
Appendix to "Bank Shocks and the Debt Structure"

David Gauthier

This appendix is divided into five sections. Section 1 derives the full model and lists all equilibrium

conditions. Section 2 provides sensitivity tests for the predictions of the modified NK model.

Section 3 presents the VAR methodology and the data used in the VAR estimation. Section 5

presents the results from a VAR model where only bank and non-bank shocks are identified.

Section 6 gives additional results from the IRF matching estimation.

1. Model Derivation

This section provides the derivation of the model and lists all the equations.

1.1. Households

A representative household decides its optimal level of consumption 𝐶𝑡 , capital 𝐾𝑡 and deposit 𝐷𝑡

in order to maximize utility defined as:

𝐸0
∞∑︁
𝑡=0

𝛽𝑡𝜁𝐶𝑡

{
log(𝐶𝑡) − 𝜓𝐻

𝐻
1+𝜎𝐻
𝑡

1 + 𝜎𝐻

}
.

The budget constraint writes as:

(1)𝑝𝑡𝐶𝑡 + 𝑝𝑡𝐷𝑡 + 𝑞𝐾𝑡 𝐾𝑡 ≤ 𝑤𝑡𝐻𝑡 + 𝑝𝑡−1𝑅𝑡𝐷𝑡−1 +
[
𝑞𝐾𝑡 (1 − 𝛿) + 𝑝𝑡𝑟𝐾𝑡

]
𝐾𝑡−1 +𝑂𝑡 .
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The Lagrangian associated to the households’ problem can be written as:

L = 𝐸0
∞∑︁
𝑡=0

(𝛽)𝑡𝜁𝐶𝑡

{
log(𝐶𝑡) − 𝜓𝐻

𝐻
1+𝜎𝐻
𝑡

1 + 𝜎𝐻

+ Λ̃𝑡

(
𝑤𝑡𝐻𝑡 + 𝑝𝑡−1𝑅𝑡𝐷𝑡−1 +

[
𝑞𝐾𝑡 (1 − 𝛿) + 𝑝𝑡𝑟𝐾𝑡

]
𝐾𝑡−1 +𝑂𝑡 − 𝑝𝑡𝐶𝑡 − 𝑝𝑡𝐷𝑡 − 𝑞𝐾𝑡 𝐾𝑡

)}
.

The first-order condition with respect to consumption 𝐶𝑡 is:

𝜁𝐶𝑡 Λ̃𝑡 𝑝𝑡 =
𝜁𝐶𝑡

𝐶𝑡
. (2)

The first-order condition with respect to labor 𝐻𝑡 is:

𝜓𝐻𝐻
𝜎𝐻
𝑡 = 𝑤𝑡Λ̃𝑡 . (3)

The first-order condition with respect to risk-free deposits 𝐷𝑡 is:

𝜁𝐶𝑡 Λ̃𝑡 𝑝𝑡 = 𝛽𝐸𝑡𝜁
𝐶
𝑡+1Λ̃𝑡+1𝑝𝑡+1

𝑅𝑡+1
𝜋𝑡+1

. (4)

Households supply capital 𝐾𝑡 to entrepreneurs. The first-order condition with respect to capital 𝐾𝑡

is:

𝜁𝐶𝑡 Λ̃𝑡 = 𝛽𝐸𝑡𝜁
𝐶
𝑡+1Λ̃𝑡+1𝑅

𝐾
𝑡+1, (5)

with,

𝑅𝐾𝑡+1 =
𝑞𝐾
𝑡+1(1 − 𝛿) + 𝑟𝐾

𝑡+1𝑝𝑡+1

𝑞𝐾𝑡
. (6)

1.2. Capital Installer

The capital installer selects its optimal level of investment 𝐼𝑡 to maximize the sum of its profits

discounted with households’ stochastic discount factor:

𝐸0
∞∑︁
𝑡=0

𝛽𝑡𝜁𝐶𝑡 Λ̃𝑡
{
𝑞𝐾𝑡 𝐾𝑡 − 𝑝𝑡 𝐼𝑡

}
,
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and using the following technology:

𝐾𝑡 = (1 − 𝛿)𝐾𝑡−1 +
[
1 − 𝑆

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)]
𝐼𝑡 .

The first order condition for profit maximization with respect to 𝐼𝑡 writes:

𝜁𝐶𝑡 Λ̃𝑡𝑞
𝐾
𝑡

[
1 − 𝑆

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)
− 𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1
𝑆′

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)]
− 𝜁𝐶𝑡 Λ̃𝑡 𝑝𝑡 + 𝛽𝜁𝐶𝑡+1Λ̃𝑡+1𝑞

𝐾
𝑡+1𝜁

𝐼
𝑡+1

(
𝐼𝑡+1
𝐼𝑡

)2
𝑆′

(
𝜁 𝐼𝑡+1

𝐼𝑡+1
𝐼𝑡

)
= 0.

(7)

1.3. Firms

I follow Gali (2010) in assuming a three-sector structure for good producers. Firms in the final

goods sector produce differentiated goods using entrepreneurs production bought in competitive

markets. The former are subject to nominal rigidity introduced via staggered-price contracts à la

Calvo.

1.3.1 Entrepreneurs

Entrepreneurs produce intermediate goods using capital and labor obtained from the households.

There exists a continuum 𝑒 ∈ [0, 1] of entrepreneurs operating in competitive markets. An

entrepreneur 𝑒 enters the period with net worth 𝑁𝑒𝑡 pledged to obtain debt 𝑋𝑒𝑡 . Debt is used to fund

working capital and is a fixed proportion of the net worth:

𝑋𝑒𝑡 = 𝜉𝑁𝑒𝑡 . (8)

Here 𝜉 is a parameter that corresponds to entrepreneurs leverage. Entrepreneur 𝑒 sells production

𝑌𝐸𝑒𝑡 at a competitive price 𝑝𝐸𝑡 to retailers, where 𝑌𝐸𝑒𝑡 is produced using the following Cobb-Douglas

technology:

𝑌𝐸𝑒𝑡 = 𝜀𝑒𝑡𝐴𝑡𝐾𝛼𝑒𝑡𝐻1−𝛼
𝑒𝑡 , (9)
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where 𝐾𝑒𝑡 and 𝐻𝑒𝑡 are capital and labor input used to produce. Variable 𝐴𝑡 is a technology shock

and 𝜀𝑒𝑡 is a sequence of idiosyncratic shock realizations. An entrepreneur is constrained on her

capital inputs 𝐾𝑒𝑡 and labor inputs 𝐻𝑒𝑡 relative to her debt capacity 𝑋𝑒𝑡 according to the following

debt constraint:

𝑋𝑒𝑡 ≥ 𝑟𝐾𝑡 𝐾𝑒𝑡 + �̃�𝑡𝐻𝑒𝑡 . (10)

An entrepreneur 𝑒 maximizes her real profits defined as,

𝑝𝐸𝑡 𝑌
𝐸
𝑒𝑡

𝑝𝑡
− 𝑟𝐾𝑡 𝐾𝑒𝑡 − �̃�𝑡𝐻𝑒𝑡 , (11)

by choosing optimal inputs𝐾𝑒𝑡 and𝐻𝑒𝑡 for a given level of debt 𝑋𝑒𝑡 and subject to the debt constraint

defined in equation (10). The first order conditions for the optimization problem of the entrepreneur

can be written as:

𝛼𝑋𝑒𝑡 = 𝑟𝐾𝑡 𝐾𝑒𝑡 , (12)

(1 − 𝛼)𝑋𝑒𝑡 = �̃�𝑡𝐻𝑒𝑡 . (13)

Defining 𝑠𝑡 the aggregate component of the marginal cost of production expressed in terms of the

final goods implies:

𝑠𝑡 =
1
𝐴𝑡

(
𝑝𝑡

𝑝𝐸𝑡

) (
�̃�𝑡

1 − 𝛼

)1−𝛼 (
𝑟𝐾𝑡

𝛼

)𝛼
. (14)

For later use, it is also convenient to define 𝑞𝑡 = 1
𝑠𝑡

, where 𝑞𝑡 is a measure of the aggregate

entrepreneurial markup over input costs.1

1Here 𝑠𝑡 must not be confused with the marginal cost of the intermediate good producer, 𝑝𝐸𝑡 = 𝑝𝐸𝑡
𝑝𝑡

, which is taken
as given by entrepreneurs.
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Idiosyncratic Shocks.—Each period, an entrepreneur 𝑒 is hit by a sequence of three idiosyncratic

shocks. I summarize here the characteristics of the successive shocks:

Shock 𝜀1,𝑒𝑡 : Publicly-observed, realizes along aggregate shocks for all entrepreneurs. This shock creates

heterogeneity in entrepreneurs’ productivity.

Shock 𝜀2,𝑒𝑡 : Publicly-observed, only observed by bank-financed entrepreneurs. This shock is the rationale

for choosing bank finance over the less expensive bond finance.

Shock 𝜀3,𝑒𝑡 : Privately-observed, can be monitored at a cost by financial intermediaries. This shock creates

a rationale for the existence of risky debt contract.

Financial Contracts.—The model assumes a continuum of risk-neutral financial intermediaries of

each type, bank 𝑏 or market 𝑐, able to fully diversify risk among entrepreneurs. Both fund using

deposits from households remunerated at the nominal rate 𝑅𝑡 . After the realization of the first two

idiosyncratic shocks, an entrepreneur 𝑒 and a financial intermediary of type 𝑓 agree on a standard

debt contract conditional on 𝜀 𝑓𝑒𝑡 , the expected productivity of the contracting entrepreneur, where:

𝜀
𝑓
𝑒𝑡 =


𝜀1,𝑒𝑡 , if bond financing

𝜀1,𝑒𝑡𝜀2,𝑒𝑡 , if loan financing.
(15)

Given an optimal threshold �̄� 𝑓
𝑒𝑡 for 𝜔 𝑓

𝑒𝑡 under which monitoring occurs, the expected share of final

output accruing to a contracting entrepreneur is:

𝑣(�̄� 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 ) =

∫∞

�̄�
𝑓
𝑒𝑡

(𝜔 − �̄� 𝑓
𝑒𝑡)𝜑(𝜔, 𝜎 𝑓

𝑡 )𝑑𝜔, (16)

and the expected share of final output accruing to a lender of type 𝑓 is:

𝑔(�̄� 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 ) =

∫ �̄� 𝑓𝑒𝑡
0

(1 − 𝜇 𝑓 )𝜔𝜑(𝜔, 𝜎)𝑑𝜔 + �̄� 𝑓
𝑒𝑡[1 −Φ(�̄� 𝑓

𝑒𝑡 , 𝜎
𝑓
𝑡 )], (17)
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where 𝜑(𝜔 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 ) andΦ(𝜔 𝑓

𝑒𝑡 , 𝜎
𝑓
𝑡 ) correspond respectively to the distribution and cumulative density

functions of𝜔 𝑓
𝑒𝑡 implied by the distributional assumptions on idiosyncratic shock distributions. Here

the first and second terms on the right hand side correspond respectively to revenues seized from

monitored entrepreneurs and payments from non-defaulting entrepreneurs.

The optimal debt contract chosen by entrepreneur 𝑒 sets a threshold �̄� 𝑓
𝑒𝑡 under which monitoring

occurs and maximizing the expected fixed repayment 𝜀 𝑓𝑒𝑡�̄�
𝑓
𝑒𝑡𝑋𝑒𝑡𝑞𝑡 paid to the financial intermediary.

The problem of the entrepreneur is subject to the debt constraint from equation (10) and,

𝜀
𝑓
𝑒𝑡𝑞𝑡𝑔

𝑓 (�̄� 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 )𝑋𝑒𝑡 ≥ (𝑋𝑒𝑡 − 𝑁 𝑓

𝑒𝑡)𝑅𝑡 , (18)

𝑣(�̄� 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 ) + 𝑔 𝑓 (�̄� 𝑓

𝑒𝑡 , 𝜎
𝑓
𝑡 ) ≤ 1 − 𝐺 𝑓

𝜔(�̄� 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 ), (19)

𝜀
𝑓
𝑒𝑡𝑞𝑡𝑣(�̄� 𝑓

𝑒𝑡 , 𝜎
𝑓
𝑡 )𝑋𝑒𝑡 ≥ 𝑁

𝑓
𝑒𝑡 , (20)

where 𝐺 𝑓
𝜔(�̄� 𝑓

𝑒𝑡 , 𝜎
𝑓
𝑡 ) = 𝜇 𝑓

∫�̄� 𝑓𝑒𝑡
0 𝜔𝜑(𝜔, 𝜎 𝑓

𝑡 )𝑑𝜔 denotes the share of output lost to monitoring. Equa-

tion (18) implies that the financial intermediaries’ expected returns must exceed repayment to

households, equation (19) ensures the feasibility of the debt contract, and equation (20) guarantees

entrepreneur’s willingness to borrow from a financial intermediary. Notice that because the prob-

lem of the entrepreneur is linear in net worth, the optimal solution implies that each entrepreneur

invests all or none of her net worth.

Under optimal contracts and assuming free entry for financial intermediaries such that equation

(18) is always binding, optimal thresholds �̄� 𝑓
𝑒𝑡 are given as the minimal solution to:

𝑔 𝑓 (�̄� 𝑓
𝑒𝑡 , 𝜎

𝑓
𝑡 ) =

(
𝜉 − 1
𝜉

)
𝑅𝑡

𝜀
𝑓
𝑒𝑡𝑞𝑡

for f ∈ {𝑏, 𝑐}. (21)

These equations implicitly define thresholds �̄� 𝑓
𝑒𝑡 as functions of aggregate variables 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡 and
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idiosyncratic expected idiosyncratic productivity 𝜀 𝑓𝑒𝑡 such that:

�̄�
𝑓
𝑒𝑡 =


�̄�𝑐(𝜀1,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡) , if bond financing

�̄�𝑏(𝜀1,𝑒𝑡𝜀2,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) , if loan financing,
(22)

where it can be seen from equation (21) that both thresholds �̄� 𝑓
𝑒𝑡 for 𝑓 ∈ {𝑏, 𝑐} are increasing in 𝑅𝑡

and decreasing in 𝑞𝑡 , 𝜈𝑡 and 𝜀 𝑓𝑒𝑡 .

Funding Choices.—Following De Fiore and Uhlig (2011) it is possible to show the existence and

uniqueness of thresholds in the realizations of idiosyncratic productivity shocks to characterize

entrepreneurs’ funding decisions.

First, consider an entrepreneur 𝑒 having contracted with a bank in period 𝑡. After the sec-

ond idiosyncratic shock 𝜀2,𝑒𝑡 is observed this entrepreneur decides to proceed with a loan only

if her expected profit from producing is higher than the opportunity cost of producing, what cor-

responds to her net worth. The total expected return for a bank-funded entrepreneur is given by

𝑉 𝑑(𝜀1,𝑒𝑡 , 𝜀2,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)𝑁
𝑏
𝑒𝑡 where:

𝑉 𝑑(𝜀1, 𝜀2, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) = 𝜀1𝜀2𝑞𝑣(�̄�𝑏(𝜀1𝜀2, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))𝜉. (23)

Conditional on the realizations of 𝜀1,𝑒𝑡 and aggregate variables 𝑞𝑡 , 𝑅𝑡 and 𝜈𝑡 , entrepreneur 𝑒 proceeds

with bank finance only if the realization of 𝜀2,𝑒𝑡 is higher than a threshold 𝜀
𝑑
(𝜀1,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)

implicitly defined by:

1 = 𝑉 𝑑(𝜀1,𝑒𝑡 , 𝜀𝑑,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡). (24)

This equation implies that the threshold 𝜀
𝑑

is increasing in 𝜀1,𝑒𝑡 , 𝑞𝑡 and 𝜈𝑡 and decreasing in 𝑅𝑡 .

The funding decision of an entrepreneur having observed 𝜀1,𝑒𝑡 is deduced similarly by comparing

her expected payoffs conditional on her funding choice. The expected payoff for an entrepreneur
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proceeding with bank finance conditional on the realization of 𝜀1,𝑒𝑡 is𝑉
𝑏(𝜀1,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)𝑁

𝑏
𝑒𝑡 , where:

𝑉 𝑏(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) =
∫
𝜀
𝑑

𝑉 𝑑(𝜀1, 𝜀2, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)Φ(𝑑𝜀2) + Φ(𝜀𝑑(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)). (25)

Here the two terms on the right-hand side correspond respectively to the expected returns for produc-

ing and abstaining bank-financed entrepreneurs. Similarly, the expected payoff for an entrepreneur

proceeding with bond finance after having observed 𝜀1,𝑒𝑡 is 𝑉 𝑐(𝜀1,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡)𝑁
𝑐
𝑒𝑡 , where:

𝑉 𝑐(𝜀1, 𝑞, 𝑟) = 𝜀1𝑞𝑣(�̄�𝑐(𝜀1, 𝑞, 𝐸))𝜉. (26)

Finally, the expected total payoff for an entrepreneur abstaining from production is 𝑁𝑒𝑡 . Based

on the realization of 𝜀1,𝑒𝑡 each entrepreneur selects the funding option delivering the maximum

expected payoff 𝑉(𝜀1,𝑒𝑡 , 𝑞𝑡 , 𝑅𝑡)𝑁𝑒𝑡 such that:

𝑉(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) = 𝑚𝑎𝑥{1, (1 − 𝜏𝑏)𝑉 𝑏(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡), 𝑉
𝑐(𝜀1, 𝑞, 𝑅)}. (27)

Under the conditions that 𝜕𝑉𝑏(.)
𝜕𝜀1

≥ 0 and 𝜕𝑉𝑐(.)
𝜕𝜀1

>
𝜕𝑉𝑏(.)
𝜕𝜀1

, it can be shown that there exists

a unique threshold 𝜀𝑏 for the first idiosyncratic shock 𝜀1 implicitly defined by the condition

𝑉 𝑏(𝜀𝑏,𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) = 1 and under which entrepreneurs do not raise external finance. Because this

cutoff point depends only on aggregate variables such that 𝜀𝑏,𝑡 = 𝜀𝑏(𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡), it is identical across

all entrepreneurs. Similarly, there exists a unique threshold 𝜀𝑐 for 𝜀1, implicitly defined by the condi-

tion𝑉 𝑏(𝜀𝑐,𝑡 , 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) = 𝑉 𝑐(𝜀𝑐,𝑡 , 𝑞𝑡 , 𝑅𝑡) such that 𝜀𝑐,𝑡 = 𝜀𝑐(𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡) and above which entrepreneurs

prefer to fund from markets.

Financial Variables.—Using the productivity thresholds 𝜀𝑏𝑡 and 𝜀𝑐𝑡 , it is possible to express en-

trepreneur average risk premia and default rates conditional on their funding decisions. Denoting

respectively 𝜓𝑀𝑏𝑡 and 𝜓𝑀𝑐𝑡 the default rates for bank-funded and market-funded entrepreneurs gives:

𝜓𝑀𝑏𝑡 =
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

∫
𝜀𝑑(𝜀1,𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

Φ(�̄�𝑏(𝜀1𝜀2, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀2)Φ(𝑑𝜀1), (28)
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𝜓𝑀𝑐𝑡 =
∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

Φ(�̄�𝑐(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀1). (29)

With the expected fixed repayment for the financial intermediary being 𝜀 𝑓𝑒𝑡�̄�
𝑓
𝑒𝑡𝑞𝑡 per unit of fund

𝑋𝑒𝑡 , the credit spread for entrepreneur 𝑒 writes:

Λ
𝑓
𝑒,𝑡 =

𝜉

𝜉 − 1
𝑞𝑡𝜀

𝑓
𝑒,𝑡�̄�

𝑓
𝑒,𝑡

𝑅𝑡
− 1. (30)

Denoting 𝜓𝑟𝑏𝑡 and 𝜓𝑟𝑐𝑡 the aggregate credit spreads paid respectively by bank-funded and market-

funded entrepreneurs yields:

𝜓𝑟𝑏𝑡 =
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

∫
𝜀𝑑(𝜀1,𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

{
𝜉

𝜉 − 1
𝜀1𝜀2�̄�

𝑏
𝑒,𝑡𝑞𝑡

𝑅𝑡
− 1

}
Φ(𝑑𝜀2)Φ(𝑑𝜀1), (31)

𝜓𝑟𝑐𝑡 =
∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

{
𝜉

𝜉 − 1
𝜀1�̄�

𝑐
𝑒,𝑡𝑞𝑡

𝑅𝑡
− 1

}
Φ(𝑑𝜀1). (32)

Finally, it is possible to express Λ𝑏𝑡 and Λ𝑐𝑡 the average spreads for bank-funded and bond-funded

entrepreneurs as:

Λ𝑏𝑡 =
𝜓𝑟𝑏𝑡 (𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)

𝑠
𝑏𝑝
𝑡

, (33)

Λ𝑐𝑡 =
𝜓𝑟𝑐𝑡 (𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)

𝑠𝑐𝑡
. (34)

Aggregate Production.—The expected output for entrepreneur 𝑒 at the time of contracting with a

financial intermediary writes as:

𝑌𝐸𝑒𝑡 = 𝜀𝐸𝑒𝑡𝐾𝛼𝑒𝑡𝐻1−𝛼
𝑒𝑡 . (35)
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Using the first-order conditions from equations (12) and (13), entrepreneur individual production

writes as:
𝑌𝐸𝑒𝑡 = 𝜀𝐸𝑒𝑡

(
𝑝𝐸𝑡

𝑝𝑡

)
𝐾𝛼𝑒𝑡𝐻

1−𝛼
𝑒𝑡 ,

= 𝜀𝐸𝑒𝑡
(
𝑝𝐸𝑡

𝑝𝑡

)
𝐴𝑡

(
𝛼
𝑋𝑒𝑡

𝑟𝐾𝑡

)𝛼 (
(1 − 𝛼)

𝑋𝑒𝑡

�̃�𝑡

)1−𝛼
,

= 𝜀𝐸𝑒𝑡
(
𝑝𝐸𝑡

𝑝𝑡

)
𝐴𝑡𝑋𝑒𝑡

(
𝛼

𝑟𝐾𝑡

)𝛼 (1 − 𝛼
�̃�𝑡

)1−𝛼
,

=
𝜀𝐸𝑒𝑡𝑋𝑒𝑡

𝑠𝑡
.

Defining 𝜓𝑌𝑡 =
∫1

0 𝜀
𝐸
𝑒𝑡𝑑𝑒, the aggregate production is obtained as:

𝑌𝐸𝑡 =
∫1

0
𝑌𝐸𝑒𝑡 ,

=
𝜓𝑌𝑡 𝜉𝑁𝑡

𝑠𝑡
.

Where 𝑁𝑡 is the aggregate net worth and 𝜓𝑌𝑡 aggregates the realizations of the different idiosyncratic

productivity shocks.

1.4. Retailers

Retailers are monopolistically competitive firms indexed by 𝑗 ∈ [0, 1]. They produce differentiated

final good 𝑌 𝑗 𝑡 with the following technology:

𝑌 𝑗 𝑡 = 𝑌𝐸𝑗𝑡 ,

where 𝑌𝐸
𝑗𝑡

is the quantity of intermediate good used by retailers 𝑗 as an input and purchased to

entrepreneurs 𝑗 in a competitive market at price 𝑝𝐸𝑡 . Assuming price-staggered contracts as in

Calvo (1983), 1 − 𝜉𝑝 is defined as the probability for a retailer to be able to reset its price each

period. Defining 𝑝 𝑗 𝑡 the price of a firm 𝑗 in period 𝑡:

𝑝 𝑗 𝑡 =


𝑝∗𝑡 if adjusts, with probability 1 − 𝜉𝑝,

𝑝 𝑗 𝑡−1�̄�𝑡 if does not adjust, with probability 𝜉𝑝 .
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Here �̄�𝑡 is the inflation rate for retailers not adjusting their prices. The model assumes some degree

of price indexation expressed as a combination of steady-state inflation 𝜋 and past period inflation

𝜋𝑡1 , hence �̄�𝑡 can be written as:

�̄�𝑡 = 𝜋𝜄𝑝
𝑡−1𝜋

1−𝜄𝑝 . (36)

The nominal flow of profits for a retailer 𝑗 in period 𝑡 + 𝑠 is:

𝑝 𝑗 𝑡+𝑠𝑌 𝑗 𝑡+𝑠 − (1 − 𝜏𝑦)𝑝𝐸𝑡+𝑠𝑌𝐸𝑗𝑡+𝑠, (37)

with 𝜏𝑦 a subsidy rate. Accordingly the net present value of its profits is:

𝐸𝑡

∞∑︁
𝑠=0

(𝛽𝜉𝑝)𝑠𝜁𝐶𝑡 Λ̃𝑡+𝑠𝑝𝑡+𝑠
[
𝑝 𝑗 𝑡+𝑠

𝑝𝑡+𝑠
𝑌 𝑗 𝑡+𝑠 − (1 − 𝜏𝑦)

𝑝𝐸𝑡+𝑠
𝑝𝑡+𝑠

𝑌𝐸𝑗𝑡+𝑠

]
,

where 𝜁𝐶𝑡 Λ̃𝑡 is the multiplier used in the household’s budget constraint. Taking into account the

demand curve of final goods producer from equation (43), retailer profits rewrite as:

𝐸𝑡

∞∑︁
𝑠=0

(𝛽𝜉𝑝)𝑠𝜁𝐶𝑡 Λ̃𝑡+𝑠𝑝𝑡+𝑠

(
𝑝 𝑗 𝑡+𝑠

𝑝𝑡+𝑠

) 1
1−𝜆𝑝

𝑌𝑡+𝑠 − (1 − 𝜏𝑦)
𝑝𝐸𝑡+𝑠
𝑝𝑡+𝑠

(
𝑝 𝑗 𝑡+𝑠

𝑝𝑡+𝑠

) 𝜆𝑝

1−𝜆𝑝
𝑌𝑡+𝑠

 .
Here 𝑝 𝑗 𝑡+𝑠 denotes the price of a firm in period 𝑡 + 𝑠 that sets 𝑝 𝑗 𝑡 = 𝑝∗

𝑗 𝑡
in 𝑡 and does not reoptimize

between 𝑡 + 1,..., 𝑡 + 𝑠. Using the indexing rule of non-adjusters,

𝑝 𝑗 𝑡+𝑠 = 𝑝 𝑗 𝑡+𝑠−1�̄�𝑡+𝑠
= 𝑝 𝑗 𝑡 �̄�𝑡+1�̄�𝑡+2...�̄�𝑡+𝑠,

similarly,
𝑝𝑡+𝑠 = 𝑝𝑡+𝑠−1𝜋𝑡+𝑠

= 𝑝𝑡𝜋𝑡+1𝜋𝑡+2...𝜋𝑡+𝑠 .

Accordingly it is possible to write,
𝑝 𝑗 𝑡+𝑠

𝑝𝑡+𝑠
=
𝑝 𝑗 𝑡

𝑝𝑡
𝑀 𝑠
𝑡 ,
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where,

𝑀 𝑠
𝑡 =


�̄�𝑡+𝑠 ...�̄�𝑡+1
𝜋𝑡+𝑠 ...𝜋𝑡+1

, if 𝑠 > 0

1 if 𝑠 = 0.

Finally, the net present value of retailer real profits can be expressed as:

𝐸𝑡

∞∑︁
𝑠=0

(𝛽𝜉𝑝)𝑠𝜁𝐶𝑡 Λ̃𝑡+𝑠𝑝𝑡+𝑠𝑌𝑡+𝑠

(
𝑀 𝑠
𝑡

𝑝 𝑗 𝑡

𝑝𝑡

) 1
1−𝜆𝑝

− (1 − 𝜏𝑦)
𝑝𝐸𝑡+𝑠
𝑝𝑡+𝑠

(
𝑀 𝑠
𝑡

𝑝 𝑗 𝑡

𝑝𝑡

) 𝜆𝑝

1−𝜆𝑝
 .

Because firms able to set their price in period 𝑡 all face the same problem, they have the same

solution and set the same price written 𝑝∗𝑡 . Accordingly, the first-order condition for maximizing

the net discounted sum of profits is:

𝐸𝑡

∞∑︁
𝑠=0

(𝛽𝜉𝑝)𝑠Ψ𝑡+𝑠𝑝
∗
𝑡

𝜆𝑝

1−𝜆𝑝

[
𝑀 𝑠
𝑡

𝑝∗𝑡
𝑝𝑡

− 𝜆𝑝(1 − 𝜏𝑦)
𝑝𝐸𝑡+𝑠
𝑝𝑡+𝑠

]
= 0,

where Ψ𝑡+𝑠 is exogenous from the point of view of the firm:

Ψ𝑡+𝑠 = 𝜁𝐶𝑡 Λ̃𝑡+𝑠𝑝𝑡+𝑠𝑌𝑡+𝑠
(
𝑀 𝑠
𝑡

) 𝜆𝑝

1−𝜆𝑝 .

Rearranging the previous condition yields the optimal price for a reoptimizing firm:

𝑝∗𝑡 = 𝜆𝑝
𝐸𝑡

∑∞
𝑠=0(𝛽𝜉𝑝)𝑠Ψ𝑡+𝑠(1 − 𝜏𝑦) 𝑝

𝐸
𝑡+𝑠
𝑝𝑡+𝑠

𝐸𝑡
∑∞
𝑠=0(𝛽𝜉𝑝)𝑠Ψ𝑡+𝑠𝑀

𝑠
𝑡

=
𝐾𝑝,𝑡

𝐹𝑝,𝑡
.

Where auxiliary variables 𝐾𝑝,𝑡 and 𝐹𝑝,𝑡 are defined as:

𝐾𝑝,𝑡 = (1 − 𝜏𝑦)𝜆𝑝𝐸𝑡
∞∑︁
𝑠=0

(𝛽𝜉𝑝)𝑠Ψ𝑡+𝑠
𝑝𝐸𝑡+𝑠
𝑝𝑡+𝑠

,

𝐹𝑝,𝑡 = 𝐸𝑡
∞∑︁
𝑠=0

(𝛽𝜉𝑝)𝑠Ψ𝑡+𝑠𝑀
𝑠
𝑡 .

12



Rewriting the previous definitions:

𝐸𝑡

[
𝜁𝐶𝑡 Λ̃𝑡 𝑝𝑡𝑌𝑡 + 𝛽𝜉𝑝

(
�̄�𝑡+1
𝜋𝑡+1

) 1
1−𝜆𝑝

𝐹𝑝,𝑡+1 − 𝐹𝑝,𝑡

]
= 0, (38)

𝐸𝑡

𝜆𝑝(1 − 𝜏𝑦)
𝑝𝐸𝑡

𝑝𝑡
𝜁𝐶𝑡 Λ̃𝑡 𝑝𝑡𝑌𝑡 + 𝛽𝜉𝑝

(
�̄�𝑡+1
𝜋𝑡+1

) 𝜆𝑝

1−𝜆𝑝
𝐾𝑝,𝑡+1 − 𝐾𝑝,𝑡

 = 0. (39)

The aggregate price index writes:

(40)

𝑝𝑡 =
[∫1

0
𝑝

1
1−𝜆𝑝
𝑗 𝑡

𝑑𝑗

]1−𝜆𝑝
,

=
[∫

𝑗 adj
𝑝

1
1−𝜆𝑝
𝑗 𝑡

𝑑𝑗 +
∫
𝑗 dont adj

𝑝
1

1−𝜆𝑝
𝑗 𝑡

𝑑𝑗

]1−𝜆𝑝
,

=
[∫

𝑗 adj
𝑝∗

1
1−𝜆𝑝
𝑗 𝑡

𝑑𝑗 + �̄�
1

1−𝜆𝑝
𝑡

∫
𝑗 dont adj

𝑝
1

1−𝜆𝑝
𝑗 𝑡−1 𝑑𝑗

]1−𝜆𝑝
,

=
[
(1 − 𝜉𝑝)𝑝∗𝑡

1
1−𝜆𝑝 + 𝜋∗𝑡

1
1−𝜆𝑝 𝜉𝑝

∫
𝑗

𝑝
1

1−𝜆𝑝
𝑗 𝑡−1 𝑑𝑗

]1−𝜆𝑝
.

Accordingly inflation can be written as:

(41)

𝜋𝑡 =
[
(1 − 𝜉𝑝)𝑝∗𝑡

1
1−𝜆𝑝 𝜋

1
1−𝜆𝑝
𝑡 + 𝜉𝑝 �̄�

1
1−𝜆𝑝
𝑡

]1−𝜆𝑝
,

=


𝜉𝑝

1 − (1 − 𝜉𝑝)𝑝∗𝑡
1

1−𝜆𝑝


1−𝜆𝑝

�̄�𝑡 ,

and the aggregate price index is:

(42)𝑝∗𝑡 =


1 − 𝜉𝑝

(
�̄�𝑡
𝜋𝑡

) 1
1−𝜆𝑝

1 − 𝜉𝑝


1−𝜆𝑝

.

1.5. Final Goods Producers

A representative final good producer manufactures homogeneous final goods using technology:

𝑌𝑡 =
∫1

0

[
𝑌

1
𝜆𝑝

𝑗 𝑡

]𝜆𝑝
𝑑𝑗, 𝜆𝑝 > 1.
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The first order conditions for profit maximization by final good producers are:

𝑝 𝑗 𝑡 = 𝑝𝑡

(
𝑌 𝑗 𝑡

𝑌𝑡

) 𝜆𝑝

𝜆𝑝−1

, for 𝑗 ∈ [0, 1]. (43)

Finally the price of final goods satisfies the following relation:

𝑝𝑡 =
[∫1

0
𝑝

1
1−𝜆𝑝
𝑗 𝑡

𝑑𝑗

]1−𝜆𝑝
. (44)

1.6. Adjustment Cost Functions

The investment adjustment cost function is taken from Christiano, Motto, and Rostagno (2014) and

writes:

𝑆(𝜂𝑡) =
1
2

[
exp

(√︁
𝑆′′/2(𝜂𝑡 − 𝜂)

)
+ exp

(
−
√︁
𝑆′′/2(𝜂𝑡 − 𝜂)

)
− 2

]
, (45)

where 𝜂𝑡 = 𝜁 𝐼𝑡 𝐼𝑡/𝐼𝑡−1. This implies 𝑆(𝜂) = 𝑆′(𝜂) = 0 and 𝑆′′(𝜂) = 𝑆′′ which is a parameter.
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Summary of Equilibrium Conditions

For convenience let us define 𝑞𝐾𝑡 = 𝑞𝐾𝑡
𝑝𝑡

, 𝑝𝐸𝑡 = 𝑝𝐸𝑡
𝑝𝑡

, �̃�𝑡 = 𝑤𝑡
𝑝𝑡

and, Λ𝑡 = Λ̃𝑡 𝑝𝑡 .

Prices

First-order condition 1 price:

𝐸𝑡

[
𝜁𝐶𝑡 Λ𝑡𝑌𝑡 + 𝛽𝜉𝑝

(
�̄�𝑡+1
𝜋𝑡+1

) 1
1−𝜆𝑝

𝐹𝑝,𝑡+1 − 𝐹𝑝,𝑡

]
= 0 (1)

First-order condition 2 price:

𝐸𝑡

(1 − 𝜏𝑌 )𝜆𝑝𝑝𝐸𝑡 𝜁𝐶𝑡 Λ𝑡𝑌𝑡 + 𝛽𝜉𝑝
(
�̄�𝑡+1
𝜋𝑡+1

) 𝜆𝑝

1−𝜆𝑝
𝐾𝑝,𝑡+1 − 𝐾𝑝,𝑡

 = 0 (2)

Aggregate price index:

𝑝∗𝑡 =


1 − 𝜉𝑝

(
�̄�𝑡
𝜋𝑡

) 1
1−𝜆𝑝

1 − 𝜉𝑝


1−𝜆𝑝

(3)

Households

Households’ resource constraint:

(4)𝐶𝑡 + 𝐷𝑡 + 𝑞𝐾𝑡 𝐾𝑡 = �̃�𝑡𝐻𝑡 +
𝑅𝑡

𝜋𝑡
𝐷𝑡−1 +

[
𝑞𝐾𝑡 (1 − 𝛿) + 𝑟𝐾𝑡

]
𝐾𝑡−1 +𝑂𝑡

First-order condition consumption:

𝜁𝐶𝑡 Λ𝑡 =
𝜁𝐶𝑡

𝐶𝑡
(5)

First-order condition labor:

𝜓𝐻𝐻
𝜎𝐻
𝑡 = �̃�𝑡Λ𝑡 . (6)

First-order condition deposit:

𝜁𝐶𝑡 Λ𝑡 = 𝛽𝐸𝑡𝜁
𝐶
𝑡+1Λ𝑡+1

𝑅𝑡+1
𝜋𝑡+1

(7)
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Capital returns:

𝑅𝐾𝑡+1 = 𝜋𝑡+1
𝑞𝐾
𝑡+1(1 − 𝛿) + 𝑟 𝑘

𝑡+1

𝑞𝐾𝑡
(8)

First-order condition capital:

𝜁𝐶𝑡 Λ𝑡 = 𝛽𝐸𝑡𝜁
𝐶
𝑡+1Λ𝑡+1𝑅

𝐾
𝑡+1 (9)

Capital accumulation:

𝐾𝑡 = (1 − 𝛿)𝐾𝑡−1 +
[
1 − 𝑆

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)]
𝐼𝑡 (10)

First-order condition investment:

𝜁𝐶𝑡 Λ𝑡𝑞
𝐾
𝑡

[
1 − 𝑆

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)
− 𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1
𝑆′

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)]
− 𝜁𝐶𝑡 Λ𝑡 + 𝛽𝜁𝐶𝑡+1Λ𝑡+1𝑞

𝐾
𝑡+1𝜁

𝐼
𝑡+1

(
𝐼𝑡+1
𝐼𝑡

)2
𝑆′

(
𝜁 𝐼𝑡+1

𝐼𝑡+1
𝐼𝑡

)
= 0

(11)

Entrepreneurs

Aggregate production:

𝑌𝑡 =
𝜓𝑌𝑡 𝜉𝑁𝑡

𝑠𝑡
(12)

First-order condition capital:

𝛼𝑋𝑡 = 𝑟𝐾𝑡 𝐾𝑡 (13)

First-order condition labor

(1 − 𝛼)𝑋𝑡 = �̃�𝑡𝐻𝑡 (14)

Marginal cost:

𝑠𝑡 =
1

𝐴𝑡 𝑝
𝐸
𝑡

(
𝑟𝐾𝑡

𝛼

)𝛼 (
�̃�𝑡

1 − 𝛼

)1−𝛼
(15)

Entrepreneur dividends:

𝑂𝑡 = (1 − 𝛾)𝜓𝑉𝑡−1𝑛𝑡−1 (16)

Entrepreneur net worth:

𝑁𝑡 = 𝛾𝜓𝑉𝑡−1𝑁𝑡−1 (17)
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Aggregates

Aggregate resource constraint:

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝑦𝑀𝑡 (18)

Aggregate profits:

𝜓𝑉𝑡 =
∫
𝑉 (𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)Φ(𝑑𝜀1) (19)

(20)𝜓𝑉𝑡 = 𝑠𝑎 +
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )
𝑉 𝑏(𝜀, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)Φ(𝑑𝜀1) +

∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝑉 𝑐(𝜀1, 𝑞, 𝑅)Φ(𝑑𝜀1)

Aggregate productivity:

𝜓𝑌𝑡 = (1 − 𝜏𝑏)
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )
𝜀1

∫
𝜀𝑑(𝜀1,𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀2Φ(𝑑𝜀2)Φ(𝑑𝜀1) +
∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀1Φ(𝑑𝜀1) (21)

Aggregate default:

𝜓𝑀𝑡 = (1 − 𝜏𝑏)𝜇𝑏𝜓𝑀𝑏𝑡 + 𝜇𝑐𝜓𝑀𝑐𝑡 (22)

𝜓𝑀𝑏𝑡 =
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

∫
𝜀𝑑(𝜀1,𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

Φ(�̄�𝑏(𝜀1𝜀2, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀2)Φ(𝑑𝜀1) (23)

𝜓𝑀𝑐𝑡 =
∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

Φ(�̄�𝑐(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀1) (24)

Monetary Policy

𝑅𝑡 − 𝑅 = 𝜌𝑝(𝑅𝑡−1 − 𝑅) + (1 − 𝜌𝑝)
(
𝛼𝜋 (𝐸𝜋𝑡+1 − 𝜋) +

𝛼Δ𝑌

4
𝑔𝑌,𝑡

)
+

1
400

𝜀
𝑝
𝑡 (25)

Miscellaneous

𝑆(𝜂𝑡) =
1
2

{
exp

[√︁
𝑆′′/2(𝜂𝑡 − 𝜂)

]
+ exp

[
−
√︁
𝑆′′/2(𝜂𝑡 − 𝜂)

]
− 2

}
(26)
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Log-Linearised Equations

Prices

First-order condition 1 price:

𝐸𝑡

[
𝜁𝐶𝑡 Λ𝑡𝑌𝑡 + 𝛽𝜉𝑝

(
�̄�𝑡+1
𝜋𝑡+1

) 1
1−𝜆𝑝

𝐹𝑝,𝑡+1 − 𝐹𝑝,𝑡

]
= 0 (1)

(1 − 𝛽𝜉𝑝)(Λ̂𝑡 + 𝜁𝐶𝑡 + 𝑌𝑡) +
[(

1
1 − 𝜆𝑝

)
( ˆ̄𝜋𝑡+1 − �̂�𝑡+1) + �̂�𝑝,𝑡+1

]
= �̂�𝑝,𝑡 (2)

First-order condition 2 price:

𝐸𝑡

(1 − 𝜏𝑌 )𝜆𝑝𝑝𝐸𝑡 𝜁𝐶𝑡 Λ𝑡𝑌𝑡 + 𝛽𝜉𝑝
(
�̄�𝑡+1
𝜋𝑡+1

) 𝜆𝑝

1−𝜆𝑝
𝐾𝑝,𝑡+1 − 𝐾𝑝,𝑡

 = 0 (3)

(1 − 𝛽𝜉𝑝)
[ ˆ̃𝑝𝐸𝑡 + Λ̂𝑡 + 𝜁𝐶𝑡 + 𝑌𝑡

]
+ 𝛽𝜉𝑝

[
𝜆𝑝

1 − 𝜆𝑝
( ˆ̄𝜋𝑡+1 − �̂�𝑡+1) + �̂�𝑝,𝑡+1

]
= �̂�𝑝,𝑡 (4)

Aggregate price index:

�̂�𝑝,𝑡

�̂�𝑝,𝑡
=


1 − 𝜉𝑝

(
�̄�𝑡
𝜋𝑡

) 1
1−𝜆𝑝

1 − 𝜉𝑝


1−𝜆𝑝

(5)

𝐾𝑝,𝑡 − 𝐹𝑝,𝑡 =
𝜉𝑝

1 − 𝜉𝑝
[
�̂�𝑡 − ˆ̄𝜋𝑡

]
(6)

Households

Households’ resource constraint (not required):

(7)𝐶𝑡 + 𝐷𝑡 + 𝑞𝐾𝑡 𝐾𝑡 = �̃�𝑡𝐻𝑡 +
𝑅𝑡

𝜋𝑡
𝐷𝑡−1 + 𝑞𝐾𝑡

(1 + 𝑟𝐾𝑡 − 𝛿)
𝜋𝑡

𝐾𝑡−1 +𝑂𝑡

First-order condition consumption:

𝜁𝐶𝑡 Λ𝑡 =
𝜁𝐶𝑡

𝐶𝑡
(8)

Λ̂𝑡 = −�̂�𝑡 (9)
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First-order condition labor:

𝜓𝐻𝐻
𝜎𝐻
𝑡 = �̃�𝑡Λ𝑡 . (10)

𝜎𝐻 �̂�𝑡 = ˆ̃𝑤𝑡 + Λ̂𝑡 . (11)

First-order condition deposit:

𝜁𝐶𝑡 Λ𝑡 = 𝛽𝐸𝑡𝜁
𝐶
𝑡+1Λ𝑡+1

𝑅𝑡+1
𝜋𝑡+1

(12)

𝜁𝑡 + Λ̂𝑡 = 𝜁𝐶𝑡+1 + Λ̂𝑡+1 + �̂�𝑡+1 − �̂�𝑡+1 (13)

Capital returns:
𝑅𝐾
𝑡+1
𝜋𝑡+1

=
𝑞𝐾
𝑡+1(1 − 𝛿)
𝑞𝐾𝑡

(14)

�̂�𝐾𝑡+1 − �̂�𝑡+1 =
ˆ̃𝑞𝐾
𝑡+1(1 − 𝛿) + 𝑟𝐾 �̂�𝐾

𝑡+1
𝑅𝐾

− ˆ̃𝑞𝐾𝑡 (15)

First-order condition capital:

𝜁𝐶𝑡 Λ𝑡 = 𝛽𝐸𝑡𝜁
𝐶
𝑡+1Λ𝑡+1𝑅

𝐾
𝑡+1 (16)

𝜁𝐶𝑡 + Λ̂𝑡 = 𝜁𝐶𝑡+1 + Λ̂𝑡+1 + �̂�𝐾𝑡+1 − �̂�𝑡+1 (17)

Capital accumulation:

𝐾𝑡 = (1 − 𝛿)𝐾𝑡−1 +
[
1 − 𝑆

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)]
𝐼𝑡 (18)

�̂�𝑡 = (1 − 𝛿)�̂�𝑡−1 + 𝛿𝐼𝑡 (19)

First-order condition investment:

𝜁𝐶𝑡 Λ𝑡𝑞
𝐾
𝑡

[
1 − 𝑆

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)
− 𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1
𝑆′

(
𝜁 𝐼𝑡

𝐼𝑡

𝐼𝑡−1

)]
− 𝜁𝐶𝑡 Λ𝑡 + 𝛽𝜁𝐶𝑡+1Λ𝑡+1𝑞

𝐾
𝑡+1𝜁

𝐼
𝑡+1

(
𝐼𝑡+1
𝐼𝑡

)2
𝑆′

(
𝜁 𝐼𝑡+1

𝐼𝑡+1
𝐼𝑡

)
= 0

(20)

ˆ̃𝑞𝐾𝑡 = 𝑆′′
[
−𝐼𝑡−1 + (1 + 𝛽)𝐼𝑡 + 𝜁 𝐼𝑡 − 𝛽𝐼𝑡+1 − 𝛽𝜁

𝐼
𝑡+1

]
(21)
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Entrepreneurs

Aggregate production:

𝑌𝑡 =
𝜓𝑌𝑡 𝜉𝑁𝑡

𝑠𝑡
(22)

𝑌𝑡 = �̂�𝑦𝑡 + �̂�𝑡 − 𝑠𝑡 (23)

First-order condition capital:

𝛼𝑋𝑡 = 𝑟𝐾𝑡 𝐾𝑡 (24)

�̂�𝑡 = 𝑟𝐾𝑡 + �̂�𝑡 (25)

First-order condition labor:

(1 − 𝛼)𝑋𝑡 = �̃�𝑡𝐻𝑡 (26)

�̂�𝑡 = �̂�𝑡 + �̂�𝑡 (27)

Marginal cost:

𝑠𝑡 =
1

𝐴𝑡 𝑝
𝐸
𝑡

(
𝑟𝐾𝑡

𝛼

)𝛼 (
�̃�𝑡

1 − 𝛼

)1−𝛼
(28)

𝑠𝑡 = (1 − 𝛼) ˆ̃𝑤𝑡 + 𝛼𝑟𝐾𝑡 − �̂�𝑡 − ˆ̃𝑝𝐸𝑡 (29)

Entrepreneur dividends:

𝑂𝑡 = (1 − 𝛾)𝜓𝑉𝑡−1𝑁𝑡−1 (30)

�̂�𝑡 = �̂�𝑉𝑡−1 + �̂�𝑡−1 (31)

Entrepreneur networth:

𝑁𝑡 = 𝛾𝜓𝑉𝑡−1𝑁𝑡−1 (32)

�̂�𝑡 = �̂�𝑉𝑡−1 + �̂�𝑡−1 (33)
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Aggregates

Resource constraint:

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝑦𝑀𝑡 (34)

𝑌𝑡 =
𝐶

𝑌
�̂�𝑡 +

𝐼

𝑌
𝐼𝑡 +

𝑦𝑀

𝑌
�̂�𝑀𝑡 (35)

Debt equilibrium:

𝐷𝑡 =
[
(1 − 𝜏𝑏)𝑠𝑏𝑝𝑡 + 𝑠𝑐𝑡

]
(𝜉 − 1)𝑁𝑡 (36)

Entrepreneur’s funding:

𝑋𝑡 =
[
(1 − 𝜏𝑏)𝑠𝑏𝑝𝑡 + 𝑠𝑐𝑡

]
𝜉𝑁𝑡 (37)

Profits:

𝜓𝑉𝑡 =
∫
𝑉 (𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)Φ(𝑑𝜀1) (38)

(39)𝜓𝑉𝑡 = 𝑠𝑎 +
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )
𝑉 𝑏(𝜀, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡)Φ(𝑑𝜀1) +

∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝑉 𝑐(𝜀1(𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀1)

Productivity:

𝜓𝑌𝑡 = (1 − 𝜏𝑏)
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )
𝜀1

∫
𝜀𝑑(𝜀1,𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀2Φ(𝑑𝜀2)Φ(𝑑𝜀1) +
∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀1Φ(𝑑𝜀1) (40)

Monitoring costs:

𝜓𝑀𝑡 = (1 − 𝜏𝑏)𝜇𝑏𝜓𝑀𝑏𝑡 + 𝜇𝑐𝜓𝑀𝑐𝑡 (41)

𝜓𝑀𝑏𝑡 =
∫ 𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

𝜀𝑏(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

∫
𝜀𝑑(𝜀1,𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

Φ(�̄�𝑏(𝜀1𝜀2, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀2)Φ(𝑑𝜀1) (42)

𝜓𝑀𝑐𝑡 =
∫
𝜀𝑐(𝑞𝑡 ,𝑅𝑡 ,𝜈𝑡 )

Φ(�̄�𝑐(𝜀1, 𝑞𝑡 , 𝑅𝑡 , 𝜈𝑡))Φ(𝑑𝜀1) (43)
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Monetary Policy

𝑅𝑡 − 𝑅 = 𝜌𝑝(𝑅𝑡−1 − 𝑅) + (1 − 𝜌𝑝)
(
𝛼𝜋 (𝐸𝜋𝑡+1 − 𝜋) +

𝛼Δ𝑌

4
𝑔𝑌,𝑡

)
+

1
400

𝜀
𝑝
𝑡 (44)

Miscellaneous

𝑆(𝜂𝑡) =
1
2

{
exp

[√︁
𝑆′′/2(𝜂𝑡 − 𝜂)

]
+ exp

[
−
√︁
𝑆′′/2(𝜂𝑡 − 𝜂)

]
− 2

}
(45)
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Figure A1: Debt Composition and Firm Leverage

Note: This figure plots the ratios of assets-over-bonds, assets-over-loans and assets-over-total debt for US non-financial

corporate firms. The bond series corresponds to the sum of commercial papers and bonds. All series are obtained

from FRED.
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2. Sensitivity Analysis

This section provides a sensitivity analysis for the results reported in Section 4.2 of the main text.

The objective of this section is to demonstrate that the qualitative properties of the NK model

presented in the main text, and used to identify the VAR, are robust. Figure A2 on the following

page plots various impulse response functions for different shocks using diverse calibrations. The

columns correspond to the responses for specific shocks, while the rows correspond to the responses

of the different variables. The grey area represents the IRFs for different calibrations. The graph

shows that the signs of the response functions for the model’s different types of shocks are not

dependent on a specific parameterization. Most importantly, only the bank shocks (the first column)

can generate opposite movements in loan and bond responses (5th and 6th rows).

Figure A3 shows the parameter ranges used for the sensitivity analysis. The supports of the

distributions are given by the x-axis and chosen so that the model can be solved and does not

generate explosive solutions. Parameters used for the calibration of Section 4.2 and the estimation

of Section 6.1 fall within these ranges. Parameter draws that imply opposite movements in bonds

and loans conditional on bank shocks, and comovements in bonds and loans for all other shocks are

marked as ’Positive’ in blue. Because the model cannot be solved for some parameter combinations,

the y-axis shows the proportion of parameter specifications for which the model has a solution.2

2For instance, the 𝛼𝜋 is a sensitive parameter for the determinacy of the NK model. Hence, an 𝛼𝜋 closer to
one makes the model more unstable and will restrict the number of parameter combinations for which the model is
determinate.
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Figure A2: Robustness Test - Impulse Responses

Note: Impulse response functions for the NK model. The grey area corresponds to the IRFs for different calibrations.

The highest and lowest two percentiles are trimmed out to remove responses when the model approaches instability.

The dashed lines correspond to the means of the total set of IRFs. A total of 100000 sets of parameter are drawn from

the uniform distributions displayed in figure A3. Inflation is shown here instead of prices to ease readability.
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Figure A3: Parameter Acceptance.

Note: This graph plots parameters drawn from uniform distributions and implying model determinacy and a positive

response of output. A total of 100000 draws are realized. The supports of the distributions are given by the x-axis.

Parameter draws implying opposite movements in bonds and loans for bank shocks and comovements in bonds and

loans for all other shocks are marked as ’Positive’.
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3. Time-Series Analysis

3.1. Bayesian VAR

This subsection gives an overview of the methods used to compute the reduced form VAR model,

a complete description of the Bayesian VAR methodology can be found in Kilian and Lütkepohl

(2017).

Consider the following reduced form VAR of order 𝑝:

𝑦𝑡 = 𝑐 + Σ
𝑝

𝑖=1𝐵𝑖𝑦𝑡−𝑖 + 𝑢𝑡 , (1)

where 𝑦𝑡 is a 𝑁 × 1 vector containing the 𝑁 endogenous variables, 𝑐 a 𝑁 × 1 vector of constant, 𝐵𝑖

for 𝑖 = 1, ..𝑝 are 𝑁 × 𝑁 parameter matrices. The vector 𝑢𝑡 is a 𝑁 × 1 vector of prediction errors

with 𝑢𝑡 ∼ 𝑁(0,Σ) and Σ a variance-covariance matrix. Defining matrices 𝑌 , 𝐵, 𝑈 and 𝑋 such that

𝑌 = [𝑦1 ... 𝑦𝑇 ]′, 𝐵 = [𝑐 𝐵1 ... 𝐵𝑝]′,𝑈 = [𝑢1 ... 𝑢𝑇 ]′ and,

𝑋 =


1 𝑦′0 𝑦′1 . . . 𝑦′−𝑝
...

...
...

...
...

1 𝑦′
𝑇−1 𝑦′1 . . . 𝑦′

𝑇−𝑝


,

the VAR model defined in (1) rewrites as 𝑌 = 𝑋𝐵 +𝑈. Vectorising this equation yields:

𝑦 = (𝐼𝑁 ⊗ 𝑋)𝛽 + 𝑢, (2)

where 𝑦 = 𝑣𝑒𝑐(𝑌 ), 𝛽 = 𝑣𝑒𝑐(𝐵) and 𝑢 = 𝑣𝑒𝑐(𝑈). Here 𝑣𝑒𝑐() denotes column wise vectorisation

operator. The error term 𝑢 is assumed to follow a normal distribution with a zero mean and

a variance-covariance matrix Σ ⊗ 𝐼𝑇 . Accordingly, the likelihood function in 𝐵 and Σ can be

expressed as:

𝐿(𝐵,Σ) ∝ |Σ|−𝑇2 𝑒𝑥𝑝
[
−1

2
(
𝛽 − 𝛽

)′ (
Σ−1 ⊗ 𝑋′𝑋

) (
𝛽 − 𝛽

) ]
𝑒𝑥𝑝

[
−1

2
𝑡𝑟

(
Σ−1𝑆

)]
, (3)
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where 𝑆 =
[ (
𝑌 − 𝑋�̂�

)′ (
𝑌 − 𝑋�̂�

) ]
and 𝛽 = 𝑣𝑒𝑐(�̂�) and �̂� = (𝑋′𝑋)−1𝑋′𝑌 . I use the Jeffreys’ prior

distribution for 𝐵 and Σ which is proportional to |Σ|
−(𝑛+1)

2 . Following Kadiyala and Karlsson (1997)

the joint posterior density for 𝐵 and Σ can be written as:

𝑝(𝐵,Σ|𝑌, 𝑋) ∝ |Σ|−𝑇+𝑛+1
2 𝑒𝑥𝑝

[
−1

2
(
𝛽 − 𝛽

)′ (
Σ−1 ⊗ 𝑋′𝑋

) (
𝛽 − 𝛽

) ]
𝑒𝑥𝑝

[
−1

2
𝑡𝑟

(
Σ−1𝑆

)]
. (4)

Where it is possible to draw 𝛽 conditional on Σ from:

𝛽 |Σ, 𝑌 , 𝑋 ∼ 𝑁(𝛽,Σ ⊗ (𝑋′𝑋)−1), (5)

and to draw Σ from:

Σ|𝑌, 𝑋 ∼ 𝐼𝑊(𝑆, 𝑧), (6)

where 𝑧 = (𝑇 − 𝑁) × (𝑝 − 1).

3.2. Sign-Restriction Algorithm

This subsection sketches the method used to characterize the subset of structural VAR models

satisfying the imposed sign restrictions and drawn from the previous distribution of models. While

various identification schemes are available, the identification of a VAR model with sign restrictions

allows to identify structural shocks with a minimal and qualitative set of hypotheses.3

The algorithm used in this paper is developed in Arias, Rubio-Ramirez, and Waggoner (2018),

the method is as follows. It is possible to express the vector of prediction error 𝑢𝑡 as a combination

of structural innovations 𝜀𝑡 where 𝑢𝑡 = 𝐷𝜀𝑡 and 𝜀𝑡 ∼ 𝑁(0, 𝐼𝑁 ) with 𝐼𝑁 an identity matrix and 𝐷

a non-singular parameter matrix such that 𝐷𝐷′ = Σ. To construct the matrix 𝐷, one first draw

candidates 𝛽 and Σ using the posterior distributions given by expressions (5) and (6). The next

step involves computing a random orthogonal matrix 𝑄 drawn from 𝑁(0, 𝐼𝑁 ). This is achieved by

drawing a matrix 𝑊 from 𝑁(0, 𝐼𝑁 ) further transformed into an orthogonal 𝑄 matrix using the 𝑄𝑅

3Advantages of sign-restriction methods are detailed in Uhlig (2005), see Fry and Pagan (2011) for a more critical
treatment.
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factorization. The matrix 𝐷 is computed as the product matrix of 𝑃 and𝑄, where 𝑃 corresponds to

the lower-triangular Cholesky decomposition of Σ. The following step is to compute the impulse

responses implied by the coefficient matrices 𝛽 and 𝐷 for the different structural shocks 𝜀𝑡 . The

draws for 𝛽, Σ and 𝑊 that imply impulse responses satisfying the sign restrictions are kept. The

same process is repeated until a sufficient number of draws are obtained. The set of structural

models gathered allows to characterize the distributions of models derived from the reduced form

VAR satisfying the sign restrictions imposed.

3.3. Data
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Figure A4: Data used for the SR-VAR estimation

Note: All series are expressed in log-level except the policy rate which is expressed in annual percentage points. GDP,
investment, as well loan and bond volumes are expressed in real terms. Prices correspond to the GDP deflator.
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Mnemonic Description Unit Source

A. Macroeconomic Series

GDP Gross domestic product $bn BEA

GDPDEF Gross domestic product: implicit price deflator idx BEA

GPDI Gross private domestic investment $bn BEA

FEDFUNDS Effective federal funds rate % FRSBG

B. Financial Series

AAAFFM Moody’s Aaa corporate bond yield Minus Federal Funds Rate % Moody

NCBDBIQ027S Nonfinancial corporate business: corporate bonds $bn FRSBG

CPLBSNNCB Nonfinancial corporate business: commercial paper $bn FRSBG

FL103165005.Q* Nonfinancial corporate business; total mortgages; liability $bn FRSBG

FL103168005.Q* Nonfinancial corporate business; depository institution loans n.e.c. $bn FRSBG

FL103169005.Q* Nonfinancial corporate business; other loans and advances; liability $bn FRSBG

Notes: BEA: Bureau of Economic Analysis; FRSBG: Federal Reserve System–Board of Governors. The bond

series corresponds to the sum of correporate bonds and commercial paper. The loan series corresponds to

the sum of depository institution loans, total mortgages and other loans and advances. *For the loan series,

mnemonics correspond to the FRSBG codes. The other series can be retrieved directly from Fred using the

corresponding code. All series are seasonally adjusted and expressed in log levels except for the federal funds

rate which is in levels.

Table A1: Data Sources and Treatments
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4. Alternative Dataset

This section presents results for the model estimated using the shadow rate from Wu and Xia (2016)

instead of the fed funds rate. Figure A5 presents the impulse response following a bank shock.

Figure A5: Responses to a Bank Shock

Note: Median impulse responses to a one standard deviation bank shock. The grey lines correspond to the 16th and

84th quantiles. All series are expressed in percentage points. The policy rate is annualized.

5. Alternative Identification: Less Restrictions and a Credit Spread

This section presents results from a VAR model identified restricting only the responses of output,

loans, and bonds. Only two types of structural shocks are considered here, bank shocks that imply

comovements in output and loans and opposite movements in bonds, and other shocks that imply

comovements in output, loans and bonds. I also include Moody’s Aaa corporate bond yield minus

the federal funds rate in the dataset.
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Figure A6: Responses to a Bank Shock

Note: Median impulse responses to a one standard deviation bank shock. The grey lines correspond to the 16th and

84th quantiles. All series are expressed in percentage points. Credit spread and the policy rate are annualized.

Figure A6 shows the impulse responses following a one standard deviation bank shock. The

purple line corresponds to the model when only bank and non-bank shocks are identified, the blue

dashed line corresponds to the full specification. The characteristics of the financial shocks implied

by the two different sets of restrictions are very close.
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6. Impulse Response Matching

Figure A7: Robust Responses

Note: Median impulse responses to a one standard deviation shock, the grey lines correspond to the 6th and 94th

quantiles. All series are expressed in percentage points. The policy rate is annualized. The dash blue lines correspond

to the median responses from the VAR model, the orange lines correspond to responses from the NK model.
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Param. Description Mode

𝜏𝑏 Bank intermediation costs 0.005
𝜉 Pledgeable fraction of networth 3.7
𝜇𝑏 Monitoring cost for loans 0.22
𝜇𝑐 Monitoring cost for bonds 0.33
𝜎1 Idiosyncratic shock dispersion 0.34
𝜎2 Idiosyncratic shock dispersion 0.1
𝜎3 Idiosyncratic shock dispersion 0.2

𝛼Δ𝑌 Taylor rule output coefficient 2.3
𝛼𝜋 Taylor rule inflation coefficient 2.5
𝜌𝑝 Taylor rule smoothing 0.79
𝜉𝑝 Calvo price stickiness 0.94
𝜄𝑝 Price indexation on inflation target 0.035
𝑆′′ Invest. adjustment cost curvature 0.2

𝜌𝜁𝐶 Autocorr. preference 0.94
𝜌𝜁 𝐼 Autocorr. MEI 0.57
𝜌𝐴 Autocorr. stationary technology 0.14
𝜌𝜈 Autocorr. financial 0.93
𝜎𝜁𝐶 SD preference 0.0079
𝜎𝜁 𝐼 SD MEI 0.0086
𝜎𝐴 SD stationary technology 0.083
𝜎𝜈 SD financial 0.07
𝜎𝜀𝑝 SD monetary policy 0.15

Note: This table displays the parameters minimizing the distance between the impulse responses from the NK model
and from the median impulse responses implied by the BVAR.

Table A2: Estimated Parameters

Figure A8: Bank Shocks - NK vs VAR

Note: The orange line corresponds the estimate of the updated bank shocks. The blue line corresponds to the mean of
the bank shocks estimated in the VAR model. Grey areas correspond to NBER recession dates. Correlation between
the two series is 0.66.
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