
Online Appendix: “Simulating multiple equilibria in

rational expectations models with occasionally-binding

constraints: An algorithm and a policy application”1

This appendix provides further details of the numerical examples solved the main paper, and
there are some sanity checks, including examples from Guerrieri and Iacoviello (2015). In
addition, we show how our algorithm can be applied to models in which the constraint binds
at steady state, the case of multiple occasionally-binding constraints, and a model with an
upper bound constraint that binds multiple times due to cyclical dynamics. The codes for
the simulations are available at the author’s GitHub page at: github.com/MCHatcher.

1 General framework

We consider models of the form

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t ∀t ≥ 1

Bi,t = 1{x∗
1,t>x1}Bi + (1− 1{x∗

1,t>x1})B̃i

(1)

where 1{x∗
1,t>x1} is an indicator, x∗1,t > x1 ∀t > T , x1 ∈ R, x0 ∈ Rn given, et is a vector of

known shocks with et = 0m×1 ∀t > T , and the ‘shadow value’ of the bounded variable is

x∗1,t = F

 xt
Etxt+1

xt−1

+Get +H (2)

where H ∈ R, F is a 1× 3n vector with f11 = 0 and G is a 1×m vector.

The matrices Bi,t are regime dependent. In the reference regime Bi,t = Bi; in the alternative
regime Bi,t = B̃i. The indicator variable 1{x∗

1,t>x1} determines which regime is realized at a
given t. The assumption that x∗1,t > x1 ∀t > T is a terminal condition which states that the
bounded variable, x1,t, permanently escapes the bound after a finite number of periods T .

1.1 Model solutions

Solutions to the problem in (1) are found by trialling sequences for the indicator variable
of the form (1t)

T
t=1 (with 1t ∈ {0, 1} specified for all t) and 1t = 1 ∀t > T ; this in turn

determines the sequences {B1,t, B2,t, B3,t, B4,t, B5,t}t≥1 which can be used to find a time path
(xt)t≥1 using the Algorithm presented in the main text. Only time paths consistent with the
terminal condition and the occasionally-binding constraint are accepted as solutions.

Any solution(s) to problem (1) found using our Algorithm have the form:

xt =

{
Ωtxt−1 + Γtet +Ψt for 1 ≤ t ≤ T

Ωxt−1 +Ψ for all t > T
(3)
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where, for t = 1, ..., T ,

Ωt = (B1,t −B2,tΩt+1)
−1B3,t, Γt = (B1,t −B2,tΩt+1)

−1B4,t (4)

Ψt = (B1,t −B2,tΩt+1)
−1(B2,t(Ψt+1 + Γt+1et+1) +B5,t) (5)

and Ω = (B1 −B2Ω)
−1B3 has eigenvalues in the unit circle, Ψ = (B1 −B2Ω)

−1(B2Ψ+B5),
ΨT+1 = Ψ, ΩT+1 = Ω, ΓT+1 := 0n×m and et = 0m×1 for all t > T .

1.2 Finding the M matrix

To compute the matrix M ∈ RT×T of impulse responses of the bounded variable to news
shocks at dates t = 1, ..., T (see Holden, 2023), let vt := [v1,t 01×(n−1)]

′ be an n× 1 vector of
known shocks to the bounded variable, where v1,t ∈ {0, 1} for t = 1, ..., T and v1,t = 0 for all
t > T . Letting x̂t := xt − x (Assumption 1, main paper), we can solve the following model:

B1x̂t = B2x̂t+1 +B3x̂t−1 +B4et + vt, ∀t ≥ 1 (6)

whose solution and M matrix are described in Remark 1.

Remark 1 The solution to the perfect foresight model in (6) is given by

x̂t = Ωx̂t−1 + Γ̂ẽt +Ψt, ∀t ≥ 1 (7)

where ẽt := B4et + vt, Γ̂ = (B1 − B2Ω)
−1, Ψt = (B1 − B2Ω)

−1B2(Ψt+1 + Γ̂ẽt+1) ∀t ∈ [1, T ],
with Ψt = 0n×1 for all t > T , Ω as in (3), and the corresponding M matrix is

Mij =
∂x̂1,i
∂v1,j

= x̂1,i|v1,j=1 − x̂1,i|v1,j=0 for i, j ∈ {1, ..., T}.

2 Solution details: Fisherian example

Recall that for all t ≥ 1 the model consists of a Taylor-type rule with a zero lower bound
and the Fisher equation (see Holden, 2023):

it = max{0, r + ϕπt − ψπt−1 + et} (8)

it = r + Etπt+1 (9)

where ϕ − ψ > 1, ψ > 0, π0, e1 ∈ R, r > 0 is a fixed real interest rate, and et = 0 for all
t > 1. To simplify presentation, we set ϕ = 2. The results are not specific to this case.

As discussed in the main paper, there are two solutions to the model (8)–(9): one is away
from the bound in all periods, and the other has the constraint binding only in period 1. We
now show that our Algorithm finds the same solutions. Letting xt := [it πt]

′, the matrices
in the reference regime and the alternative regime are given by

B1 =

[
1 −ϕ
1 0

]
, B2 =

[
0 0
0 1

]
, B3 =

[
0 −ψ
0 0

]
, B4 =

[
1
0

]
, B5 =

[
r
r

]
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B̃1 =

[
1 0
1 0

]
, B̃2 =

[
0 0
0 1

]
, B̃3 =

[
0 0
0 0

]
, B̃4 =

[
0
0

]
, B̃5 =

[
0
r

]
.

Hence, analogous to (1)–(2), the model for all t ≥ 1 is

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t

Bj,t = 1{i∗t>0}Bj + (1− 1{i∗t>0})B̃j, ∀j ∈ [5]
(10)

where et = 0 for all t > 1, and

i∗t = F
[
x′t Etx

′
t+1 x′t−1

]′
+Get +H, with F =

[
0 ϕ 0 0 0 −ψ

]
, G =

[
1
]
, H =

[
r
]
.

Let 1t denote the guess on the indicator. Consider first the solution away from the bound.
This solution corresponds to the guess 1t = 1 for all t ≥ 1, such that Bj,t = Bj ∀j ∈ [5] and

B1xt = B2Etxt+1 +B3xt−1 +B4et +B5, ∀t ≥ 1. (11)

The guessed solution xt = [it πt]
′ thus follows the Algorithm with T = 1 and 1t = 1 ∀t:

xt =

{
Ω1x0 + Γ1e1 +Ψ1 for t = 1

Ωxt−1 +Ψ for t > 1
(12)

where Ω1 = Ω, Ψ1 = Ψ, Γ1 = (B1 −B2Ω)
−1B4 =

[
− ω

ϕ−ω
− 1

ϕ−ω

]′
, and

Ω = (B1 −B2Ω)
−1B3 =

[
0 ω2

0 ω

]
, Ψ = (B1 −B2Ω)

−1(B2Ψ+B5) =

[
r
0

]
with ω = 1−

√
1− ψ.2

The guessed solution is verified provided i∗1 = r+ϕπ1−ψπ0+e1 ≥ 0, i∗t = r+ϕπt−ψπt−1 > 0
for all t > 1, which requires π0 ≥ − r

ω2 for e1 = 0 (see main text).

Now consider the second solution. We guess that the lower bound constraint binds only in
period 1, such that 11 = 0 and 1t = 1 ∀t > 1; hence Bj,t = B̃j for t = 1 and Bj,t = Bj for
all t > 1, j ∈ [5]. Note that this guess implies that T = 1 and xt = Ωxt−1 +Ψ for all t > 1.
Therefore, the guessed solution is

xt =

{
Ψ1 for t = 1

Ωxt−1 +Ψ for t > 1
(13)

where Ψ1 = (B̃1 − B̃2Ω)
−1(B̃2Ψ+ B̃5) =

[
0 − r

ω

]′
.

To verify this solution, we require i∗1 = r+ ϕπ1 −ψπ0 + e1 ≤ 0 and i∗t = r+ ϕπt −ψπt−1 > 0
for all t > 1, which again requires π0 ≥ − r

ω2 for e1 = 0. The two solutions are plotted in
Figure 1 in the main paper, along with the corresponding shadow nominal rates i∗t .

2We can guess that the left column of Ω is zero (because it−1 does not enter the model), which makes it
straightforward to solve the resulting quadratic equation in Ω for the right-hand column. In general, Ω,Ψ
can be found using numerical algorithms (e.g. Binder and Pesaran, 1997; Sims, 2002; Cho and Moreno, 2011).
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3 New Keynesian model

3.1 Baseline model

The baseline model has the form:
it = max{i, i∗t} (14)

i∗t = ρii
∗
t−1 + (1− ρi)(θππt + θ∆y(yt − yt−1)) (15)

yt = Etyt+1 −
1

σ
(it − Etπt+1) + et (16)

πt = βEtπt+1 + κyt (17)

where θπ > 1, β ∈ (0, 1), θ∆y, κ, σ > 0, ρi ∈ [0, 1), i = β − 1 and all values of et are known.

Let xt =
[
it i∗t yt πt

]′
and note that et (scalar) is the vector of known shocks. Then the

reference regime (slack) is described by

B1xt = B2Etxt+1 +B3xt−1 +B4et +B5

where

B1 =


1 −1 0 0
0 1 −(1− ρi)θ∆y −(1− ρi)θπ
σ−1 0 1 0
0 0 −κ 1

 , B2 =


0 0 0 0
0 0 0 0
0 0 1 σ−1

0 0 0 β



B3 =


0 0 0 0
0 ρi −(1− ρi)θ∆y 0
0 0 0 0
0 0 0 0

 , B4 =


0
0
1
0

 , B5 =


0
0
0
0


and the alternative regime (binding) is described by

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5

where

B̃1 =


1 0 0 0
0 1 −(1− ρi)θ∆y −(1− ρi)θπ
σ−1 0 1 0
0 0 −κ 1

 , B̃i = Bi, for i ∈ {2, 3, 4}, B̃5 =


i
0
0
0

 .
Given x1,t = it, it = max{i, i∗t} can be written in the form x1,t = max{x1, x∗1,t} by setting

x1 = i and x∗1,t = i∗t , or in vector form as in (2) with F =
[
0 1 01×10

]
and G = H =

[
0
]
.

We set the parameters at the values given in the main text, whenever these parameters were
not being varied as part of the analysis. Our computed perfect foresight paths correspond
to initial conditions x0 =

[
0 0 0 0

]′
, e1 = 0.01, et = 0 ∀t ≥ 2, unless otherwise stated.
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3.2 Computing the M matrix

To compute the M matrix of impulse responses of the bounded variable, we solve the model
in (14)–(17) ignoring the bound (i.e. with the max operator removed) and with a ‘news
shock’ v1,t ∈ {0, 1} added, such that: it = i∗t + v1,t. The resulting model can be written as:

B1xt = B2Etxt+1 +B3xt−1 + ẽt, ∀t ≥ 1 (18)

where ẽt := B4et + vt and vt :=
[
v1,t 0 0 0

]′
, with v1,t = 0 for all t > T , where T is the

horizon at which the M matrix is being computed (it is a T × T matrix).

Recall that the 1st column of M lists the impulse response of it (at dates t = 1, ..., T ) to the
shock v1,1 = 1. In general, the jth column of M lists the impulse response of it (at dates
t = 1, ..., T ) to the shock v1,j = 1; the rows of the matrix are indexed by i = 1, ..., T .

The impulse responses and the M matrix are obtained as follows:

xt = Ωxt−1 + Γ̂ẽt +Ψt, ∀t ≥ 1 (19)

where Γ̂ = (B1 − B2Ω)
−1, Ψt = (B1 − B2Ω)

−1B2(Ψt+1 + Γ̂ẽt+1) ∀t ∈ [1, T ], with Ψt = 0n×1

for all t > T , Ω as in (3), and the M matrix is given by

Mij =
∂x1,i
∂v1,j

= ii|v1,j=1 − ii|v1,j=0 for i, j ∈ {1, ..., T}.

Given the parameters β = 0.99 and κ = (1−0.85)(1−0.85β)
0.85

(2 + σ), we assign values to ρi, σ, θπ,
θ∆y, compute the M matrix and then check if it is a P -matrix using a recursive test due to
Tsatsomeros and Li (2000).3 Plots of the P -matrix regions under interest rate smoothing
and the baseline value σ = 1 (now shown in the main paper) are as follows:

Figure 1: Regions in which M is not a P -matrix (black) for T = 16 and various ρi.

3A MATLAB code is available on the webpage: https://www.math.wsu.edu/faculty/tsat/matlab.html.
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3.3 Forward guidance

With forward guidance the shadow interest rate is amended to

i∗t = ρii
∗
t−1 + (1− ρi)(θππt + θ∆y(yt − yt−1)) + eFG

t (20)

where eFG
t < 0 for all t ∈ T FG ⊂ N+ and eFG

t = 0 otherwise.

Hence, letting ĩ∗t := ρii
∗
t−1 + (1− ρi)(θππt + θ∆y(yt − yt−1)) the interest rate rule (20) is

i∗t =

{
ĩ∗t − |eFG

t | if t ∈ T FG

ĩ∗t otherwise.
(21)

We consider forward guidance horizons of the form T FG = {2, . . . , t′}, where t′ ≥ 2. Hence,
forward guidance occurs for consecutive periods 2, .., t′ and the length of the forward guidance
‘horizon’ (or spell) is given by t′ − 1; see also Table 1 in the main text.

Letting xt =
[
it i∗t yt πt

]′
as before and êt =

[
et eFG

t

]′
, the reference regime (slack) is

B1xt = B2Etxt+1 +B3xt−1 +B4êt +B5

where

B1 =


1 −1 0 0
0 1 −(1− ρi)θ∆y −(1− ρi)θπ
σ−1 0 1 0
0 0 −κ 1

 , B2 =


0 0 0 0
0 0 0 0
0 0 1 σ−1

0 0 0 β



B3 =


0 0 0 0
0 ρi −(1− ρi)θ∆y 0
0 0 0 0
0 0 0 0

 , B4 =


0 0
0 1
1 0
0 0

 , B5 =


0
0
0
0


and the alternative regime (binding) is

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4êt + B̃5

where

B̃1 =


1 0 0 0
0 1 −(1− ρi)θ∆y −(1− ρi)θπ
σ−1 0 1 0
0 0 −κ 1

 , B̃i = Bi, for i ∈ {2, 3, 4}, B̃5 =


i
0
0
0

 .
TheM matrix under forward guidance is identical to the model with the baseline interest rate
rule, (15). However, since forward guidance is modelled as negative shocks to the shadow
interest rate, it affects the initial conditions and we record whether a unique solution or
multiple solutions were found in each case. The simulation results in Table 1 of the paper
check a large number of initial conditions (800) by varying the news shocks according to

eFG
t = −0.01− Ut, for t ∈ T FG and Ut = draw from uniform distribution on (0, 0.01).
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3.4 Price-level targeting rule

With a price-level targeting interest rate rule, the model is amended to

it = max{i, i∗t} (22)

i∗t = ρii
∗
t−1 + (1− ρi) (θppt + θ∆y(yt − yt−1)) (23)

yt = Etyt+1 −
1

σ
(it − Etπt+1) + et (24)

πt = βEtπt+1 + κyt (25)

pt = pt−1 + πt (26)

where θp > 0 is the reaction coefficient on the (log) price level.

Let xt =
[
it i∗t yt πt pt

]′
and note that et (scalar) is the vector of known shocks. Then

the reference regime (slack) is described by

B1 =


1 −1 0 0 0
0 1 −(1− ρi)θ∆y 0 −(1− ρi)θp
σ−1 0 1 0 0
0 0 −κ 1 0
0 0 0 −1 1

 , B2 =


0 0 0 0 0
0 0 0 0 0
0 0 1 σ−1 0
0 0 0 β 0
0 0 0 0 0



B3 =


0 0 0 0 0
0 ρi −(1− ρi)θ∆y 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , B4 =


0
0
1
0
0

 , B5 =


0
0
0
0
0


and the alternative regime (binding) is described by

B̃1 =


1 0 0 0 0
0 1 −(1− ρi)θ∆y 0 −(1− ρi)θp
σ−1 0 1 0 0
0 0 −κ 1 0
0 0 0 −1 1

 , B̃i = Bi, for i ∈ {2, 3, 4}, B̃5 =


i
0
0
0
0

 .

3.4.1 ‘Good’ solutions under price-level targeting

In Figure 2 we plot some unique perfect foresight solutions under price-level targeting and
we see the results are robust to modest or strong smoothing of the shadow rate i∗t .

3.4.2 ‘Bad’ solutions under price-level targeting

We note in the paper that when multiple solutions exist under a price-level targeting rule (23)
(i.e. for small enough θp), the ‘bad’ solution is sometimes not so bad in terms of stabilization
of inflation and the output gap. Below we provide some extra examples of ‘bad solutions’.
In Figure 3–5 we plot some ‘good’ and ‘bad’ solutions when the response to the price level
θp is small enough to give multiple solutions. Robustness is also considered, and we see that
the ‘bad’ solution for θp = 0.2 has inflation and the output gap highly destabilized.
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Figure 2: Unique perfect foresight paths under price-level targeting for ρi = 0, 0.4, 0.8 when
e1 = 0.01, i∗0 = y0 = 0, σ = 1, θp = 1.5 and θ∆y = 1.6.

Figure 3: ‘Good’ solutions under price-level targeting: ρi = 0, various θp, and σ = 1

Figure 4: ‘Bad’ solutions under price-level targeting: ρi = 0, various θp, and σ = 1
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Figure 5: ‘Bad’ solutions under price-level targeting for various parameter values

4 Foundations of the Algorithm

By assumption, the model returns permanently to the reference regime after some date T ≥ 1
and escapes the bound (see Assumption 2, main text). The system to be solved is

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t ∀t ≥ 1

Bi,t = 1{x∗
1,t>x1}Bi + (1− 1{x∗

1,t>x1})B̃i i ∈ [5]
(27)

where ∀t > T , xt = Ωxt−1 + Ψ, Bi,t = Bi, et = 0m×1 and x∗1,t > x1, with x
∗
1,t is defined in

(2). Let 1t denote the guess on the indicator in (27) at date t, and note 1t = 1 ∀t > T .

Consider first the periods 1 ≤ t ≤ T . Suppose there exist a set of well-defined matrices
{Ωt,Γt,Ψt} such that xt = Ωtxt−1 + Γtet +Ψt. Shifting this equation forward one period:

xt+1 = Ωt+1xt + Γt+1et+1 +Ψt+1, 1 ≤ t ≤ T − 1. (28)

Substituting (28) into (27) and rearranging gives, for all t ∈ {1, ..., T − 1},

(B1,t −B2,tΩt+1)xt = B3,txt−1 +B4,tet +B2,t(Ψt+1 + Γt+1et+1) +B5,t. (29)

Provided ΩT ,ΓT ,ΨT well-defined and det[B1,t − B2,tΩt+1] ̸= 0, the set {Ωt,Γt,Ψt} is well-
defined for t where these matrices follow the recursive formulas. Therefore, if ΩT ,ΓT ,ΨT

well-defined and det[B1,t −B2,tΩt+1] ̸= 0 ∀t < T , Ωt,Γt,Ψt are well-defined for t = 1, ..., T .

For t > T , we have by Assumption 2, xt = Ωxt−1 + Ψ where Ω = (B1 − B2Ω)
−1B3 and

Ψ = (B1 − B2Ω)
−1(B2Ψ + B5). Hence, xt+1 = Ωxt + Ψ, ∀t ≥ T . Matrices ΩT ,ΓT ,ΨT are

determined by the first line of (27) and the previous equation at date t = T :

B1,TxT = B2,TxT+1 +B3,TxT−1 +B4,T eT +B5,T , xT+1 = ΩxT +Ψ

or (B1,T −B2,TΩ)xT = B3,TxT−1 +B4,T eT +B2,TΨ+B5,T . Provided det[B1,T −B2,TΩ] ̸= 0,
the matrices ΩT ,ΓT ,ΨT are given by the expressions in the Algorithm (see main text).
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For the time path (xt)
T
t=1 to satisfy the constraint x1,t = max{x1, x∗1,t} ∀t ∈ {1, ..., T}, the

guessed structure (1t)
T
t=1 must be verified at all dates. Consider first date t = 1. If 1t = 1,

then x1,t = x∗1,t and 1{x∗
1,t>x1} = 1 = 1t (see (27)) if and only if x∗1,t|1t=1 > x1. On the other

hand, if 1t = 0, then x1,t = x1 and 1{x∗
1,t>x1} = 0 = 1t if and only if x∗1,t|1t=0 ≤ x1.

Thus, the guess at t = 1 is verified if 1t = 1 and x∗1,t|1t=1 > x1 or 1t = 0 and x∗1,t|1t=0 ≤ x1.
By analogous arguments, the guessed structure for each subsequent t is verified if and only
if the above condition holds for this particular t. Hence, the guessed structure (1t)

T
t=1 is

verified when the following condition holds for all t ∈ {1, ..., T} and j = 1, ..., 5:{
Bj,t = Bj and x

∗
1,t > x1 for t such that 1t = 1

Bj,t = B̃j and x
∗
1,t ≤ x1 for t such that 1t = 0.

(*)

Note that a guessed structure (1t)
T
t=1 is rejected if (*) does not hold for some t ∈ [T ].

5 Models with the constraint binding at steady state

In this section we explain how our algorithm applies to models where the constraint binds
at the steady state to which any solutions must converge. An example is the borrowing
constraint model in Guerrieri and Iacoviello (2015, Online Appendix, Section C.1).

Starting from the general model in (1)–(2), Assumptions 1-2 in the main paper must be
adapted for a model that converges to a steady state in which the constraint is binding.

Assumption 1 We assume det[B̃1 − B̃2 − B̃3] ̸= 0, such that there exists a unique steady
state x = (B̃1− B̃2− B̃3)

−1B̃5 at the alternative regime. This steady state satisfies x1 = x1.

Assumption 2 For any given initial value, there is a unique stable (terminal) solution at
the alternative regime of the form xt = Ω̃xt−1 + Ψ̃, where Ψ̃ = (B̃1 − B̃2Ω̃)

−1(B̃2Ψ̃ + B̃5) =
(In − Ω̃)x, Ω̃ = (B̃1 − B̃2Ω̃)

−1B̃3 has eigenvalues in the unit circle, and xt → x as t→ ∞.

Assumption 3 is unchanged relative to the main paper.

We can then restate the Algorithm in the main paper as follows.

1. Pick a T ≥ 1 and a simulation length Ts > T . Guess a sequence (1t)
T
t=1 of 0s and 1s,

starting with all 0s (binding in all periods) as an initial guess. Note: 1t = 0 for t > T .

2. Find the structural matrices (or ‘regimes’) implied by the guess:

Bi,t = 1tBi + (1− 1t)B̃i, i ∈ [5]

in periods t = 1, . . . , Ts.
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3. Compute (xt)
Ts
t=1 and the shadow value of the bounded variable (x∗1,t)

Ts
t=1 via

xt =

{
Ωtxt−1 + Γtet +Ψt for 1 ≤ t ≤ T

Ωxt−1 +Ψ for t > T
, x∗1,t = F

[
x′t x′t+1 x′t−1

]′
+Get +H

where, for t = 1, ..., T and initial matrices ΩT+1 = Ω̃, ΨT+1 = Ψ̃, ΓT+1 = 0n×m,

Ωt = (B1,t −B2,tΩt+1)
−1B3,t, Γt = (B1,t −B2,tΩt+1)

−1B4,t

Ψt = (B1,t −B2,tΩt+1)
−1(B2,t(Ψt+1 + Γt+1et+1) +B5,t).

4. If x1,t = max{x1, x∗1,t} for t = 1, . . . , T and x1,t (= x1) ≥ x∗1,t ∀t > T , accept the guess

and store the solution (xt)
Ts
t=1; else reject. Return to Step 1 and repeat for a new guess.

Note that the only change is to Step 4 and the guesses and the terminal matrices in Step 3,
since backward induction now proceeds from the alternative regime not the reference regime.

6 Multiple occasionally-binding constraints

Thus far, we have dealt only with a single occasionally-binding constraint. We now consider
multiple occasionally-binding constraints, starting with the case of two lower bound con-
straints (such that there are four regimes in total) before turning to an arbitrary number of
constraints N , which follows a similar approach to the two-constraint algorithm below.4

With two constraints and hence four regimes, there are four different sets of structural
matrices which correspond to the members of the set

{Bs

1, B
s

2, B
s

3, B
s

4, B
s

5 : s = 1, . . . , 4}

and the indicators are: 1{x∗
1,t>x1,x

∗
2,t>x2} (both constraints slack, state s = 1), 1{x∗

1,t>x1,x
∗
2,t≤x2}

(constraint 1 slack, state s = 2), 1{x∗
1,t≤x1,x

∗
2,t>x2} (constraint 2 slack, state s = 3) and

1{x∗
1,t≤x1,x

∗
2,t≤x2} (both constraints bind, s = 4). We use the shorthand 1s,t henceforth.

Indicators 1s,t satisfy
∑4

s=1 1s,t = 1 since regimes are mutually exclusive. Regime s = 1 is
the terminal structure, and versions of Assumptions 1 and 2 in the main paper must hold.5

The system to be solved under perfect foresight is now:

B1,txt = B2,tEtxt+1 +B3,txt−1 +B4,tet +B5,t, ∀t ≥ 1

Bi,t =
4∑

s=1

1s,tB
s

i , ∀i ∈ [5]
(30)

4For N constraints, there are 2N different regimes in total and hence 2N indicator variables.
5Hence, the steady state x at the reference regime is unique and satisfies xj > xj for variables j = 1, 2.
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where 1s=1,t = 1 ∀t > T , x0 ∈ Rn given, and et is a vector of known shocks with et = 0m×1

for all t > T , and the ‘shadow values’ of the bounded variables are given by

x∗1,t = F1

 xt
Etxt+1

xt−1

+G1et +H1 (31)

x∗2,t = F2

 xt
Etxt+1

xt−1

+G2et +H2 (32)

where x1, x2, H1, H2 ∈ R, F1, F2 are 1 × 3n vectors, with vector Fj having entry j equal to
zero, and G1, G2 are 1×m vectors.

Variables 1 and 2 could be distinct economic variables or they could be used to impose
multiple constraints on the same variable. For example, to put a lower bound x1 and an
upper bound x1 on variable 1, we set x2,t = −x1,t and x∗2,t = −x∗1,t (so F2 = −F1, G2 = −G1,
H2 = −H1).

6 We now show the algorithm for the case of two constraints.

Given two occasionally-binding constraints, our Algorithm must be amended as follows:

1. Pick a T ≥ 1 and a simulation length Tsim > T . Guess on the indicators as (1s
t)

T
t=1 for

s = 1, 2, 3 and 1
4
t = 1−

∑3
s=1 1

s
t (implied) starting with 1

1
t = 1 for all t, 1s ̸=1

t = 0 for
all t (constraints slack in all periods) as an initial guess. Note: 11

t = 1 for all t > T .

2. Find the structural matrices (or ‘regimes’) implied by the guess:

Bi,t =
4∑

s=1

1
s
tB

s

i , i ∈ [5]

in periods t = 1, . . . , Tsim.

3. Compute (xt)
Tsim
t=1 and shadow values of the bounded variables (x∗1,t)

Tsim
t=1 , (x

∗
2,t)

Tsim
t=1 via

xt =

{
Ωtxt−1 + Γtet +Ψt for 1 ≤ t ≤ T

Ωxt−1 +Ψ for t > T
,

x∗1,t = F1

[
x′t x′t+1 x′t−1

]′
+G1et +H1

x∗2,t = F2

[
x′t x′t+1 x′t−1

]′
+G2et +H2

where, for t = 1, ..., T and initial matrices ΩT+1 = Ω, ΨT+1 = Ψ, ΓT+1 = 0n×m,

Ωt = (B1,t −B2,tΩt+1)
−1B3,t, Γt = (B1,t −B2,tΩt+1)

−1B4,t

Ψt = (B1,t −B2,tΩt+1)
−1(B2,t(Ψt+1 + Γt+1et+1) +B5,t).

4. If x1,t = max{x1, x∗1,t}, x2,t = max{x2, x∗2,t} for t = 1, ..., T and x1,t > x1, x2,t > x2
∀t > T , accept the guess and store the solution (xt)

Tsim
t=1 ; else reject guess in Step 1.

Return to Step 1 and repeat for a new guess.

6Note that if zt = min{x1, x
∗
1,t}, then −zt = max{−x1,−x∗

1,t}, so we set x∗
2,t = −x∗

1,t and x2 = −x1.
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Case of N constraints

The extension to an arbitrary finite number of constraintsN is straightforward. In particular,
the only non-trivial adjustments are as follows:

• There are N ≤ n occasionally-binding constraints and shadow values:7

xi,t = max{xi, x∗i,t} ∀t, x∗i,t = Fi

[
x′t x′t+1 x′t−1

]′
+Giet +Hi, i = 1, . . . , N .

• The time-varying structural matrices are Bi,t :=
∑2N

s=1 1s,tB
s

i , i ∈ [5], where 1s,t is an
indicator variable equal to 1 if regime s occurs at date t and zero otherwise.

• Guess on the indicators (1s
t)

T
t=1 for s = 1, . . . , 2N (with 1

1
t = 1, 1s ̸=1

t = 0 for t > T ) is
verified if xi,t = max{xi, x∗i,t} for all i ∈ [N ], t ≤ T and xi,t > xi for all t > T , i ∈ [N ].

Note that we again distinguish between the indicator variable 1s,t for the event of regime s at
date t and the guesses on the indicator variables, represented by 1s

t , that will be consistent
with the former only when a particular guessed sequence of regimes is verified.

7 Example 1′: Asset pricing model

The model in Guerrieri and Iacoviello (2015, Section 2.4) has the form

qt = β(1− ρ)Etqt+1 + ρqt−1 − σrt + ut

rt = max{r, ϕqt}
ut = ρuut−1 + et

(33)

where β, ρ ∈ (0, 1), ϕ > 0, r < 0, ρu ∈ (0, 1) and all values of et, et+1, ... are known.

Let xt =
[
rt qt ut

]′
, such that the bounded variable is ordered first, and note that et

(scalar) is the vector of known shocks. Then the reference regime (slack) is described by

B1xt = B2Etxt+1 +B3xt−1 +B4et +B5

where

B1 =

1 −ϕ 0
σ 1 −1
0 0 1

 , B2 =

0 0 0
0 β(1− ρ) 0
0 0 0

 , B3 =

0 0 0
0 ρ 0
0 0 ρu

 , B4 =

00
1

 , B5 =

00
0


and the alternative regime (binding) is described by

B̃1xt = B̃2Etxt+1 + B̃3xt−1 + B̃4et + B̃5

7Note that the assumption N ≤ n is not restrictive because if, in the original model, one wanted to
constrain, say, all norig variables from below and also constrain nu of them from above, then one may define
new variables xnorig+1, ..., xnorig+nu and let n = norig + nu such that xt has n elements as required.
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where

B̃1 =

1 0 0
σ 1 −1
0 0 1

 , B̃i = Bi for i ∈ {2, 3, 4}, B5 =

r0
0

 .
Given x1,t = rt, the equation rt = max{r, ϕqt} can be written in the form x1,t = max{x1, x∗1,t}
by setting x1 = r and x∗1,t = ϕqt; note that the latter equation can be written in vector form

as in (2) with F =
[
0 ϕ 0 0 0 0 0 0 0

]
and G = H =

[
0
]
.

7.1 Computing the M matrix

To compute the M matrix of impulse responses of the bounded variable, we solve the model
in (33) ignoring the bound (i.e. with the max operator removed) and with a ‘news shock’
vr,t ∈ {0, 1} added, such that rt = ϕqt + vr,t. The resulting model can be written as:

B1xt = B2Etxt+1 +B3xt−1 + ẽt, ∀t ≥ 1 (34)

where ẽt := B4et + vt and vt :=
[
vr,t 0 0

]′
, with vr,t = 0 for all t > T , where T is the

horizon at which the M matrix is being computed.

The 1st column of M lists the impulse response of the policy rate rt (at dates t = 1, ..., T )
to the shock vr,1 = 1. In general, the jth column of M lists the impulse response of rt (at
dates t = 1, ..., T ) to the shock vr,j = 1; the rows of the matrix are indexed by i = 1, ..., T .

The impulse responses and the M matrix are obtained as follows:

xt = Ωxt−1 + Γ̂ẽt +Ψt, ∀t ≥ 1 (35)

where Γ̂ = (B1 − B2Ω)
−1, Ψt = (B1 − B2Ω)

−1B2(Ψt+1 + Γ̂ẽt+1) ∀t ∈ [1, T ], with Ψt = 0n×1

for all t > T , Ω as in (3), and the M matrix is given by

Mij =
∂x1,i
∂vr,j

= ri|vr,j=1 − ri|vr,j=0 for i, j ∈ {1, ..., T}.

For the parameters β = 0.99, σ = 5, ϕ = 0.2, ρ = ρu = 0.5, we found thatM+M ′ is positive
definite, which implies that M is a P -matrix (see e.g. Holden, 2023, Appendix: Lemma 1).

7.2 Policy function and perfect foresight paths

To compute the policy function, we set, xt−1 =
[
0 qt−1 ut−1

]′
= 03×1, specify values for the

news shocks (et+s)s≥1, and find a perfect foresight solution for linearly-spaced et ∈ [−0.2, 0.2]
while holding the other initial conditions fixed. The policy function is computed at 60
different points. Some perfect foresight paths are plotted in Figure 6, where we allow for
non-zero future shocks and compare to zero future shocks as in Guerrieri and Iacoviello
(2015). The policy function plotted in Figure 7 matches the one that is shown in Guerrieri
and Iacoviello (2015, Figure 1) for the case of zero future news shocks.
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Figure 6: Perfect foresight solutions for different news shocks: e1 = −0.1, q0 = u0 = 0. In
the baseline case, all future (anticipated) shocks are set at 0. In the positive (negative) news
case the news shocks are et = 0.02 (et = −0.02) for t = 1, ..., 4 and zero otherwise.

Figure 7: Policy functions for various et when qt−1 = ut−1 = 0 and no future news shocks

8 Example 2′: RBC model and investment constraint

We also consider a Real Business Cycle model with a lower bound on investment, as in
Guerrieri and Iacoviello (2015, Section 4). This model requires us to log-linearize a non-
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linear model and to choose an appropriate shadow value x∗1,t in x1,t = max{x1, x∗1,t}.

A social planner chooses allocations {Kt, Ct}∞t=0 to maximize utility U0 = E0

∑∞
t=0 β

t
(

C1−σ
t −1

1−σ

)
,

subject to the following constraints:

Ct + It = AtK
α
t−1 (36)

Kt = (1− δ)Kt−1 + It (37)

It ≥ ϕISS (38)

where σ, ISS > 0, α, ϕ ∈ (0, 1), ISS is the steady-state level of investment, and productivity
is At = Aρ

t−1exp(ϵt), where ρ ∈ (0, 1) and ϵt is a shock whose value is known at all dates.

Equations (36)–(38) are, respectively, the resource constraint, the capital accumulation equa-
tion, and a constraint that prevents investment from falling below a fraction ϕ of its steady-
state value ISS. The necessary conditions for a solution to the planner problem are (36)–(38)
plus the consumption Euler equation and the complementary slackness condition:

C−σ
t − λt = βEt(C

−σ
t+1(αAt+1K

α−1
t + 1− δ)− (1− δ)λt+1) (39)

λt(It − ϕISS) = 0 (40)

where λt ≥ 0 is the Lagrange multiplier on the investment constraint.

The investment constraint is slack when λt = 0 and binding when λt > 0. If λt > 0, then
It = ϕISS to ensure that the complementary slackness condition (40) holds. If λt = 0, then
either It = ϕISS or It > ϕISS (but not It < ϕISS, since this would violate condition (38)).
The two regimes are as follows. Under the reference regime (slack):

It = Kt − (1− δ)Kt−1, Kt = AtK
α
t−1 + (1− δ)Kt−1 − Ct

C−σ
t = βEt(C

−σ
t+1(αAt+1K

α−1
t + 1− δ)), λt = 0

and under the alternative regime (binding):

It = ϕISS, Kt = It + (1− δ)Kt−1, Ct = AtK
α
t−1 + (1− δ)Kt−1 −Kt,

C−σ
t − λt = βEt(C

−σ
t+1(αAt+1K

α−1
t + 1− δ)− (1− δ)λt+1).

To put this non-linear model in the form of (1), we log-linearize the equations under both
regimes around the steady state at which the investment constraint is slack.8 To ease the
process, we define the new variables Yt := AtK

α
t−1 and Rt := αAtK

α−1
t−1 + 1 − δ. The two

regimes can then be written in terms of deviations from steady state as follows:

ît = δ−1k̂t − (1− δ)δ−1k̂t−1, k̂t = (1− δ)k̂t−1 + (YSS/KSS)ŷt − (CSS/KSS)ĉt

8The steady state is ISS = δKSS , CSS = ASSK
α
SS − ISS , KSS =

(
αβASS

1−β(1−δ)

)1/(1−α)

and ASS = 1.
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ĉt = Etĉt+1 − (1/σ)Etr̂t+1, λt = 0, ŷt = ât + αk̂t−1

r̂t = αR−1
SS (YSS/KSS) ât − α(1− α)R−1

SS (YSS/KSS) k̂t−1, ât = ρât−1 + ϵt

under the reference regime, and

ît = ϕ− 1, k̂t = (1− δ)k̂t−1 + δît, CSS ĉt = YSS ŷt + (1− δ)KSS k̂t−1 −KSS k̂t

Cσ
SSλt = −σĉt + σEtĉt+1 − Etr̂t+1 + (1− δ)(Cσ

SS/RSS)Etλt+1, ŷt = ât + αk̂t−1

r̂t = αR−1
SS (YSS/KSS) ât − α(1− α)R−1

SS (YSS/KSS) k̂t−1, ât = ρât−1 + ϵt

under the alternative regime.

We let xt :=
[̂
it k̂t ĉt λt ŷt r̂t ât

]′
and et :=

[
ϵt
]
, where ‘hats’ are log deviations from

steady-state, i.e. ẑt := ln(Zt/ZSS) ≈ (Zt − ZSS)/ZSS. Note that x1,t = ît. The constraint
(38) is ît ≥ ϕ − 1 in deviations and we put this in the form x1,t = max{x1, x∗1,t} by setting

x1 = ϕ− 1 and x∗1,t = δ−1k̂t − (1− δ)δ−1k̂t−1 − λt. In the reference regime (slack), λt = 0, so

x∗1,t = δ−1k̂t−(1−δ)δ−1k̂t−1 and max{x1, x∗1,t} = x∗1,t if δ
−1k̂t−(1−δ)δ−1k̂t−1(= ît) > ϕ−1. In

the alternative regime (binding), λt > 0, so x∗1,t = δ−1k̂t−(1−δ)δ−1k̂t−1−λt = (ϕ−1)−λt <
ϕ− 1, so max{x1, x∗1,t} = x1 = ϕ− 1 as required.9

The shadow value x∗1,t = δ−1k̂t − (1− δ)δ−1k̂t−1 − λt can be written as in (2) by setting

F =
[
0 δ−1 0 −1 01×11 −(1− δ)δ−1 01×5

]
and G = H =

[
0
]
. The matrices Bj, B̃j,

j ∈ [5], under the two regimes have the form:

B1 =



1 −δ−1 0 0 0 0 0
0 1 CSS

KSS
0 − YSS

KSS
0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 −1
0 0 0 0 0 1 − αYSS

KSSRSS

0 0 0 0 0 0 1


, B2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 −σ−1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

B3 =



0 −(1− δ)δ−1 0 0 0 0 0
0 (1− δ) 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 α 0 0 0 0 0

0 −α(1−α)YSS

KSSRSS
0 0 0 0 0

0 0 0 0 0 0 ρ


, B4 =



0
0
0
0
0
0
1


, B5 =



0
0
0
0
0
0
0


9Note that if the computed value of λt is negative under the alternative regime, then we must reject the

guess that the constraint binds in this period. In this case, x∗
1,t > x1 (x

∗
1,t|1t=0 = ît−λt = (ϕ−1)−λt > ϕ−1),

so max{x1, x
∗
1,t} = x∗

1,t > ϕ− 1, and the guess 1t = 0 will be rejected as required.
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B̃1 =



1 0 0 0 0 0 0
−δ 1 1 0 0 0 0
0 KSS

CSS
1 0 − YSS

CSS
0 0

0 0 σ Cσ
SS 0 0 0

0 0 0 0 1 0 −1
0 0 0 0 0 1 − αYSS

KSSRSS

0 0 0 0 0 0 1


, B̃2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 σ
(1−δ)Cσ

SS

RSS
0 −1 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

B̃3 =



0 0 0 0 0 0 0
0 (1− δ) 0 0 0 0 0

0 (1−δ)KSS

CSS
0 0 0 0 0

0 0 0 0 0 0 0
0 α 0 0 0 0 0

0 −α(1−α)YSS

KSSRSS
0 0 0 0 0

0 0 0 0 0 0 ρ


, B̃4 = B4, B̃5 =



ϕ− 1
0
0
0
0
0
0


.

We set β = 0.96, δ = 0.10, ρ = 0.90, ϕ = 0.975, σ = 2, α = 0.33, as in Guerrieri and
Iacoviello (2015). The policy functions and paths below match Figs. 2-3 in their paper.

Figure 8: Policy functions for various shocks sizes et when xt−1 = x

Figure 9: Perfect foresight solution for e1 = −0.04, x0 = x
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9 Example 3′: Endogenous business cycles

As a final numerical example, we consider an ‘endogenous business cycle’ model with boom-
bust dynamics of output that can lead to multiple spells at the lower bound. To solve for
a perfect foresight solution in this case, we ensure the use of guesses that involve ‘multiple
spells’ at the bound in our Algorithm by ‘commenting in’ the relevant line of code.

We consider a variant of the multiplier-accelerator model of Samuelson (1939) augmented
with rational expectations, a countercyclical feedback rule for government expenditure, and
an upper bound Gmax on such expenditure (motivated by austerity policies):10

Ct = a+ b(βEtYt+1 + (1− β)Yt−1 − T ) (41)

It = I + d(Ct − βEtCt+1 − (1− β)Ct−1) + eI,t (42)

Yt = Ct + It +Gt, Gt = min{Gmax, G− θ(Yt−1 − Y )} (43)

where b ∈ (0, 1), a, d, θ, T > 0, the intercepts I,G and Y = a−bT+I+G
1−b

(all > 0) are steady-

state values, and Gmax > G. Note that T has the interpretation of net taxes.

We set parameters so that steady state output Y equals 1 and the model has ‘business cycles’
(damped oscillations) when started away from steady-state. The intercepts a and I are set
at 0.025 and 0.20, respectively, and taxes at T = 0.01. The marginal propensity to consume
is set at b = 0.70 and the investment function slope at d = 1.3 The fraction of rational
expectations is set at β = 0.05, such that 95% of agents have backward-looking expectations
based on the past value (one lag). Steady-state government expenditure is set at G = 0.082,
the response coefficient at θ = 0.055, and the upper bound at Gmax = 1.035×G.

To find a perfect foresight solution, we first write the upper bound constraint in the form
x1,t = max{x1, x∗1,t}, where x1,t := −Gt, x1 = −Gmax, x

∗
1,t = θ(Yt−1 − Y ) − G.11 We then

define the vector of variables as xt = [x1,t Ct It Yt]
′ and the vector of shocks as et = [eI,t]

(see (41)–(43)), such that the matrices in each regime are

B1 =


1 0 0 0
0 1 0 0
0 −d 1 0
1 −1 −1 1

 , B2 =


0 0 0 0
0 0 0 βb
0 −βd 0 0
0 0 0 0

 , B3 =


0 0 0 θ
0 0 0 (1− β)b
0 −(1− β)d 0 0
0 0 0 0

 ,

B4 =


0
0
1
0

 , B5 =


−G− θY
a− bT
I
0

 , B̃3 =


0 0 0 0
0 0 0 (1− β)b
0 −(1− β)d 0 0
0 0 0 0

 , B̃5 =


−Gmax

a− bT
I
0


and B̃i = Bi for = 1, 2, 4, and the shadow variable is given by

10The original model (which is purely backward-looking) arises as the special case β = a = I = T = θ = 0.
11Here, we use the fact that if Gt = min{Gmax, Zt}, then −Gt = max{−Gmax,−Zt} .
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x∗1,t = F

 xt
Etxt+1

xt−1

+Get +H

where
F =

[
01×11 θ

]
, G = [0], H =

[
−(G+ θY )

]
.

Figure 10 shows the perfect foresight solution for eI,1 = −0.125 and eI,t = 0 for all t > 1.
Our algorithm finds one solution subject to the upper bound (solid black lines) and reports
that M is a P -matrix. We also plot for comparison the solution for Gmax → ∞ (no upper
bound, dashed lines). All variables are given initial values equal to steady-state values.

Investment falls by more than half in period 1 relative to its initial value (top, middle),
which pushes output somewhat below its steady-state value (lower panel). Due to forward-
looking expectations (perfect foresight), consumption also falls marginally on impact (see
top left). Government expenditure is unchanged in period 1, but it rises in period 2 because
past output was below the steady-state value, such that the ‘fiscal rule’ provides stimulus –
albeit that this stimulus is truncated because the upper bound on expenditure binds (top
right). The underlying dynamics are cyclical; as a result, the upper bound on government
expenditure binds a second time (after period 10) when output is again in a trough.

Figure 10: Perfect foresight paths for Gmax = 1.035×G and Gmax → ∞ when eI,1 = −0.125,
x0 = x (steady state). Variables in the top panel are divided by their steady-state values.
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