
Online Supplement to “CHRONOLOGICALLY TRIMMED LS

FOR NONLINEAR PREDICTIVE REGRESSIONS WITH

PERSISTENCE OF UNKNOWN FORM”

Zhishui Hu

University of Science & Technology of China

Ioannis Kasparis

University of Cyprus

Qiying Wang

The University of Sydney

October 12, 2024

This supplement is organized as follows. Section S1 provides a more detailed review of

existing robust inferential methods under temporal dependence. In Section S2, we investigate

CTLS inference in multi-covariate models, providing an extension of Theorem 3 given in Section

4 of the main paper. Section S3 provides the proofs of Lemmas 1 and 2 of the main paper.

The proofs of the theorems in the main paper are given in Sections S4 to S10. Since Theorems

5 and 6 provide the basic tools for other proofs, we arrange the proofs of Theorem 5 and 6 in

Sections S4 and S5, respectively. The proof of Theorem S1 of this supplement is given in Section

S11. Section S12 gives some additional simulation results. Throughout the Supplement, unless

mentioned explicitly, we use the same notation and equations as those given in the main paper.

S1 A Detailed Review of Existing Inferential Methods

The first approach put forward for addressing the dichotomy in inference, between stationary

and nonstationary regimes, relies on so-called conservative methods. In particular, a number

of studies develop procedures that yield robust inference in the presence of NI processes, in

the context of reduced form regressions where the covariate is predetermined with respect to

the regression error. For example, Cavanagh et al. (1995), Campbell and Yogo (2006), Janson

and Moreira (2006), Elliott et al. (2015) study parametric models with an NI covariate. The
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aforementioned papers propose test statistics with limit distributions free of nuisance near-to-

unity parameters. This is achieved mainly1 via conservative inferential methods, e.g. Bonferroni

methods or by considering test statistics averaged over a prespecified range for the nuisance

parameter space -for a review see Mikusheva (2007) and Phillips (2014, 2015). Although these

procedures provide valid inference under local deviations from a unit root, their emphasis is on

NI models and may not be valid under large deviations from unity (see Phillips, 2014). Further,

their implementation is more involved than that of conventional tests based on studentized

regression estimators (i.e., t-/F-tests). This is due to the fact that the related test statistics can

be more complex, but more importantly because limit distributions are not conventional (e.g.

N(0, 1), χ2). Therefore, critical values are not readily available from commonly used statistical

tables. The implementation of these methods becomes even more difficult in situations where the

dimensionality of the nuisance parameter space increases, e.g. when the model involves multiple

near unit roots and/or memory parameters, tail parameters (heavy tailed data), TVPs, different

types of nonlinearities in the regression function, etc.

The possibility of fractional predictors has received little attention in the literature on robust

predictive regressions, despite substantial related work on fractional cointegrated systems, e.g.,

Robinson and Hualde (2003), Christensen and Nielsen (2006), Hualde and Robinson (2010), and

Andersen and Varneskov (2021). The specifications considered in the aforementioned studies are

in general structural (i.e. covariates may not be predetermined) and in some cases (e.g., Hualde

and Robinson, 2010; Andersen and Varneskov, 2021) both stationary and nonstationary long

memory are allowed. These methods are mainly semi-parametric (spectral OLS) with respect

to the short memory components of the system and may attain sub-OLS2 convergence rates

due to bandwidth parameters. Regression estimators have mixed Gaussian or Gaussian limit

distributions, and therefore inference is conventional in this framework. However, preliminary

memory estimators are required, which makes implementation somewhat more involved. Further,

although these models are quite general, nonlinearities and nearly integrated arrays are ruled out.

For instance, similarly to FMLS (e.g. Phillips, 1995), the spectral LS method of Robinson and

Hualde (2003) relies on (fractionally) differencing the data. It is well known that this approach

may result in severe size distortions when there are near-to-unity parameters.

The relatively recent work of Phillips and Magdalinos (2009, PM hereafter) provides an

alternative approach to inference in regressions with possible nonstationary covariates. This
1Janson and Moreira (2006) consider conditional inference rather than conservative tests.
2By sub-OLS we mean the OLS rate less an arbitrary slow regularly varying rate.
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study proposes instrumentation based on certain linear filtering of the regressors. The resultant

IVX instruments exhibit weaker signals than those of the covariates and, as a result, induce

mixed normal limit distributions in situations where independent variables are unit roots or NI

arrays. IVX instrumentation yields asymptotically vanishing endogeneity, and this is sufficient

for a martingale CLT to operate. Hence, contrary to the OLS estimator, in the presence of

nonstationary data the IVX estimator has mixed Gaussian limit distribution and studentized IVX

estimators have N(0, 1) (t-tests) or χ2 (F-tests) limit distributions. Conventional and nuisance

parameter free inference is achieved for a wide range of persistence in the data at the expense of

a slight reduction in the convergence rate. In particular, the IVX estimator attains a sub-OLS

convergence rate. PM consider multivariate regressions with mildly and nearly integrated data.

The subsequent work of Kostakis, Magdalinos and Stamotogiannis (2015; KMS) extends PM

to stationary short memory regressors, and also provides finite sample improvement methods

relating to intercept demeaning. For further work on the IVX method, see, e.g. Yang et al.

(2020), Demetrescu et al. (2022), Magdalinos (2022), Magdalinos and Petrova (2022) and the

references therein.

S2 CTLS Inference in Multi-Covariate Models

In this section we extend CTLS based inference to multi-covariate models as per (4) in the main

paper. Recall that the specification of the aforementioned equation is as follows.

yk = µ+ β′f(xk−1) + ek,

where the covariate and the slope parameter β are p-dimensional. As in (5) of the main paper,

we may rewrite the model above as

yk = θ′F(xk−1) + ek, (S2.1)

where F(xk−1) = [1, f(xk−1)
′]′ and θ = [µ,β′]′. Define fk−1 = f(xk−1),Fk−1 = F(xk−1) and

{
Hn, V̂n, An

}
:=

{
n∑

k=1

fk−1f̄
′
k−1Kkn,

n∑
k=1

ě2kFk−1F
′
k−1K

2
kn,

[
−f̄ , Ip

]}
, (S2.2)
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where ěk := yk − θ̂
′
LSFk−1 are the OLS residuals, Ip is the p-dimensional identity matrix, f̄k−1 =

fk−1 − f̄ , and f̄ =
∑n

k=2 fk−1Kkn/
∑n

k=2Kkn. For the single restriction hypothesis

H0 : βi = η ∈ R, i = 1, ..., p, (S2.3)

we have the following general formulation of the CTLS t-statistic

T̂i =
β̂i − η√[

H−1
n AnV̂nA′

nH−1
n

]
ii

,

where recall [.]ii stands for the ith diagonal element of some matrix. We also consider multiple

restrictions of the form

H0 : Rβ = η, (S2.4)

where R is a q × p (q ≤ p) matrix and η a predetermined q-dimensional vector. For the latter

type of restrictions we consider the CTLS F-statistic

F̂ =
[
Rβ̂ − η

]′ [
H−1

n AnV̂nA′
nH−1

n

]−1 [
Rβ̂ − η

]
.

In the presence of nonstationary regressors, the CTLS estimators attains multiple convergence

rates due to a variation in the degree of persistence, between various covariates, and nonlinear-

ities arising from the regression model (see Theorem 2 in the main paper). This phenomenon

requires matrix normalization for various components in F̂ . Matrix normalization creates tech-

nical difficulties due to non commutability of matrix products -for a discussion see Magdalinos

and Phillips (2018). To avoid these technical difficulties, under nonstationarity we assume q = p

and R = Ip. This is general enough to allow for the joint predictability restrictions β = 0.

We now state the main result for multi-covariate models under the null hypothesis when the

regressors are either stationary or nonstationary as discussed in Theorem 3 of the main paper.

Its proof is given in Section S11.

Theorem S1. Suppose that, in addition to the conditions of Theorem 1 or Theorem 2 in the

main paper, supk≥1Eu4k < ∞. Under H0 : βi = η, we have

T̂i →d N(0, 1). (S2.5)
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Furthermore, under H0 : Rβ = η

F̂ →d χ2
q . (S2.6)

As explained in Remark 8 of the main paper, the requirement supk≥1Eu4k < ∞ can be

dispensed with when the regression errors are conditionally homoscedastic, i.e. σ2
k = σ2 for all

k.

S3 Proofs of Lemmas 1 and 2

S3.1 Proof of Lemma 1

We only prove (32). The proof of (33) is similar and relatively simple. We shall first assume

that there exists an A > 0 such that K(x) = 0, if |x| ≥ A and K(x) is Lipschitz continuous on

R. This restriction will be removed later.

Without loss of generality, suppose that A = 1. Set δ1n,j = [n(τj − 1/cn)] ∨ 1, δ2n,j =

[n(τj + 1/cn)] ∨ 1 and δn,j = [nτj ]. Recall that τj = j/(ln + 1). Since

|cn(k/n− τj)| < 1 only if δ1n,j ≤ k ≤ δ2n,j , j = 1, ..., ln, (S3.1)

by letting R1n,j =
cn
n

∑δ2n,j

k=δ1n,j
vk K

[
cn(k/n− τj)

]
and

R2n,j =
cn
n

δ2n,j∑
k=δ1n,j

[
G
(
Xn,k

)
−G

(
Xn,δn,j

)]
vk K

[
cn(k/n− τj)

]
,

we have

Sn,ln =
1

ln

ln∑
j=1

cn
n

n∑
k=1

G(Xn,k) vk K
[
cn(k/n− τj)

]
=

1

ln

ln∑
j=1

G
(
Xn,δn,j

)cn
n

δ2n,j∑
k=δ1n,j

vk K
[
cn(k/n− τj)

]

+
1

ln

ln∑
j=1

cn
n

δ2n,j∑
k=δ1n,j

[
G
(
Xn,k

)
−G

(
Xn,δn,j

)]
vk K

[
cn(k/n− τj)

]
=

1

ln

ln∑
j=1

G
(
Xn,δn,j

)
R1n,j +

1

ln

ln∑
j=1

R2n,j
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=
1

ln

ln∑
j=1

G
(
Xn,δn,j

)
A0

∫
K +

1

ln

ln∑
j=1

G
(
Xn,δn,j

) [
R1n,j −A0

∫
K
]
+

1

ln

ln∑
j=1

R2n,j

:=
1

ln

ln∑
j=1

G
(
Xn,δn,j

)
A0

∫
K +R1n +R2n.

Since 1
ln

∑ln
j=1 G

(
Xn,δn,j

)
=
∫ 1
0 G(Xn,[nt])dt+ oP (1) →d

∫ 1
0 G(Xt)dt, it suffices to show that

Rjn = oP (1), j = 1, 2. (S3.2)

To prove (S3.2), we start with some preliminaries. Recalling Xn,[nt] ⇒ Xt on DRq [0, 1] and

that the limit process Xt is path continuous, we have Xn,[nt] ⇒ Xt on DRq [0, 1] in the sense of

uniform topology. See, for instance, Section 18 of Billingsley (1968). This fact implies that

lim sup
N→∞

lim sup
n→∞

P

(
max
1≤k≤n

∥Xn,k∥ ≥ N

)
= 0, (S3.3)

and by the tightness of {Xn,[nt]}0≤t≤1, for any ε > 0 and δ > 0, there is some δ̃ = δ̃(ε, δ) > 0

such that

P

(
sup

|s−t|≤δ̃

∥∥Xn,[nt] −Xn,[ns]

∥∥ ≥ δ

)
≤ ε (S3.4)

holds for all sufficiently large n. In view of (S3.4), for any δ > 0, we have

lim
n→∞

P

(
max

1≤j≤ln
max

δ1n,j≤l≤k≤δ2n,j

∥Xn,k −Xn,l∥ ≥ δ

)
= 0. (S3.5)

We are now ready to prove (S3.2), starting with j = 1.

For any N > 0, and any real x ∈ Rq define GN (x) = ξN (x)G(x) with

ξN (x) :=


1, ∥x∥ ≤ N,

2− ∥x∥/N, N < ∥x∥ < 2N,

0, ∥x∥ ≥ 2N.

Set

R̃1n :=
1

ln

ln∑
j=1

GN

(
Xn,δn,j

) [
R1n,j −A0

∫
K

]
.
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Note that as n → ∞ first and then N → ∞,

P (R1n ̸= R̃1n) ≤ P

(
max
1≤k≤n

∥Xn,k∥ ≥ N

)
→ 0. (S3.6)

Moreover,

∥∥∥R̃1n

∥∥∥ ≤ CN

ln

ln∑
j=1

∥∥∥∥R1n,j −A0

∫
K

∥∥∥∥ , (S3.7)

where CN := supx∈Rq ∥GN (x)∥ < ∞, due to the fact that GN is continuous with compact

support. The result (S3.2) with j = 1 will follow if we prove

max
1≤j≤ln

E

∥∥∥∥R1n,j −A0

∫
K

∥∥∥∥→ 0, (S3.8)

as n → ∞. Indeed, by virtue of (S3.7) and (S3.8), we have E
∥∥∥R̃1n

∥∥∥→ 0 for each N ≥ 1. This,

together with (S3.6), yields R1n = oP (1).

Since, as n → ∞,

max
1≤j≤ln

∣∣∣∣∣∣cnn
δ2n,j∑

k=δ1n,j

K [cn(k/n− τj)]−
∫

K

∣∣∣∣∣∣→ 0, (S3.9)

to prove (S3.8), it suffices to show that max1≤j≤ln E ∥An(τj)∥ → 0, where

An(τj) =
cn
n

δ2n,j∑
k=δ1n,j

(vk −A0) K [cn(k/n− τj)] .

Let γ = γn be integers such that γ → ∞ and γ cn/n → 0, T1n,j = [δ1n,j/γ] and T2n,j =

[δ2n,j/γ]. Noting (S3.1), we may write

∥An(τj)∥ =

∥∥∥∥∥∥cnn
δ2n,j∑

k=δ1n,j

(vk −A0)K
[
cn(k/n− τj)

]∥∥∥∥∥∥
=

cn
n

∥∥∥∥∥∥
T2n,j∑

s=T1n,j

(s+1)γ∑
k=sγ

(vk −A0)K [cn(k/n− τj)]

∥∥∥∥∥∥+ oP (1)

≤ γcn
n

T2n,j∑
s=T1n,j

K [cn(sγ/n− τj)]
1

γ

∥∥∥∥∥∥
(s+1)γ∑
k=sγ

(vk −A0)

∥∥∥∥∥∥
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+
cn
n

T2n,j∑
s=T1n,j

(s+1)γ∑
k=sγ

∥vk −A0∥ |K [cn(k/n− τj)]−K [cn(sγ/n− τj)]|+ oP (1)

:= A1n(τj) +A2n(τj) + oP (1).

Recall that supk≥1E ∥vk∥ < ∞ by condition (b). Therefore, it follows from the Lipschitz conti-

nuity of K(x) that

EA2n(τj) ≤ C
γcn
n

cn
n

δ2n,j∑
k=δ1n,j

E ∥vk −A0∥ ≤ C
γcn
n

→ 0,

uniformly in 1 ≤ j ≤ ln. Similarly, in view of condition (b) and the fact that max1≤j≤ln

∣∣∣A3n(τj)−∫
K
∣∣∣→ 0 we have

max
1≤j≤ln

EA1n(τj) ≤ max
γ≤s≤n−γ

E

∥∥∥∥∥1γ
s+γ∑
k=s

vk −A0

∥∥∥∥∥ max
1≤j≤ln

A3n(τj) → 0,

where

A3n(τj) =
γcn
n

T2n,j∑
s=T1n,j

K [cn(sγ/n− τj)] .

In view of the results above, (S3.5) holds true, and this completes the proof of R1n = oP (1).

Next, we show R2n = oP (1). Let R̃2n := 1
ln

∑ln
j=1 R̃2n,j , where

R̃2n,j =
cn
n

δ2n,j∑
k=δ1n,j

[
GN

(
Xn,k

)
−GN

(
Xn,δn,j

)]
vk K

[
cn(k/n− τj)

]
.

In view of (S3.6), we have

P (R2n ̸= R̃2n) ≤ P
(

max
1≤k≤n

∥Xn,k∥ ≥ N
)
→ 0,

as n → ∞ first and then N → ∞. For the asymptotic negligibility of R2n it suffices to show

that R̃2n = oP (1), for each fixed N ≥ 1.

By definition, GN (x) is continuous with compact support. Hence, for any ϵ > 0 there exists

a δϵ > 0 such that ∥GN (x)−GN (y)∥ ≤ ϵ whenever ∥x− y∥ ≤ δϵ. Write

Ωδϵ = {ω : max
1≤j≤ln

max
δ1n,j≤l≤k≤δ2n,j

∥Xn,k −Xn,l∥ ≤ δϵ}.
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By virtue of the facts above and (S3.9), it is readily seen that

max
1≤j≤ln

E
[∥∥∥R̃2n,j

∥∥∥ I(Ωδϵ)
]

≤ E
{

max
1≤j≤ln

max
δ1n,j≤l≤k≤δ2n,j

∥GN (Xn,k)−GN (Xn,l)∥
cn
n

δ2n,j∑
k=δ1n,j+1

∥vk∥ |K
[
cn(k/n− τj)

]}

≤ ϵ sup
k≥1

E ∥vk∥
cn
n

δ2n,j∑
k=δ1n,j+1

K
[
cn(k/n− τj)

]
≤ CN ϵ,

where CN is a constant depending only on N . Now, for any η1 > 0 and η2 > 0, let ϵ = η1η2 and

n0 be large enough so that, for all n ≥ n0 [recall (S3.5)],

P

(
max

1≤j≤ln
max

δ1n,j≤l≤k≤δ2n,j

∥Xn,k −Xn,l∥ ≥ δϵ

)
≤ η2.

Hence, for all n ≥ n0,

P
(∥∥∥R̃2n

∥∥∥ ≥ η1

)
≤ P

(
Ω̄δϵ

)
+ η−1

1

1

ln

ln∑
j=1

E
[∥∥∥R̃2n,j

∥∥∥ I(Ωδϵ)
]

≤ CN η2,

where Ω̄δϵ denotes the complementary set of Ωδϵ and CN is a constant depending only on N .

This yields R̃2n = oP (1), for each fixed N ≥ 1, and completes the proof of R2n = oP (1).

Finally, we remove the restriction on K and then conclude the proof of Lemma 1. If K

has a compact support, there exists A1 > 0 such that K(x) = 0 holds for all |x| ≥ A1. If

K is eventually monotonic (without loss of generality, we assume K ≥ 0), for any ϵ > 0, we

can also choose a constant A1ϵ > 0 such that K(x) is monotonic on (−∞,−A1ϵ) and (A1ϵ,∞)

and
∫
|x|>A1ϵ

K(x)dx < ϵ. As a consequence, it follows from
∫
K < ∞ that for any ϵ > 0 and

A ≥ max{A1, A1ϵ}+ 1, there exists a Kϵ,A(x) such that

∫
|K −Kϵ,A| ≤ 2ϵ, (S3.10)

where Kϵ,A(x) = 0 if |x| ≥ A and Kϵ,A(x) is Lipschitz continuous on R. It has been shown in

the first part that, for any ϵ > 0 and A ≥ max{A1, A1ϵ}+ 1,

1

ln

ln∑
j=1

cn
n

n∑
k=1

G(Xn,k) vk Kϵ,A [cn(k/n− τj)]

=

∫ 1

0
G(Xn,[nt])dtA0

∫
Kϵ,A + oP (1) →d

∫ 1

0
G(Xt)dtA0

∫
Kϵ,A.
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To show (32) it suffices proving that as n → ∞ first and then ϵ → 0 (implying A → ∞),

Sn,ϵ :=
1

ln

ln∑
j=1

cn
n

n∑
k=1

G(Xn,k) vk K̃
[
cn(k/n− τj)

]
= oP (1), (S3.11)

where K̃(x) = K(x)−Kϵ,A(x).

The proof of (S3.11) is similar to that of (S3.2). For any ϵ > 0, set A as in (S3.10). First,

note that as in (S3.9),

sup
1≤j≤ln

∣∣∣cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣I(cn|k/n− τj | ≤ A)−

∫ A

−A
|K̃(x)|dx

∣∣∣→ 0,

when n → ∞. Hence, for n sufficiently large,

A1j :=
cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣I(cn|k/n− τj | ≤ A) ≤

∫
|K̃(x)|dx+ ϵ ≤ 3ϵ,

uniformly in 1 ≤ j ≤ ln. On the other hand, it follows from the monotonicity of K(x) on

(−∞,−A) and (A,∞) that, whenever n is sufficiently large,

A2j :=
cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣I(cn|k/n− τj | > A)

=
cn
n

n∑
k=1

K
[
cn(k/n− τj)

]
I(cn|k/n− τj | > A)

≤
∫
|x|>A−cn/n

K(x)dx ≤
∫
|x|>max{A1,A1ϵ}

K(x)dx < ϵ,

uniformly in 1 ≤ j ≤ ln. Using these facts, when n is sufficiently large, we have

1

ln

ln∑
j=1

cn
n

n∑
k=1

∣∣∣K̃ [cn(k/n− τj)]
∣∣∣ ≤ 1

ln

ln∑
j=1

(A1j +A2j) ≤ 4ϵ.

Now, for any δ > 0, let

Sn,ϵ,N :=
1

ln

ln∑
j=1

cn
n

n∑
k=1

GN (Xn,k) vk K̃ [cn(k/n− τj)] .

Using the fact that GN (x) is uniformly bounded, we have

P (∥Sn,ϵ∥ ≥ δ) ≤ P (Sn,ϵ ̸= Sn,ϵ,N ) + P (∥Sn,ϵ,N∥ ≥ δ)
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≤ P

(
max
1≤k≤n

∥Xn,k∥ ≥ N

)
+ δ−1E ∥Sn,ϵ,N∥

≤ P

(
max
1≤k≤n

| ∥Xn,k∥ | ≥ N

)
+ δ−1CN sup

k
E ∥vk∥

· 1
ln

ln∑
j=1

cn
n

n∑
k=1

∣∣∣K̃ [cn(k/n− τj)]
∣∣∣

≤ P

(
max
1≤k≤n

∥Xn,k∥ ≥ N

)
+ C1N ϵδ−1 → 0,

as n → ∞ first, N → ∞ second and then ϵ → 0. This proves (S3.11) and hence completes the

proof of Lemma 1. □

S3.2 Proof of Lemma 2

We first prove (35) and, without loss of generality, assume K ≥ 0. Using similar arguments as

in the proof of (S3.2) or (S3.11), it suffices to show that, as n → ∞,

In :=
cn
n

n∑
k=1

1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

]
→ 0.

Set ηn,i,j := 1
2n(τi + τj). Note that cn(k/n − τi) ≥ cn(j − i)/(2(ln + 1)), if k ≥ ηn,i,j , and

|cn(k/n− τj)| ≥ cn(j − i)/(2(ln + 1)), if k ≤ ηn,i,j . In view of the fact that K(x) ≤ 1/|x| for x

sufficiently large3, we have

In =
1

ln

∑
1≤i<j≤ln

cn
n

n∑
k=1

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

]
≤ C

ln

∑
1≤i<j≤ln

ln + 1

cn(j − i)

cn
n

n∑
k=1

(
K
[
cn(k/n− τi)

]
+K

[
cn(k/n− τj)

])
≤ C

cn

∑
1≤i<j≤ln

1

j − i
≤ C ln log ln/cn → 0,

as required.

The proof of (34) is similar to that of (35) and, hence, the details are omitted. The result

of (36) follows easily from (34) and (35). Finally, (37) follows from similar arguments as those
3Since

∫
K < ∞ and K ≥ 0 is eventually monotonic, we have that K is decreasing on (A1,∞) for some A1 > 0,

and

xK(x)/2 ≤
∫ x

x/2

K(t)dt → 0, x → +∞.

Similarly lim
x→−∞

xK(x) = 0. Hence, K(x) ≤ 1/|x| when x is sufficiently large.

11



used in the proof of (S3.2) and the fact that as n → ∞,

(cn
n

)2 n∑
k=1

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])4
≤ 2

(cn
n

)2 n∑
k=1

( 1√
ln

ln∑
j=1

K2
[
cn(k/n− τj)

])2
+8
(cn
n

)2 n∑
k=1

( 1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

])2
≤ 2C2

(cn
n

)2 n∑
k=1

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])2
+ 8I2n → 0,

due to (35) and (36). □

S4 Proofs of Theorem 5

We only consider M1n,ln , i.e., (26), since the limit result for S
(m)
1n,ln

given in (25) follows easily

from Lemma 1 with G(x) ≡ Ip+1 and vk = F(xk−1)F(xk−1)
′σm

k .

Set Qk,n :=
√

cn
n α′F(xk−1)σk

1√
ln

∑ln
j=1K [cn(k/n− τj)], where α ∈ Rp+1. Using (35) in

Lemma 2 with G(x) ≡ 1 and vk ≡ [α′F(xk−1)σk]
2, we have

n∑
k=1

Q2
k,n =

cn
n

n∑
k=1

[
α′F(xk−1)σk

]2 1

ln

ln∑
j=1

K2 [cn(k/n− τj)] + oP (1)

= E
[
α′F(x1)σ2

]2 ∫
K2 + oP (1), (S4.1)

where the second equation follows from Lemma 1, with K(x) replaced by K2(x), and A0 =

E [α′F(x1)σ2]
2. In view of (S4.1), it follows from the classical martingale limit theorem (e.g.,

Hall and Heyde (1980), Theorem 3.2 or Wang (2014), Theorem 2.1) that to prove (26), it suffices

to show that

max
1≤k≤n

|Qk,n| = oP (1).

Note that for any A > 0,

max
1≤k≤n

|Qk,n| ≤

{
n∑

k=1

Q2
k,nI {∥F(xk−1)σk∥ > A}

}1/2

+

{
n∑

k=1

Q4
k,nI {∥F(xk−1)σk∥ ≤ A}

}1/4

12



=: II1n(A)1/2 + II2n(A)1/4.

Similar arguments used in (S4.1) show that the first term above is

II1n(A) ≤ ∥α∥2 cn
n

n∑
k=1

∥F(xk−1)σk∥2 I {∥F(xk−1)σk∥ > A} 1

ln

ln∑
j=1

K2 [cn(k/n− τj)] + oP (1)

= ∥α∥2E ∥F(x1)σ2∥2 I {∥F(x1)σ2∥ > A}
∫

K2 + oP (1) = oP (1),

where we take n → ∞ first and then A → ∞. On the other hand, using (37) in Lemma 2 with

G(x) ≡ 1 and vk ≡ 1, the second term

II2n(A) ≤ ∥α∥4A4
(cn
n

)2 n∑
k=1

 1√
ln

ln∑
j=1

K [cn(k/n− τj)]


4

= oP (1),

for each A ≥ 1, as n → ∞. Combining these facts, we establish (26). The proof of Theorem 5 is

now complete. □

S5 Proof of Theorem 6

We only consider M2n,ln , i.e., (28). The result for
[
S
(m)
2n,ln

, S
(m)
3n,ln

]
given in (27) follows directly

from Lemma 1 with G(Xn,k) ≡ F (Xn,k)F (Xn,k)
′ or G(Xn,k) ≡ Q (Xn,k), and vk ≡ σm

k , m = 0

or 2.

Set Qk,n :=
√

cn
n α′F(Xn,k−1)σk

1√
ln

∑ln
j=1K [cn(k/n− τj)], where α ∈ Rp+1. Noting that∫ 1

0 F(Xn,[nt])dt is a continuous functional of Xn,[nt], the limit result of (28), jointly with (27),

will follow if we prove that, for any α ∈ Rp+1.[
Xn,[nt],

n∑
k=1

Qk,nuk

]
⇒
[
Xt, MN

(
0, E(σ2

1)

∫ 1

0

[
α′F(Xt)

]2
dt

∫
K2

)]
(S5.1)

on DRp×R[0, 1]. First, note that by using (35) with vk ≡ σ2
k and G(.) ≡ α′F(.) first, and then

(32),

n∑
k=1

Q2
k,n =

cn
n

n∑
k=1

[
α′F(Xn,k−1)

]2
σ2
k

1

ln

ln∑
j=1

K2 [cn(k/n− τj)] + oP (1)

= E
(
σ2
1

) ∫ 1

0

[
α′F(Xn,[nt])

]2
dt

∫
K2 + oP (1). (S5.2)
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It follows from A3(a) and the continuous mapping theorem that

 1√
n

⌊nt⌋∑
k=1

ξk,
1√
n

⌊nt⌋∑
k=1

ξ−k, Xn,[nt],
n∑

k=1

Q2
k,n


⇒

[
B1t, B2t,Xt, E

(
σ2
1

) ∫ 1

0

[
α′F(Xt)

]2
dt

∫
K2

]
,

on DRp×Rp×Rp×R[0, 1]. Recall A1 and that Qk,n is a functional of ξk, ξk−1, .... By Theorem 2.1

of Wang (2014) or Theorem 3.14 of Wang (2015), the limit result of (S5.1) will follow if we prove

max
1≤k≤n

|Qk,n| = oP (1), (S5.3)

and

1√
n

n∑
k=1

|Qk,n| = oP (1), (S5.4)

which is what we set out to do next. In view of the continuity of ||F(.)||4, it follows from (37)

with vk ≡ σ4
k that

[
max
1≤k≤n

|Qk,n|
]4

≤
n∑

k=1

Q4
k,n

≤ ∥α∥4
(cn
n

)2 n∑
k=1

∥F(Xn,k−1)∥4 σ4
k

 1√
ln

ln∑
j=1

K [cn(k/n− τj)]

4

= oP (1),

yielding (S5.3). Similarly, using the fact that ln/cn → 0 and (34) in Lemma 2, we have

1√
n

n∑
k=1

|Qk,n| ≤ ∥α∥ 1√
n

√
cn
n

n∑
k=1

∥F(Xn,k−1)∥ |σk|
1√
ln

ln∑
j=1

K [cn(k/n− τj)]

= ∥α∥
√

ln
cn

cn
n

n∑
k=1

∥F(Xn,k−1)∥ |σk|
1

ln

ln∑
j=1

K [cn(k/n− τj)]

= OP

(√
ln
cn

)
= oP (1) ,

which shows (S5.4). The proof of Theorem 6 is complete. □
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S6 Proof of Theorem 7

We start with the following lemma.

Lemma S1. Suppose that:

(a) for each i = 1, ..., q, gi : R → R is an AHF function with limit homogeneous function Hgi

and asymptotic order πgi ;

(b) xk = [xk,1, ..., xk,q]
′, Xt is a Rq-valued continuous process, and in DRq [0, 1] there are deter-

ministic sequences din → ∞, i = 1, ..., q such that Xn,[nt] ⇒ Xt, where

Xn,k = diag{d1n, ..., dqn}−1xk;

(c) either e2k = σm
k , where m = 0, 2, and Assumptions A3(b) and A4∗ hold, or

ek = σkuk with supk≥1Eu4k < ∞, and Assumptions A1(c), A3(b) and A4∗ hold;

(d) h : Rq → R is a continuous function, and there exist c0 > 0, α > 0 and ν ≥ 0 so that for

every x,y ∈ Rq,

|h(x+ y)− h(x)| ≤ c0∥y∥α(1 + ∥x∥+ ∥y∥)ν . (S6.1)

Then as n → ∞,

cn
nln

n∑
k=1

e2k Kknh(x̃n,k−1) =
cn
nln

n∑
k=1

e2k Kknh(ỹn,k−1) + oP (1),

where

x̃nk :=

[
g1(xk,1)

πg1(d1n)
, · · · ,

gq(xk,q)

πgq(dqn)

]
and ỹnk :=

[
Hg1

(
xk,1
d1n

)
, · · · , Hgq

(
xk,q
dqn

)]
.

Proof. We only prove Lemma S1 with ek = σkuk. The proof for e2k = σm
k is similar but

simpler. Let z̃nk = x̃nk − ỹnk. It follows from the definition AHF that

∥z̃nk∥ ≤ an

q∑
i=1

(1 + |xk,i/din|δgi ) ≤ 2anq(1 + ∥Xn,k∥)δ,

15



where an = max1≤j≤q
agj (djn)

πgj (djn)
→ 0 and δ = max1≤j≤q gj . Observe that there is a continuous

function h0 : Rq → Rq such that ỹnk = h0(Xn,k). Therefore, by the condition (d), we have

cn
nln

n∑
k=1

e2k Kkn|h(x̃n,k−1)− h(ỹn,k−1)| = oP (1) ·
cn
nln

n∑
k=1

e2k Kknh1(Xn,k−1), (S6.2)

where

h1(x) = (1 + ∥x∥)αδ[(1 + ∥x∥)δ + ∥h0(x)∥]ν

is continuous. Recall that E
(
u2k|Fk−1

)
= 1, and σk is Fk−1 measurable and stationary. It is

readily seen from A3(b) and supk≥1Eu4k < ∞ that

max
m≤j≤n−m

E

∣∣∣∣∣∣ 1m
j+m∑
k=j+1

e2k − E
(
σ2
1

)∣∣∣∣∣∣ = E

∣∣∣∣∣ 1m
m∑
k=1

e2k − E
(
σ2
1

)∣∣∣∣∣
≤ E

∣∣∣∣∣ 1m
m∑
k=1

σ2
k

[
u2k − E

(
u2k|Fk−1

)]∣∣∣∣∣+ E

∣∣∣∣∣ 1m
m∑
k=1

[
σ2
k − E

(
σ2
k

)]∣∣∣∣∣→ 0,

for any 0 < m = mn → ∞. Hence, condition (b) of Lemma 1 is satisfied with vk ≡ e2k and

A0 ≡ E
(
σ2
1

)
. The desired result follows from (S6.2) and (32) in Lemma 1. □

We now turn to the proof of Theorem 7. It suffices to prove the oP (1) approximations in (30)-

(31). The weak convergence results in the aforementioned equations are a direct consequence of

Theorem 6. Further, the proof of (29) is identical to that for (30).

The proof of the oP (1) approximation in (30) is simple. Indeed, by recalling that Kkn =∑ln
j=1K [cn(k/n− τj)] it follows from the condition (b) in Theorem 7 that

cn
nln

n∑
k=1

L−1
n F(xk−1)F(xk−1)

′L−1
n σm

k Kkn

=:
cn
nln

n∑
k=1

HF(Xn,k−1)HF(Xn,k−1)
′σm

k Kkn +∆1n,

where ∆1n is a (p+1)× (p+1) matrix that is determined by the definition AHF. It follows from

Lemma S1 with e2k ≡ σm
k that ∆1n = oP (1). Therefore, (30) follows directly from Theorem 6.

We next prove (31). We write

√
cn
nln

n∑
k=1

L−1
n F(xk−1)σkuk Kkn =

√
cn
nln

n∑
k=1

HF(Xn,k−1)σk Kknuk +∆2n,
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where ∆2n is a (p + 1)-dimensional vector. In particular, the first element of ∆2n is zero, and

the j + 1 element

[∆2n]j =

√
cn
nln

π−1
fj

(djn)
n∑

k=1

Rfj (djn;xk−1,j)σk Kkn uk, , j = 1, ..., p,

with Rfj given in the definition AHF. For A > 0, set

[∆2n]j (A) =

√
cn
nln

πfj (djn)
−1

n∑
k=1

Rfj (djn;xk−1,j)I {|xk−1,j/djn| ≤ A}σk Kkn uk.

Note that as n → ∞ first and then A → ∞

P
(
[∆2n]j ̸= [∆2n]j (A)

)
≤ P

(
max
1≤k≤n

|xk−1,j/djn| > A

)
→ 0. (S6.3)

For any ϵ > 0 and A > 0, we have

P
(∣∣∣[∆2n]j

∣∣∣ ≥ ϵ
)
≤ P

(
[∆2n]j ̸= [∆2n]j (A)

)
+ ϵ−2E

[
[∆2n]j (A)

]2
. (S6.4)

Furthermore, for any A > 0, as n → ∞ we have

E
[
[∆2n]j (A)

]2
=

cn
nln

π−2
fj

(djn)

n∑
k=1

E
(
Rfj (djn;xk−1,j)

2I {|xk−1,j/djn| ≤ A}σ2
k

)
K2

kn

≤
[
afj (djn)

πfj (djn)

]2
P 2
fi
(A)

cn
nln

n∑
k=1

E(σ2
k)K

2
kn → 0, (S6.5)

where Pfi is given in the definition AHF, and we have used (36) of Lemma 2 with G(x) ≡ 1 and

vk ≡ E(σ2
k). In view of (S6.3)-(S6.5), as n → ∞

P
(∣∣∣[∆2n]j

∣∣∣ ≥ ϵ
)
→ 0,

for all j = 1, ..., p+ 1. The proof of Theorem 7 is now complete. □

S7 Proof of Theorem 1

The CTLS estimator for β is

β̂ =

[
n∑

k=1

Zknf̄
′
k−1

]−1 n∑
k=1

Zknȳk

17



=

[
n∑

k=1

Zknf̄
′
k−1

]−1 n∑
k=1

Zkn

[
f̄ ′k−1β + ek −

∑n
s=1 esKsn∑n
s=1Ksn

]

= β +

[
n∑

k=1

Zknf̄
′
k−1

]−1

·
n∑

k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]
,

which gives

√
nln
cn

(
β̂ − β

)
=

[
cn
nln

n∑
k=1

Zknf̄
′
k−1

]−1

·
√

cn
nln

n∑
k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]
. (S7.1)

It follows from Theorem 5 that

cn
nln

n∑
k=1

Zknf̄
′
k−1 =

cn
nln

n∑
k=1

Zknf
′
k−1 −

cn
nln

n∑
k=1

Zkn

cn
nln

∑n
s=1 f

′
s−1Ksn

cn
nln

∑n
s=1Ksn

=
cn
nln

n∑
k=1

fk−1f
′
k−1Kkn − cn

nln

n∑
k=1

fk−1Kkn

cn
nln

∑n
s=1 f

′
s−1Ksn

cn
nln

∑n
s=1Kkn

→P

∫
K ·

[
E
{
f(x1)f(x1)

′}− E {f(x1)}E
{
f(x1)

′}]
=

∫
K · Φ1. (S7.2)

Moreover,

√
cn
nln

n∑
k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]

=

[
− 1

cn
nln

∑n
k=1Kkn

cn
nln

n∑
k=1

Zkn, Ip

]
·
√

cn
nln

n∑
k=1

Kkn

 1

fk−1

 ek

=: An ·
√

cn
nln

n∑
k=1

KknFk−1ek.

Again by Theorem 5 we get

An →P A := [−Ef(x1), Ip] ,

and

√
cn
nln

n∑
k=2

KknFk−1ek →d N

(
0,

∫
K2 · E

(
σ2
2F(x1)F(x1)

′)) .

18



In view of these facts, we have

√
cn
nln

n∑
k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]
= An ·

√
cn
nln

n∑
k=1

KknFk−1ek

→d N

(
0,

∫
K2 ·AE(σ2

2F(x1)F(x1)
′)A′

)
=d N

(
0,

∫
K2 · Φ0

)
, (S7.3)

where we have used the fact that AE(σ2
2F(x1)F(x1)

′)A′ = Φ0. The desired result follows by

combining (S7.1), (S7.2) and (S7.3). □

S8 Proof of Theorem 2

Similarly to (S7.1), we may write

√
nln
cn

Dn

(
β̂ − β

)
=
[ cn
nln

D−1
n

n∑
k=1

Zknf̄
′
k−1D−1

n

]−1
D−1

n

√
cn
nln

n∑
k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]
.

(S8.1)

It follows from Theorem 7 that

cn
nln

D−1
n

n∑
k=1

Zknf̄
′
k−1D−1

n

=
cn
nln

D−1
n

n∑
k=1

Zknf
′
k−1D−1

n − cn
nln

D−1
n

n∑
k=1

Zkn

cn
nln

∑n
s=1 f

′
s−1Ksn

cn
nln

∑n
s=1Ksn

D−1
n

=
cn
nln

D−1
n

n∑
k=1

fk−1f
′
k−1KknD−1

n − cn
nln

D−1
n

n∑
k=1

fk−1Kkn

cn
nln

∑n
s=1 f

′
s−1Ksn

cn
nln

∑n
s=1Kkn

D−1
n

→d

∫
K

[∫ 1

0
Hf (Xt)Hf (Xt)

′dt−
∫ 1

0
Hf (Xt)dt

∫ 1

0
Hf (Xt)

′dt

]
=

∫
K ·

∫ 1

0
H̃f (Xt)H̃f (Xt)

′dt =

∫
K · Φ2. (S8.2)

Further, by letting Ln = diag{1,Dn}, we have

D−1
n

√
cn
nln

n∑
k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]

=

[
− 1

cn
nln

∑n
k=1Kkn

D−1
n

cn
nln

n∑
k=1

Zkn, Ip

]√
cn
nln

L−1
n

n∑
k=1

Kkn

 1

fk−1

 ek

=: Bn

√
cn
nln

L−1
n

n∑
k=1

KknFk−1ek.
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Again by Theorem 7 we get jointly with (S8.2)

Bn →d B :=

[
−
∫ 1

0
Hf (Xt)dt, Ip

]
, (S8.3)

and

√
cn
nln

L−1
n

n∑
k=1

KknFk−1ek →d MN

0,

∫
K2 · E(σ2

1)

∫ 1

0

 1 Hf (Xt)
′

Hf (Xt) Hf (Xt)Hf (Xt)
′

 dt

 .

Therefore,

D−1
n

√
cn
nln

n∑
k=1

Zkn

[
ek −

∑n
s=1 esKsn∑n
s=1Ksn

]
= Bn

√
cn
nln

L−1
n

n∑
k=1

KknFk−1ek

→d MN

0,

∫
K2 · E(σ2

1)B

∫ 1

0

 1 Hf (Xt)
′

Hf (Xt) Hf (Xt)Hf (Xt)
′

 dtB′


=d MN

(
0,

∫
K2 · E(σ2

1)Φ2

)
. (S8.4)

In view of (S8.1), (S8.2) and (S8.4) the CTLS estimator for β

√
nln
cn

Dn

(
β̂ − β

)
→d MN

(
0,

∫
K2(∫
K
)2 · E(σ2

1)Φ
−1
2

)
,

as required. □

S9 Proof of Theorem 3

See Theorem S1 and hence the details are omitted. □

S10 Proof of Theorem 4 and additional explanation for (15)

We start with some preliminary results. We first derive the pseudo-true limits of the OLS

and CTLS estimators under misbalancing (MB) assuming that the conditions of Theorem 4

hold. Recall that dn denotes the normalizing sequence of Assumption A3(a) for the case p = 1.

Set fk := f(xk−1), fM,k := fM (xk−1), and Qn := diag{
√
n,

√
nπfM (dn)}. Furthermore, for a

sequence ak let ãk := ak −n−1
∑n

j=1 aj . Similarly, for a function A(t), Ã(t) := A(t)−
∫ 1
0 A(s)ds.

OLS under MB. Let
[
µ̃, β̃

]
be the OLS estimator for the parameters of (10) when the fitted
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model is given by (14). Suppose that the conditions of Theorem 4 hold. Then by Assumption

A3(a), there is a sequence dn such that d−1
n x[nt] ⇒ Xt in D [0, 1]. In view of this and the

continuity of the limit homogeneous functions of f and fM , standard arguments (e.g. Park and

Phillips, 2001; Theorem 5.2) give

1

πf (dn)
√
n
Qn

 µ̃

β̃


=

Q−1
n

∑
k

 1

fM,k

 1

fM,k

′

Q−1
n

−1

1

πf (dn)
√
n
Q−1

n

∑
k

 1

fM,k

βfk + oP (1)

→d


∫ 1

0

 1 HfM (Xt)

HfM (Xt) H2
fM

(Xt)

 dt


−1

β

∫ 1

0

 Hf (Xt)

HfM (Xt)Hf (Xt)
dt


=

[∫ 1

0
H̃fMHfM

]−1
 ∫ 1

0 Hf

∫ 1
0 H2

fM
−
∫ 1
0 HfM

∫ 1
0 HfMHf∫ 1

0 H̃fMHf

β =:

 µ∗

β∗

 .

In fact, the following joint weak limit holds

1

πf (dn)
µ̃ →d µ∗ and

πfM (dn)

πf (dn)
β̃ →d β∗.

CTLS under MB. Similarly, consider the CTLS estimator (in this case, the CTLS in-

struments are: Zkn = fM,kKkn). Using similar arguments as those used above together with

Theorem 7 we get

πfM (dn)

πf (dn)
β̂ =

1
πfM

(dn)πf (dn)

1
π2
fM

(dn)

β̂ = β

cn
nlnπfM

(dn)πf (dn)

∑
k Zknf̄k

cn
nlnπ2

fM
(dn)

∑
k Zknf̄M,k

+ oP (1)

→d β

∫ 1
0 H̃f (Xt)HfM

(Xt)dt∫ 1
0 H̃fM (Xt)HfM

(Xt)dt
= β∗.

OLS estimator for σ2 under MB. Next, we consider the variance estimator for σ2 based

on the OLS residuals ěk. Write

π−2
f (dn)σ̌

2 = π−2
f (dn)n

−1
∑
k

ě2k = π−2
f (dn)n

−1
∑
k

(
fk − µ̃− β̃fM,k

)2
+ oP (1)

= n−1
∑
k

(
π−1
f (dn)fk − π−1

f (dn)µ̃−
πfM (dn)

πf (dn)
β̃π−1

fM
(dn)fM,k

)2

+ oP (1)
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→d

∫ 1

0
[Hf − µ∗ − β∗HfM ]2 =: σ2

∗. (S10.1)

Hence, we roughly have the following approximation

σ̌2 ≈ π2
f (dn)σ

2
∗ + σ2. (S10.2)

CTLS t-statistics. Next, we introduce some additional notation. For any asymptotic

homogeneous function g : R → R (and some kernel function K) set

Ag :=

[
−
∫ 1

0
Hg(Xt)dt, 1

]
, Vg :=

 1
∫ 1
0 Hg(Xt)dt∫ 1

0 Hg(Xt)dt
∫ 1
0 H2

g (Xt)dt

∫ K2.

Note that for some AHF function f , the definitions above and straightforward calculations yield

AfVfA
′
f =

∫
K2

∫ 1

0
H̃fHf . (S10.3)

Furthermore, for any function g : R → R set gk = g(xk−1) and define

Ag,n := [−ḡ, 1] , Vg,n :=
n∑

k=1

K2
kn

 1 gk

gk g2k

 , σ̌2 = n−1
n∑

k=1

ě2k,

where ḡ =
∑n

k=1Kkng(xk−1)/
∑n

k=1Kkn (cf. (7)), and ěk are the OLS residuals based on the

fitted regression function g(xk−1). In the following, we assume g = f (correct functional form)

and g = fM (misbalanced model).

Without loss of generality, we shall consider t-statistics that utilize the studentization of (13).

Hence, under correct functional form the CTLS t-statistic is

T̂ =
n∑

k=1

Kknf̄k
β̂ − β0√

σ̌2Af,nVf,nA′
f,n

,

where β̂ is the CTLS estimator of β in (10). Under misbalancing, the CTLS t-statistic is of the

form

T̂M =
n∑

k=1

Kknf̄M,k
β̂ − β0√

σ̌2AfM ,nVfM ,nA′
fM ,n

,
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with β̂ being the CTLS estimator based on the fitted model (14).

We now turn to the proof of Theorem 4. We start with (15). Using Theorem 7 the CTLS

t-statistic under misbalancing is

√
cn
nln

T̂M :=

√
cn
nln

n∑
k=1

Kknf̄M,k
β̂√
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√
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K ·

∫ 1
0 H̃fHfM√

σ2
∗AfMVfMA′

fM

+OP

(√
cn
nln

1

πf (dn)

)
, (S10.4)

where σ2
∗ is defined in (S10.1). (15) follows directly from (S10.4).

Next, we show (16). Recall that the divergence rate under the correct specification is

πf (dn)
√

nln
cn

. In fact, under correct FF and under H1 we have

√
cn

π2
f (dn)nln

T̂ :=

√
cn

π2
f (dn)nln

n∑
k=1

Kknf̄k
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σ̌2Af,nVf,nA′
f,n

=

√
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f,n

+
cn

nlnπ2
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∑
k
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σ̌2 cn
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f
Af,nVf,nA′

f,n

→d OP

√ cn
π2
f (dn)nln

+
β
∫
K·
∫ 1
0 H̃f (Xt)Hf (Xt)dt√
σ2AfVfA

′
f

. (S10.5)

Result (16) follows directly from (S10.3), (S10.4) and (S10.5). This completes the proof of

Theorem 4. □

We finally consider supporting arguments for (17). First, note that (S10.2) together
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with (S10.4) postulate the following approximate behavior.

T̂M ≈ πf (dn)

√
nln
cn

β
∫
K ·

∫ 1
0 H̃fHfM√

(π2
f (dn)σ

2
∗ + σ2)AfMVfMA′

fM

. (S10.6)

Furthermore, by (S10.5) we have

T̂ ≈ πf (dn)

√
nln
cn

β
∫
K ·

∫ 1
0 H̃fHf√

σ2AfVfA
′
f

. (S10.7)

Combining (S10.5) and (S10.6), the ratio of the two test statistics is

T̂ /T̂M ≈

√(
π2
f (dn)σ

2
∗ + σ2

)
AfMVfMA′

fM

∫ 1
0 H̃fHf√

σ2AfVfA
′
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∫ 1
0 H̃fMHf

=
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2
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=
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2
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√∫ 1
0 H̃fMHfM

∫ 1
0 H̃fHf∫ 1

0 H̃fMHf

≥

√
π2
f (dn)σ

2
∗ + σ2

σ2
,

where the lower bound above is due to the Cauchy-Schwarz inequality.

S11 Proof of Theorem S1

We only prove (S2.6), as the proof of (S2.5) is similar.

We first assume that the conditions of Theorem 2 hold, together with supk≥1Eu4k < ∞.

Define Ln := diag
{
1, πf1(d1n), ..., πfp(dpn)

}
and Vn =

∑n
k=1 e

2
kFk−1F

′
k−1K

2
kn. Since the OLS

residuals in model (S2.1) satisfy

ě2k =

[(
θ − θ̂LS

)′
Fk−1

]2
+ 2

[(
θ − θ̂LS

)′
Fk−1

]
ek + e2k,

it follows that

V̂n =

n∑
k=1

ě2kFk−1F
′
k−1K

2
kn = Vn +R1n + 2R2n (S11.1)
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where

R1n =
n∑

k=1

[(
θ − θ̂LS

)′
Fk−1

]2
Fk−1F

′
k−1K

2
kn,

R2n =
n∑
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Fk−1

]
Fk−1F

′
k−1K

2
kn.

We next show that, for j = 1 and 2,

∥∥∥∥ cn
nln

L−1
n RjnL−1

n

∥∥∥∥ = oP (1). (S11.2)

In fact, given that the covariates satisfy an FCLT and the regression function is continuous,

standard arguments (see, e.g., Park and Phillips, 2001; Chang, Park and Phillips, 2001) give

√
nLn

(
θ̂LS − θ

)
= OP (1). (S11.3)

This result implies that
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−1),

where we have used Lemma S1 with h(x) = ||x||4 and the similar argument as in the proof of

Theorem 6 (c.g. the proof of (S5.2)), yielding
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∥∥4K2
kn →d
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Hence (S11.2) is true with j = 1. Similarly, using (S11.3) again, we have
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= OP

(
n−1/2

)
·OP (1) = oP (1),

i.e., (S11.2) is also true with j = 2.

In terms of (S11.1) and (S11.2), we claim that, as n → ∞,

cn
nln

L−1
n V̂nL−1

n =
cn
nln

L−1
n VnL−1

n + oP (1). (S11.4)

Now (S2.6) under the conditions of Theorem 2 is a direct consequence of Theorem 2 and (S11.4).

To see this, set D∗
n :=

√
nln
cn

Dn, L∗
n :=

√
nln
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Ln, with Dn defined in Theorem 2 and recall Ln =

diag{1,Dn}. Under the null hypothesis,
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=
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Next, note that by (S11.4) and Theorem 2
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Further, by (S8.2)
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n →d

∫
K · Φ2, (S11.6)

with Φ2 defined in Theorem 2. Moreover, using (S8.3)

D∗−1
n AnL∗

n = Bn →d B, (S11.7)

with B defined in (S8.3). Combining (S11.5)-(S11.7),
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where we have used the fact that

Φ2 = B

∫ 1

0
HF (Xt)HF (Xt)

′ dt B′,

see e.g. (S8.4). In view of (S11.8) and Theorem 2,

M−1/2
n D∗

n

(
β̂ − β

)
→d N (0, Iq) ,

and the result follows.

We next prove (S2.6) under the conditions of Theorem 1, together with supk≥1Eu4k < ∞.

By using Theorem 1 and similar arguments as in the first part, it suffices to show that
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′] . (S11.9)

Note that (S11.1) still holds. (S11.9) will follow if we prove
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and
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The proof of (S11.10) is simple. In fact, by recalling A2 (i.e., xk and Fk = F(xk−1) are

stationary with E ∥F1∥2 < ∞), the OLS estimator in this case satisfies
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= OP (1) (S11.12)
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where, in the last equality, we have used the result:
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as explained in Remark 14 with G(x) ≡ 1. Similarly, we have
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.

Next, we prove (S11.11). Let [A]rs denote the (r, s) element of a matrix A. In view of

Lemmas 1 and 2 with G(x) = 1 (cf. Remark 14), it suffices to show that, for any m := mn → ∞,

n/mn → ∞,

∆rs,n := max
m≤j≤n−m
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∣∣∣∣∣∣→ 0. (S11.13)

Note that ∆rs,n ≤ R3n +R4n, where
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Since σ2

kFk−1F
′
k−1 is strict stationarity and ergodic, it is readily seen that R4n → 0.

To consider R1n, set λk :=
[
σ2
kFk−1F

′
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]
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and Uk :=
[
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(
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. Then for all
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A > 0 as m → ∞ first and then A → ∞,
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Combining all these estimates, we establish (S11.13). This completes the proof. □

S12 Additional Simulation Results

Table S1: Empirical Size of CTLS tests: T̂
(nominal size 5%; NI regressor, GARCH(1,1) regression errors)

c = 0 c = −5
ϱ -0.95 -0.5 0 0.5 0.95 -0.95 -0.5 0 0.5 0.95

n=250 0.083 0.060 0.052 0.062 0.087 0.062 0.054 0.050 0.060 0.069
500 0.077 0.057 0.050 0.061 0.077 0.060 0.051 0.051 0.055 0.059
750 0.070 0.059 0.052 0.058 0.070 0.060 0.056 0.058 0.057 0.061

1000 0.065 0.054 0.048 0.056 0.069 0.054 0.051 0.045 0.049 0.055

c = −10 c = −20
ϱ -0.95 -0.50 0.00 0.50 0.95 -0.95 -0.50 0.00 0.50 0.95

n=250 0.057 0.053 0.055 0.058 0.062 0.056 0.054 0.056 0.056 0.058
500 0.055 0.049 0.048 0.050 0.055 0.053 0.049 0.047 0.049 0.053
750 0.055 0.055 0.055 0.057 0.055 0.050 0.051 0.053 0.056 0.055

1000 0.052 0.049 0.048 0.046 0.053 0.052 0.048 0.045 0.047 0.053
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Table S2: Empirical Size of CTLS tests: T̂ (nominal size 5%; fractional regressor, cond. homoscedastic regression errors)

d = 0.25 d = 0.5 d = 0.75 d = 0.8
ϱ -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0

CTLS n=250 0.053 0.052 0.053 0.056 0.051 0.049 0.067 0.053 0.049 0.071 0.056 0.049
500 0.052 0.052 0.050 0.055 0.050 0.047 0.064 0.053 0.049 0.069 0.054 0.052
750 0.051 0.055 0.056 0.056 0.055 0.055 0.066 0.057 0.055 0.067 0.057 0.056

1000 0.051 0.052 0.049 0.051 0.049 0.049 0.059 0.052 0.050 0.061 0.052 0.050

OLS n=250 0.050 0.052 0.052 0.074 0.059 0.053 0.158 0.085 0.051 0.184 0.093 0.052
500 0.052 0.050 0.048 0.072 0.055 0.051 0.161 0.085 0.054 0.184 0.091 0.055
750 0.052 0.051 0.052 0.068 0.058 0.053 0.155 0.081 0.053 0.178 0.086 0.051

1000 0.050 0.048 0.049 0.067 0.053 0.047 0.155 0.077 0.049 0.183 0.086 0.049

d = 0.9 d = 1 d = 1.1 d = 1.2
ϱ -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0

CTLS n=250 0.077 0.057 0.051 0.084 0.059 0.051 0.089 0.060 0.052 0.089 0.063 0.053
500 0.073 0.058 0.052 0.077 0.059 0.054 0.081 0.063 0.054 0.082 0.061 0.051
750 0.073 0.058 0.054 0.076 0.059 0.052 0.078 0.060 0.051 0.079 0.061 0.051

1000 0.066 0.054 0.050 0.070 0.054 0.049 0.072 0.055 0.050 0.072 0.054 0.051

OLS n=250 0.235 0.107 0.053 0.278 0.117 0.053 0.308 0.121 0.052 0.325 0.126 0.052
500 0.242 0.102 0.054 0.287 0.114 0.054 0.319 0.120 0.055 0.337 0.123 0.056
750 0.230 0.098 0.052 0.272 0.109 0.051 0.301 0.117 0.051 0.322 0.119 0.053

1000 0.229 0.102 0.053 0.278 0.111 0.053 0.310 0.118 0.054 0.327 0.120 0.055
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Figure S1: Empirical Power of CTLS tests: T̂ Plotted against β.
(5% nominal size; ϱ = −0.95 = −0.95; fractional regressor, cond. homoscedastic regression errors)
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