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Resting state fMRI processing
Preprocessing. The data were preprocessed using a combination of toolboxes (AFNI, http://afni.nimh.nih.gov, FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, SPM, http://www.fil.ion.ucl.ac.uk/spm, GIFT, http://mialab.mrn.org/software/gift), and custom scripts written in MATLAB. The preprocessing included image distortion correction using FSL’s topup function and realignment to the single-band reference (SBref) image using AFNI’s align_epi_anat.py function. Motion parameters were estimated relative to the SBref images and data was registered to the MNI template using AFNI’s 3dNwarpApply as estimated using AFNI’s auto_warp.py. The first four volumes of each session were discarded to account for the T1 equilibrium effect. Because participants consisted of children and adolescents, we rewarped the data to a study specific template computed as the average of the first time point from each scan using SPM. Next, we smoothed the data to 6 mm full width at half maximum (FWHM).
Group independent component analysis. A subset of the preprocessed functional data including single timepoint was analyzed with gICA implemented in the GIFT software (Calhoun et al., 2001; Calhoun & Adali, 2012) and decomposed into 150 spatially independent components identified in previous studies (Agcaoglu et al., 2019, 2020). Prior to gICA, a scan specific principal component analysis (PCA) was applied to reduce the dimensionality across the 646 time points to 200 maximally variable directions. The reduced data were concatenated across time and a group PCA was applied to further reduce the dimensionality to 150 (Erhardt et al., 2011). One hundred and fifty independent components were estimated from the group PCA reduced matrix using the infomax algorithm (Bell & Sejnowski, 1995). We repeated the ICA algorithm 20 times in ICASSO (see 6; http://www.cis.hut.fi/projects/ica/icasso) to ensure stability of the estimation, and the most central run was selected from the resulting 20 runs (Ma et al., 2011). In the longitudinal analysis, we used the seed components as references and utilized a spatially constrained ICA algorithm (Du et al., 2016; Du & Fan, 2013) to estimate subject specific spatial maps (SMs) and time courses (TCs) from the group maps, called group information guided ICA (GIG‐ICA) as implemented in the GIFT software.
Post-gICA processing. Subject specific SMs and TCs were post-processed with methods similar to that described in a previous study (Allen et al., 2011). We calculated one sample t-test maps for each SM across all participants and then thresholded these maps to obtain regions of peak connectivity for the corresponding component. We also computed mean power spectra of the corresponding TCs. Later, these components were analyzed based on criteria such as peak activated voxel location in gray matter, showing less overlap with known vascular, susceptibility, ventricular and edge regions corresponding to head motion by visually and using AFNI whereami function; and 51 components out of 150 were identified as the resting state networks (RSNs). These 51 RSNs were also grouped based on their anatomical and functional properties by visual observation and using AFNI whereami function; including 4 subcortical networks (SC), 3 auditory networks (AUD), 8 sensorimotor networks (SM), 18 visual networks (VIS), 4 default-mode networks (DMN), 12 cognitive control networks (CC), and 2 cerebellar networks (not evaluated here). A list of specific RSNs comprising each network is available in a previous publication (Agcaoglu et al., 2019), and is summarized in Supplemental Table S1. The subject specific TCs were detrended, motion parameters were regressed and then despiked, which involved detecting spikes as determined by AFNI's 3dDespike algorithm and replacing spikes by values obtained from third order spline fit to neighboring clean portions of the data.
Functional network connectivity (FNC). FNC is a measure that shows the average FC among different RSNs during scanning, calculated as the pairwise correlation between RSN time courses. TCs were filtered using a fifth-order Butterworth low-pass filter with a high frequency cutoff of 0.15 Hz since correlation among brain networks is primarily driven by the low frequency fluctuations in BOLD fMRI data (Cordes et al., 2001). We estimated the FNC matrix for each subject separately via Pearson correlations using all 646 time courses. Resultant correlations were later z-transformed. FNC matrix was initially organized similar to Allen et al. (Allen et al., 2014) as the main modules of subcortical, auditory, sensorimotor, visual, default-mode, cognitive control, and cerebellar. Then, we applied the Louvain algorithm from the brain connectivity toolbox https://sites.google.com/site/bctnet) to arrange the RSN ordering within these main modules. 
























Table S1. Anatomical regions identified in each resting state network and component
	Network
	IC
	Resting State Network
	Coordinates
(x, y, z)

	Cognitive Control

	
	83
	left middle temporal gyrus
	-46, 6, -30

	
	
	right medial temporal pole
	48, 10, -26

	
	114
	left superior medial frontal gyrus
	0, 60, 22

	
	
	left temporal pole
	-36, 22, -20

	
	63
	right middle frontal gyrus
	32, 58, 4

	
	
	right inferior parietal lobule
	50, -50, 48

	
	48
	left superior medial frontal gyrus
	0, 66, 18

	
	
	right cerebellum
	48, -72, -38

	
	120
	left inferior frontal gyrus
	-48, 30, 18

	
	
	right inferior frontal gyrus
	50, 22, 28

	
	146
	left inferior frontal gyrus
	50, 18, 6

	
	
	left insula
	-34, 24, -2

	
	119
	left insula
	-40, 18, -6

	
	
	right insula
	44, 16, -2

	
	96
	left inferior parietal lobule
	-24, -72, 46

	
	
	left precentral gyrus
	-52, 10, 34

	
	102
	right rolandic operculum
	54, 4, 4

	
	
	left rolandic operculum
	-54, 0, 4

	
	55
	right superior parietal lobule
	18, -54, 66

	
	
	right cerebellum
	26, -44, -48

	
	136
	left angular gyrus
	-52, -78, 28

	
	
	right middle occipital gyrus
	44, -78, 34

	
	
	
	

	Auditory

	
	62
	left superior temporal gyrus
	-52, -18, 6

	
	
	right superior temporal gyrus
	60, -12, 0

	
	145
	right superior temporal gyrus
	56, -44, 18

	
	
	left superior temporal gyrus
	-58, -54, 12

	
	125
	right insula
	42, -18, 12

	
	
	left superior temporal gyrus
	-46, -24, 12

	
	
	
	

	Sensorimotor

	
	9
	left paracentral lobule
	0, -24, 72

	
	8
	left postcentral gyrus
	-46, -30, 54

	
	
	right postcentral gyrus
	54, -20, 48

	
	98
	left inferior parietal lobule
	-54, -30, 45

	
	
	right supramarginal gyrus
	60, -20, 40

	
	26
	right postcentral gyrus
	44, -30, 58

	
	
	left postcentral gyrus
	-42, -38, 60

	
	2
	left postcentral gyrus
	-54, -8, 34

	
	
	right postcentral gyrus
	60, -6, 30

	
	73
	left paracentral lobule
	0, -24, 54

	
	
	left rolandic operculum
	-40, -26, 18

	
	124
	left inferior parietal lobule
	-57, -42, 42

	
	
	right supramarginal gyrus
	60, -38, 40

	
	77
	left supplementary motor area
	0, 6, 52

	
	
	right insula
	48, 10, -2

	
	
	
	

	Visual

	
	131
	left inferior temporal gyrus
	-52, -50, -12

	
	
	right fusiform gyrus
	44, -30, -18

	
	76
	right calcarine gyrus
	18, -102, -2

	
	34
	left cuneus
	2, -80, 24

	
	42
	right fusiform gyrus
	32, -78, -14

	
	
	left cerebellum
	-40, -68, -20

	
	71
	left fusiform gyrus
	32, -78, -14

	
	
	right fusiform gyrus
	-40, -68, -20

	
	91
	right lingual gyrus
	24, -72, -12

	
	111
	left lingual gyrus
	0, -78, 4

	
	69
	left cerebellum
	-6, -50, -2

	
	82
	right cerebellum
	8, -50, -2

	
	70
	left lingual gyrus
	-18, -86, -18

	
	33
	right calcarine gyrus
	8, -68, 10

	
	59
	right lingual gyrus
	12, -56, 10

	
	
	left middle occipital gyrus
	-42, -80, 30

	
	130
	right middle occipital gyrus
	38, -84, 6

	
	
	left middle occipital gyrus
	-36, -86, 6

	
	100
	cerebellar vermis
	2, -42, 4

	
	129
	cerebellar vermis
	6, -56, 0

	
	38
	left precuneus
	0, -66, 58

	
	
	right superior frontal gyrus
	30, 4, 60

	
	37
	left posterior cingulate gyrus
	0, -54, 30

	
	
	left angular gyrus
	-52, -68, 28

	
	27
	right middle cingulate gyrus
	-4, -24, 28

	
	
	left inferior parietal lobule
	-36, -62, 48

	
	
	
	

	Default Mode

	
	123
	right middle cingulate cortex
	2, 42, 10

	
	
	right insula
	36, 18, -12

	
	49
	left middle orbital gyrus
	0, 48, -6

	
	
	left middle temporal gyrus
	-58, -14, -18

	
	90
	left angular gyrus
	-52, -62, 30

	
	
	left middle frontal gyrus
	-42, 18, 46

	
	101
	right middle frontal gyrus
	30, 18, 54

	
	
	right inferior parietal lobule
	54, -56, 40


Note. “IC” = independent component; this value indicates the number of the component identified during resting-state network processing. Note that some ICs contain two anatomical regions, whereas others are comprised of only one region. Coordinates for the peak of activity in the identified IC are noted in the right-most column. Functional network connectivity (FNC) within each of the targeted overarching networks (e.g., Cognitive Control) was computed as the averaged connectivity across all resting state networks subsumed under the network. Analyses to identify the resultant networks detailed above were previously published (Agcaoglu et al., 2019; Taylor et al., 2022).
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Table S2. Correlation matrix of study variables included in final models
	
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.

	1. Age (T1)
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2. Sex 
	.01
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3. Race 
	.01
	.11
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	4. Ethnicity
	-.07
	.02
	-.11
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	5. Dysregulation (T1)
	-.08
	-.02
	.01
	.05
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	6. Trauma (T1)
	-.07
	.003
	-.05
	.07
	.15*
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	7. CCN – CCN (T1)
	-.14
	.15*
	.02
	-.04
	.30**
	.02
	—
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	8. CCN – CCN (T2)
	.14
	.11
	-.11
	-.09
	.02
	-.06
	.44**
	—
	
	
	
	
	
	
	
	
	
	
	
	
	

	9. CCN – CCN (T3)
	-.05
	-.003
	-.14
	-.09
	.01
	.18
	.10
	.28
	—
	
	
	
	
	
	
	
	
	
	
	
	

	10. CCN – DMN (T1)
	-.05
	.12
	.07
	-.02
	.21**
	-.01
	.74**
	.31**
	-.17
	—
	
	
	
	
	
	
	
	
	
	
	

	11. CCN – DMN (T2)
	.06
	-.01
	-.04
	-.02
	.06
	-.03
	.28**
	.72**
	.15
	.27**
	—
	
	
	
	
	
	
	
	
	
	

	12. CCN – DMN (T3)
	-.15
	-.05
	-.16
	-.06
	-.08
	.36*
	.05
	.20
	.56**
	.03
	.41**
	—
	
	
	
	
	
	
	
	
	

	13. CCN – AUD (T1)
	-.10
	.09
	-.02
	-.03
	.31**
	.04
	.80**
	.45**
	.21
	.63**
	.30**
	.05
	—
	
	
	
	
	
	
	
	

	14. CCN – AUD (T2)
	.21*
	.01
	-.14
	-.15
	-.03
	.003
	.30**
	.83**
	.37**
	.19*
	.58**
	.17
	.42**
	—
	
	
	
	
	
	
	

	15. CCN – AUD (T3)
	-.01
	-.07
	-.18
	-.06
	.05
	.16
	.05
	.31*
	.83**
	-.16
	.13
	.42**
	.25
	.53**
	—
	
	
	
	
	
	

	16. CCN – SM (T1)
	-.14*
	.11
	-.02
	-.03
	.28**
	.01
	.87**
	.44**
	.07
	.62**
	.28**
	-.09
	.88**
	.37**
	.08
	—
	
	
	
	
	

	17. CCN – SM (T2)
	.21*
	.02
	-.15
	-.20*
	-.02
	-.05
	.36**
	.87**
	.27
	.27**
	.54**
	.10
	.42**
	.86**
	.40**
	.40**
	—
	
	
	
	

	18. CCN – SM (T3)
	-.14
	-.05
	-.26
	-.14
	.08
	.20
	.11
	.38**
	.86**
	-.17
	.24
	-.44**
	.33*
	.51**
	.85**
	.21
	.50**
	—
	
	
	

	19. CCN – VIS (T1)
	-.22**
	.16*
	-.09
	-.05
	.21**
	.03
	.77**
	.42**
	.12
	.49**
	.31**
	.05
	.66**
	.25**
	.04
	.70**
	.32**
	.17
	—
	
	

	20. CCN – VIS (T2)
	.05
	.07
	-.11
	-.04
	.02
	-.10
	.39**
	.81**
	.24
	.25**
	.60**
	.03
	.34**
	.69**
	.33*
	.40**
	.70**
	.44**
	.47**
	—
	

	21. CCN – VIS (T3)
	-.14
	-.25
	-.17
	-.04
	-.06
	.10
	.10
	.19
	.73**
	-.06
	.10
	.38**
	.12
	.13
	.66**
	.06
	.16
	.68**
	.20
	.27
	—


Note.  T1 = Time 1, T2 = Time 2, T3= Time 3.  CCN = cognitive control; DMN = default mode network; AUD = auditory/temporal; SM = sensorimotor; VIS = visual. Significant correlations are bolded; **p < .01, *p < .05. 

Table S3. Model fit indices for each model tested organized by functional network
	[bookmark: _Hlk95747913]Model
	χ2
	df
	p
	χ2diff
	p
	RMSEA
	90% CI
	CFI

	
CCN – CCN
	
	
	
	
	
	
	
	

	Model 1
	1.38
	1
	.24
	· 
	· 
	.05
	.00, .21
	.99

	Model 2
	7.48
	4
	.11
	6.10
	.11
	.07
	.00, .14
	.90

	Model 3
	10.77
	6
	.10
	3.29
	.77
	.06
	.00, .13
	.90

	

	
	
	
	
	
	
	
	

	CCN – DMN
	
	
	
	
	
	
	
	

	Model 1
	0.10
	1
	.75
	-
	-
	.00
	.00, .13
	1.00

	Model 2
	3.45
	4
	.49
	3.35
	.34
	.00
	.00, .10
	1.00

	Model 3
	7.92
	6
	.24
	4.47
	.61
	.04
	.00, .11
	.93

	

	
	
	
	
	
	
	
	

	CCN – AUD
	
	
	
	
	
	
	
	

	Model 1
	2.73
	1
	.10
	-
	-
	.10
	.00, .24
	.95

	Model 2
	14.29
	4
	.01
	11.56
	.01
	.12
	.06, .19
	.80

	Model 3
	18.07
	6
	.01
	3.78
	.71
	.05
	.05, .16
	.81

	

	
	
	
	
	
	
	
	

	CCN – SM
	
	
	
	
	
	
	
	

	Model 1
	0.92
	1
	.34
	-
	-
	.00
	.00, .19
	1.00

	Model 2
	19.85
	4
	.001
	18.93
	<.001
	.15
	.09, .21
	.72

	Model 3
	26.17
	6
	.0002
	6.32
	.39
	.13
	.08, .19
	.71

	

	
	
	
	
	
	
	
	

	CCN – VIS
	
	
	
	
	
	
	
	

	Model 1
	0.84
	1
	.36
	-
	-
	.00
	.00, .19
	1.00

	Model 2
	7.66
	4
	.10
	6.82
	.08
	.07
	.00, .15
	.92

	Model 3
	9.82
	6
	.13
	2.16
	.90
	.06
	.00, .12
	.93


[bookmark: _Hlk104385623]Note. “Model 1” = the baseline latent growth curve model; “Model 2” = the latent growth curve model including age, sex, and site as control variables on the latent intercept and slope; “Model 3” = the final model including dysregulation and trauma exposure; “χ2” = chi-square test of model fit; “df” = degrees of freedom; “χ2diff” = chi-square difference test; “RMSEA” = root mean square error of approximation; “90% CI” = 90% confidence interval around the RMSEA; “CFI” = comparative fit index. 











	Effects of Interest

	Predictor
	Outcome
	b
	SE
	p

	Dysregulation
	I
	0.004
	0.001
	<.001

	
	S
	-0.002
	0.001
	.03

	
	
	
	
	

	Trauma Exposure
	I
	-0.002
	0.003
	.57

	
	S
	0.003
	0.003
	.40

	Covariates

	Predictor
	Outcome
	b
	SE
	p

	Age
	I
	-0.005
	0.003
	.11

	
	S
	0.006
	0.003
	.07

	
	Dysregulation
	-0.298
	0.269
	.27

	
	Trauma Exposure
	-0.075
	0.08
	.35

	
	
	
	
	

	Sex
	I
	0.024
	0.01
	.03

	
	S
	-0.011
	0.011
	.32

	
	Dysregulation
	-0.345
	0.94
	.71

	
	Trauma Exposure
	0.014
	0.28
	.96

	
	
	
	
	

	
	
	
	
	

	Site
	I
	-0.013
	0.01
	.22

	
	S
	0.002
	0.01
	.87

	
	Dysregulation
	-0.209
	0.93
	.82

	
	Trauma Exposure
	-0.098
	0.28
	.72


Table S4. Latent growth curve model results for baseline levels and changes in cognitive control network connectivity related to dysregulation symptoms and trauma exposure
















Note. I = intercept, S = slope. Significant results p<.05 are bolded. Sex was coded as 0 = male, 1 = female. Site was coded as 0 = UNMC, 1 = MRN. 












Table S5. Latent growth curve model results for baseline levels and changes in cognitive control – default mode network connectivity related to dysregulation symptoms and trauma exposure
	Effects of Interest

	Predictor
	Outcome
	b
	SE
	p

	Dysregulation
	I
	0.003
	0.01
	<.01

	
	S
	-0.002
	0.001
	.06

	
	
	
	
	

	Trauma Exposure
	I
	-0.003
	0.003
	.27

	
	S
	0.007
	0.003
	.036

	Covariates

	Predictor
	Outcome
	b
	SE
	p

	Age
	I
	-0.001
	0.003
	.81

	
	S
	0.000
	0.003
	.95

	
	Dysregulation
	-0.292
	0.27
	.28

	
	Trauma Exposure
	-0.077
	0.08
	.34

	
	
	
	
	

	Sex
	I
	0.017
	0.01
	.12

	
	S
	-0.010
	0.01
	.38

	
	Dysregulation
	-0.342
	0.94
	.72

	
	Trauma Exposure
	0.019
	0.28
	.94

	
	
	
	
	

	Site
	I
	-0.021
	0.01
	.05

	
	S
	0.014
	0.01
	.21

	
	Dysregulation
	-0.342
	0.94
	.72

	
	Trauma Exposure
	-0.100
	0.28
	.72



















Note. I = intercept, S = slope. Significant results p<.05 are bolded.  Sex was coded as 0 = male, 1 = female. Site was coded as 0 = UNMC, 1 = MRN. 




Table S6. Latent growth curve model results for baseline levels and changes in cognitive control – visual network connectivity related to dysregulation symptoms and trauma exposure
	Effects of Interest

	Predictor
	Outcome
	b
	SE
	p

	Dysregulation
	I
	0.003
	0.001
	<.01

	
	S
	-0.001
	0.001
	.08

	
	
	
	
	

	Trauma Exposure
	I
	-0.001
	0.003
	.78

	
	S
	-0.001
	0.003
	.75

	Covariates

	Predictor
	Outcome
	b
	SE
	p

	Age
	I
	-0.010
	0.004
	<.01

	
	S
	0.006
	0.003
	.09

	
	Dysregulation
	-0.292
	0.269
	.28

	
	Trauma Exposure
	-0.075
	0.08
	.35

	
	
	
	
	

	Sex
	I
	0.027
	0.01
	.03

	
	S
	-0.030
	0.01
	<.01

	
	Dysregulation
	-0.295
	0.94
	.75

	
	Trauma Exposure
	0.013
	0.28
	.96

	
	
	
	
	

	
	
	
	
	

	Site
	I
	-0.012
	0.01
	.31

	
	S
	-0.003
	0.01
	.80

	
	Dysregulation
	-0.194
	0.94
	.84

	
	Trauma Exposure
	-0.098
	0.28
	.72































Note. I = intercept, S = slope. Significant results p<.05 are bolded. Sex was coded as 0 = male, 1 = female. Site was coded as 0 = UNMC, 1 = MRN. 





Figure S1. Distribution of trauma history profile. Violin plot of trauma history profile variable. Participants’ self-reported number of traumatic experiences are displayed with median and quartiles represented by a black bold line and dotted lines, respectively.











Figure S2. Item level subtypes from the trauma history profile. The percentage of participants who endorsed each item in the trauma history profile. The number of participants who endorsed the item is also shown above each respective item. D.V. = domestic violence. 
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