	L3 body length increased with faecal moisture content. This had no consequence on survival. 

	Sheep 
	Haemonchus contortus
	(O’Connor et al., 2007)
	Moisture requirement
	Positive relation between rainfall amount and recovery of L3 from the soil, higher recovery after single rain event than split event and positive relation between larvae recovery and FMC and precipitation/evaporation ratio. 

	Sheep
	Haemonchus contortus
	(O’Connor et al., 2008)
	Evaporation
	Evaporation had a regulatory role on the influence of rainfall on L3 recovery/transmission, but no difference in L3 recovery between single and split rain events.

	Sheep (Lamb)
	Nematodirus battus
	(van Dijk & Morgan, 2012)
	Desiccation
	Eggs kept in salt solution resulting in 95% and 70% RH at 20 °C showed accelerated hatch when put at 15 °C, while eggs at higher osmotic pressure (55% and 33% RH) died.

	Sheep 
	Haemonchus contortus, Trichostrongylus colubriformis
	(Khadijah, Kahn, Walkden-Brown, et al., 2013a)
	Rainfall timing 
	Recovery of L3 in soil (extra-pellet) was highest when rain fall on the day of deposition (only for Haemonchus contortus). Recovery of L3 intra-pellet was highest with rain on day 0 and 1 of deposition (for both species). 

	Sheep 
	Haemonchus contortus, Trichostrongylus colubriformis
	(Khadijah, Kahn, Walkden-Brown, et al., 2013c)
	Soil moisture
	Total recovery of L3 was affected by soil moisture (which modulated the effect of rainfall), rainfall timing and their interaction, but not by rainfall amount. 

	Sheep 
	Haemonchus contortus, Trichostrongylus colubriformis
	(Khadijah, Kahn, Walkden-Brown, et al., 2013b)
	Soil moisture
	L3 recovery increased with rainfall, but benefit of rain decreased with increasing soil moisture. Recovery of L3 was higher with rain on day of deposition than rain during other days.

	Unspecified (Cattle)
	Cooperia oncophora
	(Knapp-Lawitzke et al., 2016)
	Drought
	Drought stress had smaller (and non-significant) impact on recovery of L3 (proxy for survival) than temperature and duration, for both overall recovery, recovery of L3 in soil and in grass. 

	Sheep
	Trichostrongylus vitrinus
	(Gyeltshen et al., 2022)
	FMC
	Extensive results and prediction on effect of FWC on recovery of larvae stages, for example development of eggs to intra-pellet infective larvae were observed at 20% FMC,  increasing development with increasing FWC up to 60% FMC and predicted minimum of 17 %.  

	Sheep
	Teladorsagia circumcincta
	(Gyeltshen et al., 2022)
	FMC
	Extensive results and prediction on effect of FWC on recovery of larvae stages, for example development of eggs to intra-pellet infective larvae were observed at 20% FMC,  increasing development with increasing FWC up to  60% FMC, predicted minimum of 13 %.  

	Sheep
	Trichostrongylus colubriformis
	(Gyeltshen et al., 2022)
	FMC
	Extensive results and prediction on effect of FWC on recovery of larvae stages, for example development of eggs to intra-pellet infective larvae were observed at 20% FMC,  increasing development with increasing FWC up to  60% FMC, predicted minimum of 16 %.  




Table S8. Effect of moisture and precipitation on life history traits of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under field conditions.
	Host
	Species 
	Reference
	Factor
	Comment

	Sheep
	Haemonchus contortus, Trichostrongylus colubriformis
	(Khadijah, Kahn, Walkden-Brown, et al., 2013)
	Soil moisture
	The importance of soil moisture for translation was suggested, since rainfall timing (on day -1, 0, 3 relative to faecal contamination), rainfall amount (0, 12 or 24 mm) and herbage height (4 or 12 cm) did not influence translation of H.contortus and T.colubriformis in sheep under the conditions of high soil moisture.

	Racoon 
	Baylisascaris procyonis (but can have a direct and indirect lifecycle)
	(Ogdee et al., 2016)
	Soil characteristics
	Viability of eggs was high (> 92 %) regardless of soil texture, moisture, and sun exposure.

	Cattle and sheep
	Endoparasites ( strongyles and non-nematodes Eimeria spp and Fasciola hepatica)
	(May et al., 2022)
	Wetting of pasture
	Rewetting of the pasture did not have long term effect on infection of endoparasites (gastrointestinal strongyles, Eimeria spp or F.hepatica) in host.





Table S9. Effect of moisture and temperature on life history traits of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory conditions. FMC: faecal moisture content. 
	Host
	Species
	Reference
	Factor
	Comment

	Sheep, cattle, deer (Unspecified)
	Gastrointestinal nematode (four species)
	(C. Rossanigo & Gruner, 1995)
	Temperature x moisture
	Optimal FMC for development was between 57 and 68 %, at 18, 23 and 28 °C in faeces. The optimal faecal moisture content for development was not temperature dependent (three temperatures).

	Cattle
	Dictyocaulus viviparus
	(McCarthy et al., 2022)
	Temperature x moisture 
	No difference in L3 mortality under wet and dry treatments at 15, 20 and 25 °C in soil.





Table S10. Effect of temperature on the behaviour of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory / greenhouse conditions.
	Host
	Species
	Reference
	Comment

	Red grouse
	Trichostrongylus tenuis 
	(Saunders et al., 2000a)
	L3 recovery on heather was higher at 10 than at 20 °C. There was an interaction between light and temperature and between light conditions and vegetation type.  

	Unspecified (Cattle)
	Cooperia oncophora
	(Knapp-Lawitzke et al., 2016)
	L3 migrated more (but not significantly) into the soil than on the grass in the higher temperature regime (20 °C -33 °C and 26 %-64 % humidity) than the lower temperature regime (17 °C -22.6 °C, humidity between 33.9 and 38; in climate chamber). Individuals recovered from soil were considered as more fit than the individuals recovered from the grass (measured with a migration assay).

	Sheep
	Haemonchus contortus 
	(Wang et al., 2018)
	In a controlled environment without moisture limitations, migration rate of L3 larvae out of faeces by using a sieve was lowest at the high and low end of the temperature range (7 °C-33 °C, and predicted maximum at 15 °C ) with RH of 95%. However, in a greenhouse setting 3 °C difference (mean temperature of 19.4 °C and 22.5 °C ) did not result in difference in faecal moisture content and did not affect L3 migration out of faeces.

	Cattle
	Dictyocaulus viviparus
	(McCarthy et al., 2022)
	Minimum, maximum and optimum temperature for migration due to fungus (Pilobolus spp) was estimated at 8.8, 30.7 and 20 °C. 

	Sheep
	Trichostrongylus vitrinus
	(Gyeltshen et al., 2022)
	Predicted optimum temperature for infective larvae to migrate out of faeces was 33 °C.

	Sheep
	Teladorsagia circumcincta
	(Gyeltshen et al., 2022)
	Predicted optimum temperature for infective larvae to migrate out of faeces was 19 °C.

	Sheep
	Trichostrongylus colubriformis
	(Gyeltshen et al., 2022)
	Predicted optimum temperature for infective larvae to migrate out of faeces was 27 °C.

	Sheep
	Teladorsagia circumcincta
	(Hamilton et al., 2022)
	Migration proportion of L3  (through sieve under lab conditions) declined with duration of incubation at 30 °C, possibly due to high use of energy supplies at high temperatures.




Table S11. The effect of temperature on skin penetrating nematodes under laboratory conditions.
	Host
	Species
	Reference
	Comment

	Possum
	Parastronglyoides trichosuri
	(Stankiewicz, 1996)
	Movement towards higher temperatures (in form of metal stick warmed to 39 °C).

	Rat
	Strongyloides ratti
	(Tobata-Kudo et al., 2000)
	Thermokinetic behaviour and thermotaxis depended on the temperature individuals developed in and placed in at the start of the migration assay. 

	Human
	Necator americanus, Ancylostoma duodenale 
	(Haas et al., 2005)
	Larvae migrated towards warm end in thermal gradient but turned back and accumulated at different temperatures.

	Rat
	Strongyloides ratti
	(Sakura & Uga, 2010)
	Thermokinetic behaviour and thermotaxis of L3 larvae depended on the skin temperature of host. 

	Dogs
	Ancylostoma caninum
	(Franke et al., 2011)
	Rate of migration increased with increasing temperatures, with maximum migration levels at temperature of 32°C and 37°C.

	Rat
	Strongyloides ratti 
	(Lee et al., 2016)
	Incubation temperature also impacted olfactory responses.

	Diverse
	Multiple (5 species)
	(Bryant et al., 2018)
	Larvae responded to thermal gradients, showed positive and negative thermotaxis, and thermosensory behaviour could overcome attraction to odorants. 

	Human
	Strongyloides stercoralis
	(Pan et al., 2022)
	Heat-seeking was context dependent, based on cultivation temperature and starting temperatures.

	Human
	Strongyloides stercoralis
	(Bryant et al., 2022)
	Larvae were able to reverse their path encountering heat sources that are not from the host.

	Various
	Strongyloidoidea
	(Dulovic et al., 2022)
	Species differed in response to temperatures and chemotactic responses. 





Table S12. The effect of rain and moisture on the behaviour of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under laboratory /greenhouse conditions. FMC: Faecal moisture content.
	Host
	Species
	Reference
	Factor
	Comment

	Sheep, cattle, deer
	Multiple (8 species)
	(C. E. Rossanigo & Gruner, 1996)
	Moisture
	Moisture positively affected body length of L3. Short L3 (collected from dry faeces) migrated slower on agar gel than long L3's (collected from wet faeces). For one species, establishment rate within host was lower for short L3 than for long L3.

	Sheep
	Haemonchus contortus 
	(O’Connor et al., 2008)
	Evaporation / rain
	Averaged over all (rain and evaporation) treatments, most of extra-pellet L3 were recovered from the upper stratum of soil, but proportion of L3 recovery in lower strata increased over time. Recovery of L3 from lower strata was higher with lower evaporation rates and with increasing amount of rain.

	Sheep
	Nematodirus battus, Haemonchus contortus, Teladorsagia circumcincta
	(van Dijk & Morgan, 2011)
	Water
	Under constant temperature of 20 °C – 24 °C larvae only needed water to migrate out of faeces but did not need water (wetting of grass leaves) to move into herbage.

	Sheep (Lamb)
	Haemonchus contortus 
	(Wang et al., 2014)
	Rain
	At temperature of 25 °C to 27 °C L3 larvae needed water to migrate out of faeces through a sieve in a funnel. Rainfall amount and temporal distribution and  relative humidity and hence faecal moisture content were of importance for migration out of faeces. 

	Unspecified (Cattle)
	Cooperia oncophora
	(Knapp-Lawitzke et al., 2016)
	Drought
	Drought stress had negative but non-significant effect on migration of L3 into soil.

	Sheep
	Trichostrongylus vitrinus
	(Gyeltshen et al., 2022)
	FMC
	Predicted minimum and optimum FWC for infective larvae to migrate out of faeces pellet were 35% and 97%.

	Sheep
	Teladorsagia circumcincta
	(Gyeltshen et al., 2022)
	FMC
	Predicted minimum and optimum FWC for infective larvae to migrate out of faeces pellet were 30% and 69%.

	Sheep
	Trichostrongylus colubriformis
	(Gyeltshen et al., 2022)
	FMC
	Predicted minimum and optimum FWC for infective larvae to migrate out of faeces pellet were 52% and 93%.

	Cattle (Beef)
	Ostertagia ostertagi, 
Cooperia oncophora
	(Wang et al., 2022)
	Rain
	Estimated rainfall threshold for horizontal migration of L3 out of faeces (in greenhouse at 20 °C ) was estimated at 5.8 mm (O.ostertagi) and 6.7 mm (C.oncophora), and migration increased with increasing rainfall amount.


Table S13. The effect of rain and moisture on the behaviour of free-living parasitic nematodes with a direct life cycle in birds and terrestrial mammals under field conditions
	Host
	Species
	Reference
	Factor
	Description

	Racoon 
	Baylisascaris procyonis (but can have a direct and indirect lifecycle)
	(Ogdee et al., 2016)
	Dry-wet soil
	Eggs remained on surface of dry soils, and on sandy wet (most permeable) soils it took 1 year for 60% of the eggs to move from the surface to the next soil layer. 
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