/* LabMPLidr.do evaluates the IDR responses */ * Variable definitions in data * id subject id * DRtask Discount rate task (first task=1, second task=2, etc.) * Task# Dummy for # Task number * chLO Choice low * chHI Choice high * choiceLO lower bound on probability interval * choiceHI higher bound on probability interval * choice midpoint of probability interval * idrLO lower bound on IDR interval * idrHI higher bound on IDR interval * crra midpoint of CRRA interval * crraDIFF CRRA interval size * n_a number of early payment choices * n_i number of indifferent choices * n_b number of late payment choices * treat framing effect (skewLO=-1, symmetric=0, skewHI=1) * skewLO Dummy for skewLO treatment * skewHI Dummy for skewHI treatment * horizon Horizon for late payment in days * horizonM Horizon for late payment in months * RApay RA payments * Final final response * Initial initial response * experimenter experimenter effect (Lau=0 and Andersen=1) * iteration iteration number of MPL (0=first, 1 second, 2, third) * Date Date of experiment * Vprize Prize of the lottery * session Experiment session * endowment Random initial endowment * second Dummy for risk experiment being second * impl Dummy for subjects facing Iterative Multiple Price List * smpl Dummy for subjects facing Swithcing Multiple Price List * mpl Dummy for subjects facing normal Multiple Price List * uslab Dummy for US subjects * female Dummy for females * young Dummy for subjects aged less than 30 * middle Dummy for subjects aged between 40 and 50 * old Dummy for subjects aged over 50 * copen Dummy for subjects that lives in Copenhagen area * city Dummy for subjects that lives in larger city of 20,000 or more * owner Dummy for subjects that owns home or apartment * retired Dummy for subjects that are retired * student Dummy for subjects that are students * skilled Dummy for subjects that have some post-secondary education * longedu Dummy for subjects that have substantial higher education * kids Dummy for subjects that have children * single Dummy for subjeccts which lives alone * IncLow Dummy for subjeccts with Lower level income * IncMed Dummy for subjeccts with Medium level income * IncHigh Dummy for subjeccts with Higher level income * hhd household characteristics (singles/households,children...) * nhhd number of people in household * record control variable * GENERATE EXTRA VARIABLES FOR IDENTIFICATION OF EFFECTS AND SPECIFY GLOBALS FOR REGRESSIONS * get data use LabMPLidr, replace * force lower limit on open intervals replace idrLO=0 if idrLO==. * Dummies with respect to interaction between format and framing (reference is impl and symmetric) foreach F in impl smpl mpl { generate `F'_lo=0 replace `F'_lo=1 if `F'==1 & skewLO==1 generate `F'_hi=0 replace `F'_hi=1 if `F'==1 & skewHI==1 generate `F'_sym=0 replace `F'_sym=1 if `F'==1 & skewLO==0 & skewHI==0 } generate nonimpl_lo=0 replace nonimpl_lo=1 if impl==0 & skewLO==1 generate nonimpl_hi=0 replace nonimpl_hi=1 if impl==0 & skewHI==1 generate nonimpl=0 replace nonimpl=1 if impl==0 generate nonimpl_sym=0 replace nonimpl_sym=1 if impl==0 & skewLO==0 & skewHI==0 * Dummies with respect to interaction between format and order (reference is impl and task1) foreach F in 2 3 { generate impl_task`F'=0 replace impl_task`F'=1 if impl==1 & Task`F'==1 generate nonimpl_task`F'=0 replace nonimpl_task`F'=1 if impl==0 & Task`F'==1 } * Dummies with respect to interaction between format and horizon (reference is impl and 1 month horizon) foreach F in 4 6 { generate impl_horizon`F'=0 replace impl_horizon`F'=1 if impl==1 & horizon`F'==1 generate nonimpl_horizon`F'=0 replace nonimpl_horizon`F'=1 if impl==0 & horizon`F'==1 generate mpl_horizon`F'=0 replace mpl_horizon`F'=1 if mpl==1 & horizon`F'==1 generate smpl_horizon`F'=0 replace smpl_horizon`F'=1 if smpl==1 & horizon`F'==1 } * identify individual characteristics on demographics global rhs "female single nhhd owner student skilled longedu IncLow IncHigh copen city" * identify tasks by order of presentation (numbers adjusted for earlier trainers) global tasks "Task2 Task3" * identify MPLs, normalized on mpl global mpls "smpl impl" * identify interactions effects between format and framing (reference is impl and symmetric) global formfra "impl_sym impl_hi impl_lo nonimpl_sym nonimpl_hi nonimpl_lo" * identify interaction between format and order (reference is impl and task1) global formorder "impl_task2 impl_task3 nonimpl_task2 nonimpl_task3 " * identify interaction effect between format and horizon pooling smpl and mpl global formhoripool "impl_horizon4 impl_horizon6 nonimpl_horizon4 nonimpl_horizon6" * identify interaction effect between format and horizon global formhori "impl_horizon4 impl_horizon6 mpl_horizon4 mpl_horizon6 smpl_horizon4" * Save data save Data, replace * ANALYSIS ON DANISH DATA * calculate mean and median censored idr for final response summ idr if treat==0 & Final==1, detail summ idr if treat==-1 & Final==1, detail summ idr if treat==1 & Final==1, detail summ idr if Final==1, detail /* PAGE 15, mean 29.2%, median 27.9% */ * calculate mean and median censored idr for initial response summ idr if treat==0 & Initial==1, detail summ idr if treat==-1 & Initial==1, detail summ idr if treat==1 & Initial==1, detail summ idr if Initial==1, detail * Figure 5 - Part A: Midpoints of individual responses, symmetric frame only histogram idr if Final==1 & treat==0, start(0) width(5) ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80, noticks nolabels) /* */ title("Mid-Points of Responses", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) saving(ExtraGraphs\Temp1_Figure4, replace) * Table 4 xtintreg idrLO idrHI horizon4 horizon6 impl smpl skewLO skewHI endowment $tasks experimenter $rhs if Final==1, i(id) quad(26) /* Table 4 */ estimates store SMPL1 parmest, list(*) saving(Tables/Table4, replace) idstr("Table 4") label * test effects of treatments test horizon4=horizon6 /* test no change in IDR on longer horizons: H0: no difference in 4 and 6 months horizons, Footnote 28 */ test impl=smpl=0 /* test effect of iterations from mpl: H0 smpl and iMPL zero, Footnote 29 */ test impl=smpl /* test effect of iterations from mpl: H0 smpl and iMPL same */ test skewLO=skewHI=0 /* test effects of framing: H0 no effect of framing, Footnote 30 */ test Task2=Task3=0 /* test changes in order of tasks: H0 no order/learning effect */ test Task2=Task3 /* test changes in order of tasks: H0 no change in order/learning effect, p=0.42 in text */ * predictions predict idrP0, xb * Figure 4 - Part B: Estimated IDR, symmetric frame only. histogram idrP0 if Final==1 & treat==0 & idrP0>0, fraction start(0) width(5) ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80) /* */ title("Estimated Responses", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) saving(ExtraGraphs\Temp2_Figure4, replace) * Figure 4: Elicited and estimated IDR values (NEW FIGURE 2) gr combine ExtraGraphs\Temp1_Figure4.gph ExtraGraphs\Temp2_Figure4.gph, ycommon xcommon iscale(*.9) imargin(vsmall) cols(1) /* */ title("Figure 4: Elicited Individual Discount Rates in the Lab") note("Individual Discount Rate (%)", size(medlarge) angle(horizontal) pos(6) ring(1)) /* */ saving(Graphs/Figure_4_wp, replace) /* FIGURE 4 in WP version*/ gr combine ExtraGraphs\Temp1_Figure4.gph ExtraGraphs\Temp2_Figure4.gph, xcommon iscale(*.9) imargin(vsmall) cols(1) /* */ title("Figure 2: Elicited Individual Discount Rates in the Lab") note("Individual Discount Rate (%)", size(medlarge) angle(horizontal) pos(6) ring(1)) /* */ saving(Graphs/Figure_2, replace) /* FIGURE 2 in final version*/ * Figure 5: Estimated IDR values and format histogram idrP0 if Final==1 & mpl==1 & idrP0>0, fraction start(0) width(5) title(MPL format, ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80, noticks nolabels) saving(tmp1, replace) histogram idrP0 if Final==1 & smpl==1 & idrP0>0, fraction start(0) width(5) title(sMPL format, ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80, noticks nolabels) saving(tmp2, replace) histogram idrP0 if Final==1 & impl==1 & idrP0>0, fraction start(0) width(5) title(iMPL format, ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80) saving(tmp3, replace) gr combine tmp1.gph tmp2.gph tmp3.gph, ycommon xcommon iscale(*.9) imargin(vsmall) cols(1) title(Figure 5: Elicited Discount Rates and Format) /* */ subtitle(Estimated Responses) note("Individual Discount Rate (%)", size(medlarge) angle(horizontal) pos(6) ring(1)) saving(Graphs\Figure_5_wp, replace) /* FIGURE 5 in WP version */ * Figure 6: Estimated IDR values and framing histogram idrP0 if Final==1 & skewLO==1 & idrP0>0, fraction start(0) width(5) title("Skewness to lower IDR", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80, noticks nolabels) saving(tmp1, replace) histogram idrP0 if Final==1 & skewLO==0 & skewHI==0 & idrP0>0, fraction start(0) width(5) title("Symmetric framing", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80, noticks nolabels) saving(tmp2, replace) histogram idrP0 if Final==1 & skewHI==1 & idrP0>0, fraction start(0) width(5) title("Skewness to raise IDR", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ytitle("") ylabel(, angle(horizontal)) xtitle("") xlabel(0(10)80) saving(tmp3, replace) gr combine tmp1.gph tmp2.gph tmp3.gph, ycommon xcommon iscale(*.9) imargin(vsmall) cols(1) title(Figure 6: Elicited Discount Rates and Framing) /* */ subtitle(Estimated Responses) note("Individual Discount Rate (%)", size(medlarge) angle(horizontal) pos(6) ring(1)) saving(Graphs\Figure_6_wp, replace) /* FIGURE 6 in WP version */ * Figure 7: Estimated IDR values and order histogram idrP0 if Final==1 & Task1==1 & idrP0>0, fraction start(0) width(5) title("Task 1", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ylabel(, angle(horizontal)) ytitle("") xtitle("") xlabel(0(10)80, noticks nolabels) saving(tmp1, replace) histogram idrP0 if Final==1 & Task2==1 & idrP0>0, fraction start(0) width(5) title("Task 2", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ylabel(, angle(horizontal)) ytitle("") xtitle("") xlabel(0(10)80, noticks nolabels) saving(tmp2, replace) histogram idrP0 if Final==1 & Task3==1 & idrP0>0, fraction start(0) width(5) title("Task 3", ring(0) pos(1) bfcolor(gs14) blcolor(gs14) box) /* */ ylabel(, angle(horizontal)) ytitle("") xtitle("") xlabel(0(10)80) saving(tmp3, replace) gr combine tmp1.gph tmp2.gph tmp3.gph, ycommon xcommon iscale(*.9) imargin(vsmall) cols(1) title("Figure 7: Elicited Discount Rates and Task Order") /* */ subtitle(Estimated Responses) note("Individual Discount Rate (%)", size(medlarge) angle(horizontal) pos(6) ring(1)) saving(Graphs\Figure_7_wp, replace) /* FIGURE 7 in WP version */ * remove temporary graph files erase tmp1.gph erase tmp2.gph erase tmp3.gph * TEST FOR POOLING OF SMPL AND MPL * estimation on final responses pooling mpl and smpl xtintreg idrLO idrHI horizon4 horizon6 impl skewLO skewHI endowment $tasks experimenter $rhs if Final==1, i(id) quad(26) estimates store SMPL2 * likelihood ratio test of pooling MPL and sMPL (H0: no difference) lrtest SMPL1 SMPL2, stats * CHECK INTERACTION EFFECTS (Footnote 34) * see interaction effect between format and framing xtintreg idrLO idrHI horizon4 horizon6 $formfra endowment $tasks experimenter $rhs if Final==1, i(id) quad(26) * test the interaction effects qui test impl_lo=nonimpl_lo test impl_hi=nonimpl_hi, accumulate test impl_lo=nonimpl_lo test impl_hi=nonimpl_hi * see interaction effect between format and order xtintreg idrLO idrHI horizon4 horizon6 impl skewLO skewHI $formorder endowment experimenter $rhs if Final==1, i(id) quad(26) * test the interaction effects qui test impl_task2=nonimpl_task2 test impl_task3=nonimpl_task3, accumulate foreach T in 2 3 { test impl_task`T'=nonimpl_task`T' } * extra control for interaction effects of iMPL and order, controlling for horizon xtintreg idrLO idrHI horizon4 horizon6 impl skewLO skewHI impl_task2 impl_task3 endowment experimenter $tasks $rhs if Final==1, i(id) quad(26) * see interaction effect between format and horizon xtintreg idrLO idrHI impl skewLO skewHI impl_horizon4 impl_horizon6 nonimpl_horizon4 nonimpl_horizon6 endowment experimenter $rhs if Final==1, i(id) quad(26) * test the interaction effects qui test impl_horizon4=nonimpl_horizon4 test impl_horizon6=nonimpl_horizon6, accumulate foreach T in 4 6 { test impl_horizon`T'=nonimpl_horizon`T' } erase Data.dta exit ** SENSIVITY ANALYSIS use Data, replace * specification test: Hausman test of random effect model qui xtreg idr horizon4 horizon6 experimenter $tasks1 $rhs if Final==1, i(id) fe estimates store FE1 qui xtreg idr horizon4 horizon6 experimenter $tasks1 $rhs if Final==1, i(id) re estimates store RE1 xttest0 hausman FE1 RE1 * Do table 4, just with initial responses to compare xtintreg idrLO idrHI horizon4 horizon6 impl smpl skewLO skewHI endowment $tasks experimenter $rhs if Initial==1, i(id) quad(26) * test effects of treatments test horizon4=horizon6 /* test no change in IDR on longer horizons: H0: no difference in 4 and 6 months horizons */ test impl=smpl=0 /* test effect of iterations from mpl: H0 smpl and iMPL zero */ test impl=smpl /* test effect of iterations from mpl: H0 smpl and iMPL same */ test skewLO=skewHI=0 /* test effects of framing: H0 no effect of framing */ test Task2=Task3=0 /* test changes in order of tasks: H0 no order/learning effect */ test Task2=Task3 /* test changes in order of tasks: H0 no change in order/learning effect */ * HETEROSKEDASTICITY TEST * Basic intreg idrLO idrHI horizon4 horizon6 impl smpl skewLO skewHI endowment $tasks experimenter $rhs if Initial==1, robust cluster(id) het(horizon4 horizon6 impl smpl skewLO skewHI endowment $tasks experimenter) * only horizon 4 intreg idrLO idrHI impl smpl skewLO skewHI endowment $tasks experimenter $rhs if Initial==1 & horizon4==1, robust cluster(id) het(impl smpl skewLO skewHI endowment $tasks experimenter) * only horizon 6 intreg idrLO idrHI impl smpl skewLO skewHI endowment $tasks experimenter $rhs if Initial==1 & horizon6==1, robust cluster(id) het(impl smpl skewLO skewHI endowment $tasks experimenter) * only impl responses intreg idrLO idrHI horizon4 horizon6 skewLO skewHI endowment $tasks experimenter $rhs if Initial==1 & impl==1, robust cluster(id) het(horizon4 horizon6 skewLO skewHI endowment $tasks experimenter) * only smpl responses intreg idrLO idrHI horizon4 horizon6 skewLO skewHI endowment $tasks experimenter $rhs if Initial==1 & smpl==1, robust cluster(id) het(horizon4 horizon6 skewLO skewHI endowment $tasks experimenter) * only mpl responses intreg idrLO idrHI horizon4 horizon6 skewLO skewHI endowment $tasks experimenter $rhs if Initial==1 & mpl==1, robust cluster(id) het(horizon4 horizon6 skewLO skewHI endowment $tasks experimenter)