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1. Details of the Markov chain Monte Carlo algorithm for the static probit unfolding model
As discussed in Section 2.3 of the original manuscript, we consider a data augmentation approach
where y∗i,j,1

y∗i,j,2
y∗i,j,3

∣∣∣∣αj,1,αj,2, δj,1, δj,2,βi ∼ N

–αj,1(βi – δj,1)
0

–αj,2(βi – δj,2)

∣∣∣∣03,

1 0 0
0 1 0
0 0 1

 , (1)

for all i = 1, . . . , I and j = 1, . . . , J , and let yi,j = 1 if and only if y∗i,j,2 > max
{
y∗i,j,1, y∗i,j,3

}
and yi,j = 0

otherwise. For notational convenience, we will let ỹ∗i,j = {y∗i,j,1, y∗i,j,3}.
Additionally, because of the mixture structure associated with the prior on αj, δj, we consider a

second data augmentation scheme and introduce variables z1, . . . , zJ such that zj = 1 if and only if
αj,1 > 0 and αj,2 < 0, and zj = –1 otherwise, where Pr(zi = 1) = 0.5 a priori.

Sampling βi, i = 1, 2, . . . , I : Conditional on y∗i,j ’s, αj’s and δj’s, the posterior distribution of each

βi is Gaussian with mean µβi , and variance σ2
βi

given by:

σ2
βi

=
1

1 +
∑J

j=1 α
′
jαj

µβi = –σ2
βi

 J∑
j=1

α′
j(ỹ

∗
i,j – Dαjδi)

 . (2)

Sampling zj, j = 1, 2, . . . , J : Given y∗i,js, βis δj, and after integrating over αj, the conditional for
zj = 1 is proportional to the following:

p(zj = 1 | y∗i,jδj, {βi})

∝ ϕ
(
δj | µ, κ2

I2×2

)∫ ∞

0

∫ 0

–∞

∏
i
p(y∗i,j | αj, zj = 1,δj,βi)p(αj | zj = 1)dαj,2dαj,1

= ϕ
(
δj | µ, κ2

I2×2

){
1 – Φ

(
–(µαj )1/

(
Σαj

)
1,1

)}
Φ

(
–(µαj )2/

(
Σαj

)
2,2

)
, (3)

where ϕ(· | µ,Σ) is the density of a (multivariate) Gaussian distribution with mean µ and variance
Σ, Φ the cumulative distribution function of the (univariate) standard Gaussian distribution, µαj
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and Σαj are defined as

Σαj =

(∑
i
Dβi–δjDβi–δj +

1
ω2 I2,2

)–1

µαj = –Σαj

(∑
i
Dβi–δỹ

∗
i,j

)
, (4)

with D(a,b) indicating a diagonal matrix with diagonal entries a and b for a, b ∈ R, and (µαj )k and(
Σαj

)
k,k′

represent the k-th and (k, k′)-th entries of µαj and Σαj , respectively.

Similarly, the conditional for zj = –1 is given by

p(zj = –1 | y∗i,jδj, {βi})

∝ ϕ
(
δj | –µ, κ2

I2×2

)∫ 0

–∞

∫ ∞

0

∏
i
p(y∗i,j | αj, zj = 1,δj,βi)p(αj | zj = –1)dαj,2dαj,1

= ϕ
(
δj | –µ, κ2

I2×2

)
Φ

(
–(µαj )1/

(
Σαj

)
1,1

){
1 – Φ

(
–(µαj )2/

(
Σαj

)
2,2

)}
. (5)

Sampling αj, j = 1, 2, . . . , J : The posterior distributions of αj conditioned on zj, βis, y∗i,js and δj is
a truncated multivariate normal distributions for j = 1, 2, . . . , J . The posterior mean for αj,1 and αj,2,
µαj , and posterior covariance matrix, Σαj , are given in (4). Meanwhile, the truncation is determined
by zj. If zj = 1, then the distribution is truncated to the region where αj,1 > 0 and αj,2 < 0, and it is
truncated to the region αj,1 < 0 and αj,2 > 0 if zj = –1.

Note that we sample zj and αj in the same Gibbs step because we compute the posterior of αj
when sampling for zj. Of course, we perform this Gibbs step by sampling zj conditioned on βi’s and
δj and then sampling αj conditioned on βi’s, zj, and δj.

Sampling δj, j = 1, 2, . . . , J : Finally, the posterior distributions of δj conditioned on zj, βi’s, y∗i,j ’s,
and αj is a multivariate normal distributions with posterior mean µδj and posterior covariance matrix
Σδj given by:

Σδj =
(
IDαjDαj +

1
κ2 I2,2

)–1
µδj = Σδj

( I∑
i=1

Dαj (ỹ
∗
i,j – αjβi) + zj

µ

κ2

)
. (6)

Sampling y∗i,j; i = 1, 2, . . . , I j = 1, 2, . . . , J : Conditioned on αj, δj, and βi, we first discuss how to
sample y∗i,j if yi,j = 1.

1. Draw y∗i,j,1 from a normal distribution with mean –αj,1(βi – δj,1) and variance 1 truncated to the
interval, (–∞, y∗i,j,2).

2. Draw y∗i,j,2 from a standard normal distribution truncated to the interval, (max(y∗i,j,1, y∗i,j,3),∞).
3. Draw y∗i,j,3 from a normal distribution with mean –αj,2(βi – δj,2) and variance 1 truncated to the

interval, (–∞, y∗i,j,2).

Next, we discuss how to sample y∗i,j if yi,j = 0.

1. If y∗i,j,3 > y∗i,j,2, draw y∗i,j,1 from a normal distribution with mean –αj,1(βi – δj,1) and variance 1.
Otherwise, draw y∗i,j,1 from the same normal distribution, but truncate this normal distribution
to the interval (y∗i,j,2,∞).



Cambridge Medium 3

0.0

2.5

5.0

7.5

10.0

0.00 0.25 0.50 0.75 1.00
θi, j

D
en

si
ty

(a) Alternative prior

0.0

2.5

5.0

7.5

10.0

0.00 0.25 0.50 0.75 1.00
θi, j

D
en

si
ty

(b) Original prior

Figure 1. Histograms for 10,000 draws of the implied prior distribution onθi,j for our probit GGUM model under an alternative
prior with µ = (–2, 10)′, ω2 = 1 and κ2 = 9 (left panel) and under the original prior with µ = (–2, 10)′, ω2 = 25 and κ2 = 10.

2. Draw y∗i,j,2 from a standard normal distribution truncated to the interval, (–∞, max(y∗i,j,1, y∗i,j,3)).
3. If y∗i,j,1 > y∗i,j,2, draw y∗i,j,3 from a normal distribution with mean –αj,2(βi – δj,2) and variance 1.

Otherwise, draw y∗i,j,3 from the same normal distribution, but truncate this normal distribution
to the interval (y∗i,j,2,∞)

2. Details of the Markov chain Monte Carlo algorithm for the dynamic probit unfolding model
Similarly to Section 1, we augment the sampler with variablesy∗i,j,t,1

y∗i,j,t,2
y∗i,j,t,3

∣∣∣∣αj,t,1,αj,t,2, δj,t,1, δj,t,2,βi,t ∼ N

–αj,t,1(βi,t – δj,t,1)
0

–αj,t,2(βi,t – δj,t,2)

∣∣∣∣
1 0 0

0 1 0
0 0 1

 , (7)

where yi,j,t = 1 if and only if y∗i,j,t,2 > max
{
y∗i,j,t,1, y∗i,j,t,3

}
and yi,j,t = 0 otherwise, and also define

zj,t = 1 if αj,t,1 > 0 and αj,t,2 < 0, and zj,t = –1 otherwise, where Pr(zi,t = 1) = 0.5 a priori.
The steps associated with sampling the δj,ts, αj,ts, zj,ts and y∗i,t,js are analogous to those described

in the previous section. We describe the steps for sampling βt and ρ below:

Sampling βi, i = 1, 2, . . . , I : To ensure proper mixing of our Markov chain, we sample the whole
trajectory of ideal points for the i-th justice, βi, from its joint full conditional distribution. This
corresponds to a multivariate normal distribution with variance matrix Σβi =

{
B + Ω(ρ)–1}–1 and

mean µβi = –Σβim, where m is a vector with entries

mt = –
∑

j:yi,j,t∈{0,1}

(
αj,t,1(y∗i,j,1 – αj,t,1δj,1) + αj,t,2(y∗i,j,3 – αj,t,2δj,t,2)

)
(8)

and B is a diagonal matrix with entries

Bt,t =
∑

j:yi,j,t∈{0,1}

α′
j,tαj,t. (9)
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Figure 2. Comparison of the posterior distribution over legislator’s ranks for the 116th House under two alternative priors.
The left panel shows a comparison of the median ranks for each legislator. Democrats are shown with blue triangles,
Republicans are shown with red triangles, and independents are shown with a rhombus and the color of the party that they
caucus with. The right panel shows the posterior distribution of the Spearman correlation between both sets of ranks.

Sampling ρ: To sample ρ, we use a random walk Metropolis-Hasting step on the logit scale. More
specically Let ρ′ denote the proposed value for ρ which is obtained as

ρ′ =
1

1 + exp
{

– log ρ
1–ρ + ν

} ,

where ν follows a normal distribution with mean 0 and variance τ2. Then ρ′ is accepted with
probability:

min

1,

[∏I
i=1 ϕ(βi | 0,Ω(ρ′))

]
ϕ(0,1)(ρ

′ | η, λ2)ρ′(1 – ρ′)[∏I
i=1 ϕ(βi | 0,Ω(ρ))

]
ϕ(0,1)(ρ | η, λ2)ρ(1 – ρ)

 .

where ϕ(· | µ,Σ) denotes the density of a (multivariate) normal distribution with mean µ and
variance Σ, and ϕ(0,1)(· | η, λ2) denotes the density of a (univariate) normal distribution with mean η

and variance λ2, truncated to the interval [0, 1].

3. Evolution of inter-party spread in revealed preferences
Figure 3 presents the ratio of the spread of Democrats’ revealed preferences to the spread of Re-
publican’s preferences based on three alternative metrics of spread: range, standard deviation and
interquartile range (IQR). The first plot just repeats Figure 5 of the main manuscript. We can see
that the overall picture is very similar no matter what metric is used, but that there some minor
differences. For example, the differences between IDEAL and the unfolding models between the
110th and 114th House are less pronounced under the interquartile range and the standard deviation.
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Figure 3. Posterior mean of the ratio of Democrats’ range, standard deviation and interquartile range (IQR) over the same
metric for Republicans across the various Houses. The solid line corresponds to the probit unfolding model, the dotted line
to IDEAL, and the dashed line to BGGUM.

4. Sensitivity analysis for the static probit unfolding model
In this section, we conduct a sensitivity analysis for the results associated with the 116th U.S. House
of Representatives (see Section 3 of the main manuscript). To accomplish this, we refit the model
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Figure 4. Plots displaying various posterior mean response curves based on the posterior means of αj,1,αj,2, δj,1, and δj,2
from the probit unfolding model for the 116th House under the two priors. The response curves for the prior discussed in
the paper is shown with a solid line whereas the response curves for the alternative prior is shown with dashed lines.

setting ω2 = 1 and κ2 = 9. The implied prior on θi,j = Pr
(
yi,j = 1 | βi,αj,δj

)
can be seen on the left

panel of Figure 1. To facilitate comparison, the right panel shows again the prior on θi,j implied by
the original prior (in which ω2 = 25 and κ2 = 10, recall Figure 2a in the main manuscript). Note
that the alternative prior favors values of θi,j close to 0.5 much more strongly than the original prior.

The left panel of Figure 2 compares the posterior median ranks of legislators under both priors,
while its right panel shows the posterior distribution of their Spearman correlation. These graphs
suggest that the ranks are fairly robust to the change in prior parameters. On the other hand, Figure
4 compares the posterior mean response curves associated with the same three votes discussed in
Figure 7 of the main manuscript. Here we see a more pronounced effect of the prior, specially for
HRES6. These differences, which mainly seem to be associated with the slopes of the response
function, are not too surprising. Indeed, the alternative prior has a much lower variance for αj,1 and
αj,2 than the original, which discourages large values for the slopes.

Finally, we also explored the impact of the alternative prior distribution on the WAIC score of our
model (recall Equation (5) in the main manuscript). Interestingly, the WAIC under the alternative
prior is worse than the WAIC under the original one, and also worse than the WAIC for BGGUM.
However, the WAIC score for our model under the alternative prior is still better than the WAIC for
IDEAL. These results suggest that our observation that unfolding models generally seem to better
explain voting patterns in the modern U.S. House of Representatives is fairly robust to prior choices.
However, it also reminds us that priors can have a substantial effect on model comparison criteria, and
that matching priors (as we did in Section 2.1 of the main manuscript) is an important prerequisite
to any meaningful application of model selection criteria.

5. Sensitivity analysis for dynamic probit unfolding model
We now study the sentivity to prior choices in the context of the analysis of U.S. Supreme Court
vote data discussed in Section 5 of the main manuscript. For this sensitivity analysis, we consider an
alternative prior on the autocorrelation parameter ρ that corresponds to a normal distribution with
mean 0.8 and standard deviation 0.1, truncated to the [0, 1] interval.

Figure 5 displays histograms of the posterior draws of ρ against the plots of priors’ probability
density function in each of the two scenarios. As seen in this plot, the alternative prior is centered at
a much lower value for ρ and is much more diffuse. Indeed, under the original prior, P(ρ < 0.85)
is roughly 0.1, while under the alternative prior, P(ρ < 0.85) is roughly 0.7. However, despite the
fact the new prior places less probability on large values of ρ, the posterior is still quite concentrated
around 0.9. This suggests that the posterior distribution of ρ is fairly robust to the prior.
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Figure 5. Histograms for the posterior of ρ under various priors with its respective prior probability density function plotted
in grey.

We now examine the downstream effect of this prior choice. Figure 6b shows the posterior mean
(solid line) and corresponding 95% credible intervals (shaded region) for the Spearman correlation
between the justices’ rankings generated under the two priors we consider. Overall, we can see that
the ranks are quite similar, although there seems to be some sensitivity during the 1967 term. This
is likely related to Justice Black’s ideal point for that term. As an example of the overall similarity,
Figure 7 displays the posterior mean of the ideal points of SCOTUS justices active during 1949 to
1952 under both the original and the alternative prior. In both cases, the ideal points of Justices
Frankfurter and Jackson drop in a similar manner during this time period. On the other hand, Figure
6a shows the difference in WAIC scores between the original and alternative prior on ρ. This graph
does not show a clear pattern in favor of either prior.
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Figure 6. Left panel: Difference in WAIC scores for dynamic unfolding model under the original and alternative prior on ρ,
(WAIC(DPUM alternative prior) - WAIC(DPUM original prior)). Note that the way the difference is being computed here is
the opposite to the way in which it was computed in Figure 3a in the main text. Right panel: Posterior mean (solid line)
and corresponding 95% credible intervals (shaded region) for the Spearman correlation between the justices’ rankings
generated under the two priors for ρ.
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Figure 7. Posterior mean of the ideal points for SCOTUS Justices active during 1949 to 1952 terms under the dynamic
unfolding model for various priors for ρ.


	Details of the Markov chain Monte Carlo algorithm for the static probit unfolding model
	Details of the Markov chain Monte Carlo algorithm for the dynamic probit unfolding model
	Evolution of inter-party spread in revealed preferences
	Sensitivity analysis for the static probit unfolding model
	Sensitivity analysis for dynamic probit unfolding model

