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Abstract

In this supplementary material designed for “Multidimensional credibility: A
new approach based on joint distribution function”, we furnish meticulous proofs
for each theorem, proposition, and requisite lemma presented in the main paper.
For context, notation, and definitions, we refer to the paper.
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1 Proof of Theorem 2.1
Based on Assumptions 2.1 and 2.2, we have:
E[Y] = 1n X Ho,

where 1,, denotes a column vector with dimension n. According to the double expectation
formula, we have

T+, 1=

(C(DW(YZ‘,Y]‘) =K [C@W(Y“Y]|®)] + Cov [E(YZ|®),E(YJ|®)] = { . .
T, i F ]
Thus, we have
Cov(p(©),Y) = E [Cov(u(©), Y|O®)] + Cov [4(©),E(Y|0) =1, & T

and
Cov(Y,Y)=1,®% + (1,1) @ T,

where [, is the n-dimensional identity matrix. By applying the matrix inversion formula:
(A+BCD) ' =A"'—A'B(C' + DA™'B) ' DA™,
we obtain
Cov (Y, Y) =L o' — (1,5 (T +nx;)) 7 (1, @ 551).

Consequently, the optimal linear estimate of the conditional mean vector pu(®) is:

o —

HC,n(e)
— o+ (1,0 T) Lo = (LX) (T +n5") 7 (1, @5Y) | (Y = 1, @ o)

= o+ 078" (1, = (T +035") " 0t ) (Y - o)

= po + Zcn (? - Mo)
= ZonY + (I, — Zcn) o,

which completes the proof of Theorem 2.1.

2 A useful lemma for constrained problem

Lemma 1. Consider a constrained optimization problem

{ mu}: f(‘rlvaJ"' 7xp)

min f($1,$2,"‘ 7'Tp) : (2)



and let (x’{,xg, e ,x;) be the optimal solution obtained from (2). If (x’{,xg, ,a:;)

precisely satisfies the condition g (27,23, x3) > 0, then problems (1) and (2) are
equivalent.

Proof. Let (y},y3,-- ,y;) be the solution of problem (1). Evidently, we have

On the other hand, due to g (az”{,:vg, e ,$;§) >0, (f{, xh, - ,:B;) is within the feasible
domain of equation (1). Therefore, with the presence of
f (SUT,I;,' o 71:;) > f (yikvy;7 T 73/;) )
it follows that
f (.TT,JZ;, 71’;) = f (yf»y; ay;) )
indicating that problems (1) and (2) are equivalent. O

3 Proof of Theorem 3.1

Due to
E[H; (y)] = E[E(Hi(y)|©)] = Fy (y),

we can apply the variance formula to derive

E ( (¥1©) —aq ( ZOés s )

= V| F(yl©) Zas s ) {(1—§n:as>Fo(Y)—ao(Y)}

It is straightforward to verify that the equality above holds if and only if

= (1Y )R ()

Therefore, the solution for «aq (y) is given by

= (1= a)F(y). (4)

Substituting equation (4) into (3) and denoting

w(y)=E< (y/©) —a ( Zas . ) ,
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the problem (14) in the main paper is equivalent to the problem

min /R ¢ (y)dy. (5)

as€R

To find the optimal solution to the problem (5), we let

¢ = / ¢ (y)dy
RP
and take the partial derivative of o, with respect to ®. Thus, we obtain

gf; :/Rp Cov [F (y|©), H, (y)] dy — Zas/ Cov [H, (y), H, (¥)|dy.  (6)

According to the double expectation formula, we have

Cov [F (y|©), Hs (y)]
= E[Cov (F(y|©)), H;(y|©)]+ Cov{F (y|®),E[H, (y]|O)]}
V[F (y|©)] (7)
and

Cov [H,(y), Hs(y)] = E[Cov (H,(y),Hs (y)|®)] +VI[F(y|©)]

_ {V[F<y|@>] t#s
E[V(H, (y)|©)] +VI[F(y|©)] t=s

Substituting equations (7) and (8) into (6) and setting it equal to 0, we obtain

gf - 1—ias yl@ﬂdy—ozt/ E [V (H, (y)| ©)]dy

RP

= — E 0457'02—04150'(2)—'—7'3:0’ t:172’...’n.

Summing up the above equation for ¢ from 1 to n, it gives
n 2
nT
Zas =—
=t nTy + op
Furthermore, the solution for «y is given by
2
70
= —10 =19 n 9
"7 nr2 4 o2 ©)
Substituting equations (4) and (9) into (13) of the main paper, we can obtain the optimal
linear estimate of F' (y|®) as

F(yl®) = (1—”—) Foly) + —3— S ()

nty + op nTy + 04 ‘=

n7'2 nT2
_ (1 _ —) Fy(y) + —0_F (y)

2 2
nTy + op nTy + op

=ZnaFn(y)+ (1 —Znan)Fo (y) -
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4 Proof of Proposition 3.1

By applying the plug-in method, we have

—

Uy (©) = /R ) YA ZN o () + (1 = Znn)Fo (y)]

— Zyn / ydFy (y) + (1~ Zn,) / ydFy (y)
RP Rp
- ZN,n?_’_ (]— - ZN,n)“O)

which yields the desired result.

5 Proof of Proposition 3.3
Due to
E[(Y — p(®)) (1o — 1(©))'] =E{E [(Y — u(©)) (ko — n(©))'|©]} =0,

it follows that

—

| (1va(©) - 1)) (1a(@) - u(®))
= E[(Zya (Y~ () + (1~ Z,) (1o — 1(©)))
((ZNn(? w(©)) + (1~ Zn.) (o — w(©))))’
= Z3,E[(Y - u(®) (Y- w® )] (1= Zna)’E [(1t0 — 1(8)) (1o — 14(©))]
- Z,E{E [(Y 1(©)) (Y - w(®))| 8]} + (1 = Zy,)*V [w(©)]

ZRm )
= TS+ (1= Zya)’T.

Additionally, as the sample size n tends to infinity (n — oc0), we have:

— o ——

e [ (15(®) - 1(0)) (130(©) ~ @) | > 0,

where 0,4, represents the zero matrix. Furthermore, for any p-dimensional real vector &,
we have

2

€% | (1v(®) - 1(0)) (1val®) -~ 1(0)) | € =B [¢ (1x(0) — m(®))] 0.

Based on the arbitrariness of &£, we conclude that:

B |[|uvato) - @[] 0
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6 Proof of Proposition 3.4

Since

and
20 =E (E(("))) = UO - /J'Oﬂ'{)’

it follows that

Sva(©) = /R [y—uw/m@)} [y—uw/,n(\@)]/dﬁ(ﬂ@)

—

= | wiF (51©) - 1xs(8) - ui(©)
= ZnnUn+ (1= Znn)Uo — (ZN,n? +(1— ZN,n)Mo) (ZN,n? + (1 - ZN,n)No)/
- 72, (Un -Y. ?’) (1= Zna)? (Uo — popsl)
S Znnll = Znn) (Un Y, - Y + UO)
= Wipdn +we 2o+ (1 —wip — wey) M.

7 Proof of Theorem 3.2

By the strong law of large numbers, we have

1 n
Y — u(®), a.s., and — ZYZ-Y; — E(Y.Y}|®), as.,
n

i=1

when n — oo. Using the continuity theorem of almost sure convergence, it gives

1 — — =
Y, == Y.Y-Y Y - X(O), as.
oYY, (©), 0

Furthermore, from (23) of the main paper, we have Zy, — 1 when n — oco. Hence, we
obtain

—

pna(©) = Zny Y + (1 = Znn)po — 1(©), a.s.

and

—

EN@(G)) = wl,nEn + wznZQ + (1 —Win — wln)Mo — Z(@), a.s.

8 Proof of Theorem 3.3

Note that

—

Vi (135a(©) = 1(©)) = v (Y = 1(©)) + V(1 = Z) (o~ Y)
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Obviously, the sample mean Y and the aggregate mean g1y are both bounded in proba-
bility, when n — oo, we have

(1= Zn)i = O (%) |

Thus, it gives
Vn(l = Zyy) (No - ?) % o.

Furthermore, by the multidimensional central limit theorem of independent and iden-
tically distributed random variables (cf. Serfling, 2009), we have

Vi (Y = u(©)) 5 N(0,5(8)).

Therefore, by the Slutsky’s theorem, we obtain

Vit (1xa(©) = 1(©) ) = v (Y = 1(©)) 5 N(0,3(6)).

9 Proof of Proposition 3.5

—_—

Firstly, for the traditional multivariate credibility estimation pc,,(®), the credibility
factor matrix is give by

c c n7-1262 —nv103 nvy JS 7m/27—22
Z — Z].]. Z].Q — 5152*5% 516275%
Cn Z2C’1 Z2C2 nvy U% —m/27-12 n7—22 01—nv103 .

516282 516202

Furthermore, according to Theorem 2.1, we have

)

— —(1 (2
u/(\®) 1D (©) ZY 4+ (1=ZG) m+ Z5 (Y — o

S TP 7 et
12 (©) ZSY T+ (1= ZG) po + Z5 (Y —

Using the double expectation formula, we have

B | (wh©) —m(@)>2

= B[ (260"~ (@) + (1~ 26)u - m(©) + 2507 ~ ) |

= (Z5)°E {(7(1) - Ml(@)ﬂ + (1= Z5)"E [(u — 1(0))?]

+ ()R [(7 - is) | + 2260 - 208 (0 — (@) 7 - )]

2 2
2 07

= () D (- 26) 4 (29)" (2 +2) - 2B - 20,



Similarly, we obtain

— 2 2
B | (W@ - m©) | = (28) 2+ (1- 29

2
2 (0
+(25) (# + T12> — 2175 (1 — Z5,).

—

Therefore, the mean of the weighted F-norm error of pc,(0) is

& ||luca(@) - o) [

& (Wh0) - u1(9)>2

— 2
- E +E g (42,0 - i)

— (gl (Z25)" + & (Zg)z) %+ (51 (28)° + & (Z%)Q) %

=2y (&7 (1 — Zsy) + &2 (1 - Z1,))
+6(1—225) 15 + & (1—225) 1
= A;+ Ay + A+ Ay

On the other hand, according to Proposition 3.1, we have
m A =
—y_ [ 1©) ) _ [ ZnaVV (1= Za)in
IJ’NJL( ) - 6'\ = —(2) .
[y (©) ZnnY (1= Znn)pz

Similarly, it gives

E (u%) - m(@))2 —E [(ZN,n (7 = 11(8)) + (1 = Zwa) s m(@»)Q]
=73 nE [(7(1) - u1(9)>2] + (1= Znn)’E [(1n — m(©))?]
+ 2ZN,n(1 - ZN,n)E K?(l) - Ml(@)) (Ml - Ml(@w
=Z5.E [01(0)/n] + (1 = Znn)*V(111(0))
:Z?V,n%% + (1 = Zn)?7s
and

2

— 2
o
| (W000) - 1(0)) | = 28,72 + (1= 2,

—

Thus, the mean of the weighted F-norm error of py,,(0©) is given by
— 2 = 2
&1 (/’l’g\/)n(@) - Ml(@)> 3 (/’l’g\/)n(@) - M2(9)> ]

_n1g (&107 + 6203)  op (G 4 &975)

(g al) (n7g + 02)*

e | uvai®) - wie)|[] - +E
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10 Proof of Proposition 3.6

Firstly, according to equation (26) of the main paper, when p; = p; = 0, we have

2
o 0
Z 77,712-}—0'%
Cn — 2 .
TV 0 nTy
n’r%—&—a%

Therefore, we obtain the mean of the weighted F-norm for the error of [,L;L(\@) as follows:

— 2 — 2 — 2
| [uca@) - w@)|[}| = e | (Wh©)-m©) | +ak |(sE0) - m©)
2.2 2.2
7101 Ty 09
glm'f + o2 + g2717'22 + 03

Furthermore, according to equation (25) of the main paper, we obtain

& |[|uca(®) - wi@)|[[] - &||wxa(®) - o[

£
¢ Tio? nry o7 + ogTh e Ti03 nTyos + oyTs
= 1 — 2 -
nti+o?  (n1g +0d)? nty +o3  (n1g +0d)?

“nlriot = A —n(rgo} — oird)?

& (n12 4 o})(n7é + 03)? +& (n7d 4 03)(n1é + 02)?
< 0.
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