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Appendix A: Further details regarding model

Identifying the time-varying parameters in the multiplier matrix

Restrictions on U∗
t

In terms of U∗
t , we impose a diagonality restriction on (U∗

t U
∗′
t ) such that the n2

individual parameters in u∗
t = vec (U∗

t ) are comprised of n∗ = n (n+ 1) /2 unrestricted

parameters (located in the lower triangular component of U∗
t ) and n2 − n∗ restricted

parameters.

To better explain this, first note that we can introduce a parameter expansion term

κt that allows us to amend the specification of Θt as

Θt = UtI(St)I(St)Dt (A1)

= UtκtI(St)I(St)κ
−1
t Dt

= U∗
t I(St)I(St)D

∗
t

where κt = (U∗′
t U

∗
t )

1
2 is an (n× n) diagonal matrix and, by construction, U∗

t = Utκt.

Given (A1), it follows that

β∗
t = UtκtI(St) = U∗

t I(St). (A2)

α∗
t = I(St)κ

−1
t Dt = I(St)D

∗
t (A3)

such that βt = UtI(St) and αt = I(St)Dt as per equations (8) and (9).

Pursuant to this decomposition, conditional on St we can obtain α∗
t and β∗

t by esti-

mating the individual parameters in d∗t = vec (D∗
t ) and u∗

t = vec(U∗
t ) for t = 2, ..., T .

The diagonality of κt implies that U∗
t is orthogonal and satisfies U∗′

itU
∗
jt = 0 for i, j =

1, ..., n and i ̸= j, where U∗
it is the ith column of U∗

t . It is noted that, given the diagonal

κ∗
t and the idempotent nature of I(St), we have

κtI(St)I(St)κ
−1
t = I(St) (A4)

such that we are able to transition from the second row of (A1) to the first row and Θt

does not depend on the expansion matrix κt.

To understand the ramifications of the orthogonality condition for estimating the

pass-through parameters, assume that St = r + 1 = 2. In this case Θt has rank r = 1

and the relevant vector describing the relationship between interest rates, inflation and

output is βt,1 = U∗
t,1κ

−1
t,1 , where U∗

t,1 is the first column of U∗
t and κt,1 =

(
U∗′
t,1U

∗
t,1

) 1
2 . Now
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assume that St = 3 such that the multiplier matrix βt,2 (consisting of two vectors) is

given by U∗
t,2κ

−1
t,2 , where U∗

t,2 is the first two columns of U∗
t and κt,2 =

(
U∗′
t,2U

∗
t,2

) 1
2 . Since

κt is diagonal, the first column of βt,2 is given by U∗
t,1κ

−1
t,1 and therefore is the same vector

observed when St = 2. In other words, as the state of the system shifts from St = 2 to

St = 3 we add a second orthogonal vector describing the relationship between the system

of variables whilst continuing to retain the first vector.

It follows that if the rank of the multiplier matrix never exceeds unity, the first

column in Ut uniquely determines the monetary policy weights associated with inflation

and output; since U∗′
itU

∗
jt = 0 for any t, there is no other set of monetary policy weights

that is orthogonal to the set estimated.

Accordingly, if the probability of St > 2 is zero, the inflation and output targeting

parameters can be deduced using βt,1 = U∗
t,1κ

−1
t,1 , with the selection matrix I(St) acting

as a switch to turn the Taylor-type rule on or off in accordance with βt = UtI(St) (viz.

when St = 1 the Taylor-type rule is switched off and when St = 2 the Taylor-type rule is

switched on). This is undertaken endogenously in our model and therefore allows for the

estimation of the time-varying probability of interest rates following a Taylor-type rule at

time t by reference to the posterior distribution of the selection matrix. This probability

is trivially and exactly given by the proportion of times βt,1 is ‘selected’, requiring no

approximation or marginal likelihood derivation.

To ensure the satisfaction of the orthogonality conditions for U∗
t we specifically restrict

the first j−1 elements of the jth column, for j = 2, ..., n, by solving for the j−1 elements(
u∗
1j, u

∗
2j, ..., u

∗
(j−1)j

)
t
that satisfy the orthogonality constraints

U∗
1t ⊥ U∗

jt

U∗
2t ⊥ U∗

jt
...

U∗
(j−1)t ⊥ U∗

jt

 (A5)

where the solution to (A5) is conditional on the first j−1 columns of U∗
t (e.g. U∗

1t, U
∗
2t, ..., U

∗
(j−1)t)

and the n− j + 1 unrestricted elements of U∗
jt.

This approach allows us to recover the restricted elements recursively beginning with

the second column of U∗
t and ending with the nth column. We can show that the solution

for the j−1 restrictions pertaining to the jth column of U∗
t can be obtained as (omitting
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the t subscript for notational convenience)


u∗
1j

u∗
2j
...

u∗
(j−1)j

 =


u∗
11 u∗

12 · · · u∗
1(j−1)

u∗
21 u∗

22 u∗
2(j−1)

...
. . .

...

u∗
(j−1)1 u∗

(j−1)2 u∗
(j−1)(j−1)


′−1



−
n∑

i=j

u∗
i1u

∗
ij

−
n∑

i=j

u∗
i2u

∗
ij

...

−
n∑

i=j

u∗
i(j−1)u

∗
ij


. (A6)

Pursuant to the above restrictions, it follows that U∗′
t U

∗
t is a diagonal matrix. The

adoption of κt = (U∗′
t U

∗
t )

1
2 thereby produces a diagonal matrix that, given Ut = U∗

t κ
−1
t ,

also satisfies the orthonormality condition for Ut, (U
′
tUt) = In.

Restrictions on D∗
t

Similar to the restrictions for U∗
t , there are n(n− 1)/2 restrictions to ensure that the

rows of D∗
t (hence the columns of D∗′

t ) are orthogonal. The restrictions are placed on the

first j − 1 elements of the jth row of D∗
t for j = 2, ..., n. As is the case for the restricted

elements of U∗
t , we can show that the restricted j − 1 elements in the jth row of D∗

t can

be obtained as (again, omitting the t subscript)


d∗j1

d∗j2
...

d∗j(j−1)

 =


d∗11 d∗12 · · · d∗1(j−1)

d∗21 d∗22 d∗2(j−1)
...

. . .
...

d∗(j−1)1 d∗(j−1)2 d∗(j−1)(j−1)


−1 

−
∑n

i=j d
∗
1id

∗
ji

−
∑n

i=j d
∗
2id

∗
ji

...

−
∑n

i=j d
∗
(j−1)id

∗
ji

 . (A7)

Pursuant to the above conditions, the n2 parameters in d∗t = vec (D∗
t ) are comprised

of n (n+ 1) /2 unrestricted parameters (located in the upper triangular component of

D∗
t ) and n (n− 1) /2 restricted parameters (with an analogous interpretation for the

parameters in u∗
t = vec (U∗

t ), except that the n (n+ 1) /2 unrestricted parameters in u∗
t

are located in the lower triangular component of U∗
t ).
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Appendix B: Priors and estimation

The following proper and independent prior densities are adopted for the model param-

eters.

vec

([
c′ B′

]′)
∼ N(g = 0,Σg = 100),

Σ ∼ IW (v = 2, D),

D = 0.036

 var(△πt) 0 0

0 var(△it) 0

0 0 var(△yt)

 ,

Pi,· ∼ D (τi1, τi2, ..., τi,4) , i = 1, 2, ..., 4.

σ2
i ∼ IG(

ϑi

2
,
ϑifi
2

), i = 1, ..., n∗ = 4,

ρ ∼ U(ρ = 0.999, ρ = 1),

where Pi,· is the ith row of P . IW , D, IG and U refer to the inverse-Wishart, Dirichlet,

inverse-Gamma and Uniform densities respectively. The parameters c, B and Σ are

regime-dependent such that c = cj, j = 1, 2, ..., 4, (with an analogous representation for

B,Σ) whereby cj is the intercept when St = j. Since St is identified by the rank of the

long-run multiplier matrix, we do not need to impose any ‘labelling’ restrictions on c, B

or Σ.

The priors for the transition matrix governing St are set to τ1j = τ3j = τ4j = (2, 5, 2, 2)

and τ2j = (10, 100, 10, 10). This ensures that our priors are consistent with existing

research which a priori imposes the existence of a single long-run relationship between

interest rates, output and inflation (for example, Clarida, Gali and Gertler (2000) and

Lubik and Shorfheide (2004)).

We set ϑi = 0.0196 and fi = 1. The prior for ρ is based on the discussion in Koop,

Leon-Gonzalez and Strachan (2011). Finally, we assume σd = 1 such that the distribution

of the initial state is d∗0 ∼ N (0, In∗).

The Metropolis-in-Gibbs sampler used in the paper consists of the eight steps detailed
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in this Appendix. The following notation holds for each step.

x̃T = (x1, x2, ..., xT )

S̃T = (S1, S2, ..., ST ) , p = (p11, ..., p1(n+1), ..., p(n+1)1, ..., p(n+1)(n+1)),

σ = (σ1, ..., σn∗) , n∗ = n (n+ 1) /2,

g = vec

([
c′ B′

]′)
,

ũ∗
T = (u∗

1, ..., u∗
T ) , d̃∗T = (d∗1, ..., d∗T ) .

Step 1: Draw S̃T given x̃T , d̃
∗
T , ũ

∗
T , g, p and Σ.

Draws of S̃T are based on the multi-move Gibbs Sampling algorithm of Carter and Kohn

(1994) (see, also, Chib, 1996). The conditional posterior probability for St = j, j ∈
{1, 2, ..., n+ 1}, is

Pr(St = j|x̃t, d̃
∗
t , ũ

∗
t , g,Σ, St+1) =

p(St = j|x̃T , d
∗
t , u

∗
t , g,Σ, St+1)∑n+1

i=1 p(St = i|x̃T , d∗t , u
∗
t , g,Σ, St+1)

p(St|x̃T , d
∗
t , u

∗
t , g,Σ, St+1) ∝ p(St|x̃t, d

∗
t , u

∗
t , g,Σ)p(St+1|St)

where p(St+1|St) is the transition probability and p(St|ỹt, d∗t , u∗
t , g,Σ) is obtained using

Hamilton’s (1989) basic filter. sjt is set to 0 or 1 according to:

(i.) s1t = 1 if a draw u from the U(0, 1) distribution is less than or equal to Pr(St =

1|x̃T , d
∗
t , u

∗
t , g,Σ, S̸̃=t).

(ii.) sjt = 1 if u is between
∑j−1

i=1 Pr(St = i|x̃T , d
∗
t , u

∗
t , g,Σ, S̸̃=t) and

∑j
i=1 Pr(St =

i|x̃T , d
∗
t , u

∗
t , g,Σ, S̸̃=t) for j = 2, ..., n.

(iii.) s(n+1)t = 1 if u is between
∑n

i=1 Pr(St = i|x̃T , d
∗
t , u

∗
t , g,Σ, S̸̃=t) and 1.

Step 2: Draw p given S̃T

Draws of p are based on the approach proposed in Kim and Nelson (1998). Conditional

on S̃T , the transition parameters are independent of the remaining parameters and are

drawn from the Dirichlet distribution as follows

Pi,·|S̃T ∼ D (ϑi1 + τi1, ϑi2 + τi2, ..., ϑi,n+1 + τi,n+1) , i = 1, 2, ..., n+ 1

where D is the Dirichlet density, Pi,· is the ith row of P and ϑij is the total number of

transitions from St−1 = i to St = j, (i, j = 1, 2, ..., n + 1 and t = 2, 3, ..., T ). The τij

6



(i, j = 1, 2, ..., n+ 1) are prior hyper-parameters.

Step 3: Draw ũ∗T given x̃T , S̃T , d̃
∗
T , g,Σ and ρ

We draw u∗
t recursively, starting from the first column of u∗

t to the nth column. Given

the other parameters and latent variables, the elements in the jth column of u∗
T , for

j = 1, ..., n, can be estimated pursuant to the following linear, Gaussian model

△x̂
∗(j)
t =

(
x̃j:n
t + x̃1:j−1

t Û
(j)
t

)
u
∗(j)
t + ε

(j)′
t ,

u
∗(j)
t = ρu

∗(j)
t−1 + η

(j)
t ,

where

Û
(j)
t =


u∗
11,t u∗

12,t · · · u∗
1(j−1),t

u∗
21,t u∗

22,t u∗
2(j−1),t

...
. . .

...

u∗
(j−1)1,t u∗

(j−1)2,t u∗
(j−1)(j−1),t


′−1 

−u∗
j1,t · · · −u∗

n1,t

−u∗
j2,t −u∗

n2,t
...

...

−u∗
j(j−1),t · · · −u∗

n(j−1),t

 ,

△x̂
∗(j)
t = (△xt − △xt−1Bt − ct − xt−1 (U

∗
t I(St)D

∗
t )̸=j)

′, (U∗
t I(St)D

∗
t ) ̸=j is the resulting

matrix after removing the jth column of U∗
t , the jth row of D∗

t and both the jth row

and column of I(St)., and u
∗(j)
t is a (n− j + 1) vector containing the (n− j + 1) free

parameters that are in the jth column of u∗
t . Further, x̃

a:b
t is the matrix comprised of the

ath to bth columns of
(
(I(St)D

∗
t )

′
j ⊗ xt−1

)
, and (I(St)D

∗
t )j is the jth row of I(St)D

∗
t .

Finally, η
(j)
t ∼ N (0, In−j+1), u

∗(j)
0 ∼ N

(
0, In−j+1

1
1−ρ2

)
with In−j+1 being an identity

matrix of size (n− j + 1).

Accordingly, the Kalman filter and smoother can be used to obtain the conditional

density of ũ∗
T . Draws are obtained pursuant to the simulation smoother method in

Durbin and Koopman (2002).

Step 4: Draw the latent variable autoregressive parameter ρ

given ũ∗T

Given ũ∗
T we draw ρ. However, drawing ρ is not straightforward as this parameter enters

into the distribution of u∗
0. As such, we draw ρ using a Metropolis-Hastings step as per

Koop et. al. (2011).
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Step 5: Draw the latent variable d̃∗T given x̃T , S̃T , ũ
∗
T , g,Σ and σ

The draws for d∗t are obtained using the same approach as that adopted for u∗
t in Step 3.

In particular, we draw d∗t recursively, starting from first row of d∗t to the nth row. Given

the rest of the parameters and the latent variables, the elements in the jth row of d∗T , for

j = 1, ..., n, can be estimated pursuant to the following linear, Gaussian model

△x̂
∗(j)
t =

(
z̃j:nt + z̃1:j−1

t D̂
(j)
t

)
d
∗(j)
t + ε

(j)′
t ,

d
∗(j)
t = d

∗(j)
t−1 + ζ

(j)
t ,

where

D̂
(j)
t =


d∗11,t d∗12,t · · · d∗1(j−1),t

d∗21, t d∗22,t d∗2(j−1),t
...

. . .
...

d∗(j−1)1,t d∗(j−1)2,t d∗(j−1)(j−1),t


−1 

−d∗1j,t · · · −d∗1n,t

−d∗2j,t −d∗2n,t
...

...

−d∗(j−1)j,t · · · −d∗(j−1)n,t

 ,

△x̂
∗(j)
t = (△xt − △xt−1Bt − ct − xt−1 (U

∗
t I(St)D

∗
t )̸=j)

′, (U∗
t I(St)D

∗
t ) ̸=j is the resulting

matrix after removing the jth column of U∗
t , the jth row of D∗

t and both the jth row

and column of I(St), and d
∗(j)
t is an (n− j + 1) vector containing the (n− j + 1) free

parameters in the jth row of d∗t . Further, z̃a:bt is the matrix comprised of the ath to bth

columns of
(
In ⊗ xt−1 (U

∗
t I(St))j

)
, and (U∗

t I(St))j is the jth column of U∗
t I(St). Finally,

ζ
(j)
t ∼ N (0, Qj) with Qj being a ((n − j + 1) × (n− j + 1)) diagonal matrix containing

the following elements
(
σ2
1+(j−1)(n+1−j)+

∑j−1
k=0 k

, ..., σ2
j(n+1−j)+

∑j−1
k=0 k

)
.

Step 6: Draw the latent variable variances σ given d̃∗T

Conditional on d̃T , it can be shown that the conditional posterior density of the regime-

dependent σi is inverse gamma

σi|d̃∗iT ∼ IG

(
0.5 (ϑi + T ) , 0.5

(
ϑifi +

T∑
2

(d∗it − d∗it−1)
2

))
, i = 1, 2, .., n∗.

Step 7: Draw the autoregressive parameters and intercepts g

given ỹT , S̃T , d̃
∗
T , ũ

∗
T and Σ

Conditional on the remaining parameters, the mean and variance of g, which contains

regime dependent parameters, can be obtained from the following linear, Gaussian SUR
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equation

△x∗
t = (In ⊗ zt) g + εt

where △x∗
t = △y′t − α∗′

t β
∗′
t y

′
t−1 and zt =

[
1 △xt−1

]
. Given the adoption of a mul-

tivariate normal prior for g, the conditional posterior density of g is also multivariate

normal

g|x̃T , d̃
∗
T , ũ

∗
T , S̃T ,Σ ∼ MVN(g,Σg)

where Σg =
(
X ′

g(Σ
−1 ⊗ IT )Xg + Σg

)−1
, g = Σg

(
Σ−1

g g +X ′
g(Σ

−1 ⊗ IT )△X∗) , △X∗ =[
△x∗

1 ... △x∗
n

]′
, △x∗

i =
[
△x∗

i1 ... △x∗
iT

]′
and Xg = In ⊗

[
z′1 ... z′T

]′
.

Step 8: Draw the covariance Σ given x̃T , S̃T , d̃
∗
T , ũ

∗
T , and g

Given the adoption of an inverse Wishart prior for Σ, the conditional posterior of Σ is

also inverse Wishart with

Σ|x̃T , d̃
∗
T , ũ

∗
T , S̃T , g ∼ IW (v + T,D + A)

where A =
∑T

t=1 ε
′
tεt, εt = △x′

t − α∗′
t β

∗′
t x

′
t−1 − (In ⊗ zt) g, and zt =

[
1 △xt−1

]
.
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Appendix C: Parameter estimates

Table C1: Estimated posterior medians and standard deviations of the parameters

Median Std Dev Median Std Dev Median Std Dev
p00 0.8617 0.0451 c3,1 0.1611 0.058300148 B33,1 0.0124 0.1013
p01 0.0493 0.0172 c3,2 n/a B31,2 n/a
p02 0.2361 0.1087 c3,3 n/a B32,2 n/a
p03 0.2369 0.1084 B11,0 0.1859 0.0991 B33,2 n/a
p10 0.1160 0.0405 B12,0 -0.1437 0.0507 B31,3 n/a
p11 0.9354 0.0192 B13,0 0.3963 0.1199 B32,3 n/a
p12 0.1762 0.0862 B11,1 0.5246 0.0741 B33,3 n/a
p13 0.1761 0.0858 B12,1 -0.0187 0.0174 Σ11,0 1.2895 0.2078
p20 0.0097 0.0067 B13,1 0.0417 0.0400 Σ12,0 0.5571 0.2651
p21 0.0067 0.0043 B11,2 n/a Σ13,0 0.3278 0.1184
p22 0.5006 0.1508 B12,2 n/a Σ22,0 5.2092 0.8071
p23 0.0548 0.0375 B13,2 n/a Σ23,0 0.3383 0.2350
p30 0.0097 0.0067 B11,3 n/a Σ33,0 1.0057 0.1511
p31 0.0067 0.0043 B12,3 n/a Σ11,1 0.0480 0.0095
p32 0.0543 0.0378 B13,3 n/a Σ12,1 -0.0001 0.0251
p33 0.5008 0.1507 B21,0 0.6831 0.2001 Σ13,1 0.0168 0.0103
ρ 0.9994 0 B22,0 -0.4814 0.1009 Σ22,1 1.1135 0.2050
σ1 0.0012 0.0001 B23,0 0.2969 0.2403 Σ23,1 -0.0339 0.0491
σ2 0.0012 0.0001 B21,1 0.4694 0.3668 Σ33,1 0.2053 0.0367
σ3 0.0012 0.0001 B22,1 0.0325 0.0795 Σ11,2 n/a
σ4 0.0012 0.0001 B23,1 -0.0634 0.2015 Σ12,2 n/a
σ5 0.0012 0.0001 B21,2 n/a Σ13,2 n/a
σ6 0.0012 0.0001 B22,2 n/a Σ22,2 n/a
c1,0 -0.0475 0.1152 B23,2 n/a Σ23,2 n/a
c1,1 0.0932 0.0340 B21,3 n/a Σ33,2 n/a
c1,2 n/a B22,3 n/a Σ11,3 n/a
c1,3 n/a B23,3 n/a Σ12,3 n/a
c2,0 -0.1655 0.2392 B31,0 0.0179 0.0879 Σ13,3 n/a
c2,1 -0.3034 0.2572 B32,0 -0.0053 0.0433 Σ22,3 n/a
c2,2 n/a B33,0 0.2687 0.1067 Σ23,3 n/a
c2,3 n/a B31,1 -0.1791 0.1352 Σ33,3 n/a
c3,0 -0.1657 0.1108 B32,1 -0.0393 0.0300

Notes: Coefficients labelled ‘n/a’ are omitted since the rank of the multiplier matrix Θt is

almost always 0 or 1. pab is the probability of a transition from rank a to rank b. ρ is the AR(1)

coefficient for the latent variable u∗t . σi is the ith element of vec(Q), being the variance of d∗t .

ci,r is the intercept for variable i (i ∈ {interest rates, inflation, output}) in rank r. Bij,r is the

lagged response of the change in variable j for the change in variable i in rank r. Σij,r is the

i, jth element of the variance of εt in rank r.
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Appendix D: Comparison of predicted versus actual

variables.

Figure D1. Dashed line is the change in the actual nominal interest rate. Shaded area is
the 99 per cent credible interval of predicted values.
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Figure D2. Dashed line is the change in actual inflation. Shaded area is the 99 per cent
credible interval of predicted values.

Figure D3. Dashed line is the change in the actual output gap. Shaded area is the 99
per cent credible interval of predicted values.
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Appendix E: Robustness to alternative output gap

measures

To examine the sensitivity of the results to the measure of the output gap, we re-estimate

the model by substituting linearly detrended real GDP per capita in place of our preferred

CBO-based measure of the output gap.

The time-varying probabilities of monetary policy activism in Figure E1 are extremely

similar across the two measures of the output gap, as are the estimates of the probability

of St = 2 (whereby the rank of the system is equal to unity) in Figure E2.

The time-varying values of βπ,t and the associated probabilities regarding βπ,t > 1 (in

Figures E3 and E4 respectively) are also similar, although the probabilities obtained when

estimating the model using the linearly-detrended real GDP per capita measure appear

to be within an overly tight range. Nevertheless, the overall patterns for the probability

that βπ,t > 1 are similar across the two sets of estimates, resulting in monetary policy

activism probabilities (Figure E1) that are largely insensitive to the choice of output gap.

The primary difference between the two models estimated using alternative output

gap measures lies, as expected, in the estimates for βy,t. A key issue with the estimates

of βy,t when using the linearly detrended output gap measure is that it produces overly

pronounced shifts in the monetary policy weights during 1996 and 2011. These dispro-

portionate shifts clearly stem from the detrending choice, with the CBO-based estimates

avoiding such issues.
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Figure E1. Time-varying probability of active monetary policy, P (activismt). CBO is
based on the estimates when using the CBO-based measure of the output gap. Linear is
based on the estimates when using linearly detrended real GDP per capita as the output
gap measure. Shaded lines are NBER-dated recessions.
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Figure E2. Time-varying probability of St = 2 (i.e. rank=1). CBO is based on the
estimates when using the CBO-based measure of the output gap. Linear is based on the
estimates when using linearly detrended real GDP per capita as the output gap measure.
Shaded lines are NBER-dated recessions.
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Figure E3. Time-varying estimates of the inflation targeting coefficient βπ,t. CBO is
based on the estimates when using the CBO-based measure of the output gap. Linear is
based on the estimates when using linearly detrended real GDP per capita as the output
gap measure. Shaded lines are NBER-dated recessions.
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Figure E4. Time-varying probability of the inflation targeting coefficient exceeding unity
at time t, P (βπ,t > 1). CBO is based on the estimates when using the CBO-based measure
of the output gap. Linear is based on the estimates when using linearly detrended real
GDP per capita as the output gap measure. Shaded lines are NBER-dated recessions.
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Figure E5. Time-varying estimates of the output targeting coefficient βy,t. CBO is based
on the estimates when using the CBO-based measure of the output gap. Linear is based
on the estimates when using linearly detrended real GDP per capita as the output gap
measure. Shaded lines are NBER-dated recessions.
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Appendix F: Gap between monetary policy weights

when rank is allowed to vary and rank is set to unity

Figure F1: The gap between the estimated inflation targeting and output gap targeting
weights when: (i) the rank is allowed to vary over time; and (ii) the rank=1 restriction
is permanently imposed.
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Appendix G: Time-varying smoothness in the model

Figure G1. Implied time-varying smoothness (ρ). Shaded lines are NBER-dated reces-
sions.
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Appendix H: Comparison of activism and determi-

nacy probabilities

Figure H1: A comparison of the time-varying probability of monetary policy activism
pursuant to P (βπ,t > 1) and determinate monetary policy pursuant to the satisfaction of
the Blanchard-Kahn conditions (denoted P (stable solution)). Shaded lines are NBER-
dated recessions.
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