
ONLINE APPENDICES

Appendix A: Robustness Checks

The empirical specification used in the main text of this paper assumes that updating follows the
flexible parametric process described in Equation 1. This specification allows for a wide range of
deviations from Bayes’ rule, as discussed in Section 2. In this section we conduct several exercises
to test for the robustness of the main results.

The first subsection examines whether the results from the main specification described in Equa-
tion 2 are robust to first differencing the dependent variable (i.e. this considers how new in-
formation influences the change in beliefs, imposing the assumption that δ = 1). The second
subsection extends the main empirical specification to allow for individual-specific updating pa-
rameters. The third subsection pools all the observations across the three treatments together,
and then tests whether the average updating parameters differ across treatments, by interacting
treatment group dummies with the regressors of the main specification described in Equation 2.

Table 4: First Difference Specification and Power Calculations

T1: SYMMETRIC T2: COMBINED T3: SEPARATE
OLS IV DIFF OLS IV DIFF OLS IV DIFF
(1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

δ 0.90 0.99 0.86 0.99 0.93 0.99
(0.03)*** (0.03) (0.04)*** (0.02) (0.02)*** (0.02)

γa 1.09 1.09 1.09 1.06 1.02 1.01 1.16 1.14 1.13
(0.11) (0.11) (0.11) (0.12) (0.11) (0.11) (0.11) (0.11) (0.10)

γb − γa 0.08 0.08 0.08 0.07 0.10 0.11 -0.03 -0.03 -0.02
(0.08) (0.08) (0.08) (0.10) (0.09) (0.09) (0.08) (0.08) (0.08)

p(γa = γb) 0.32 0.31 0.32 0.48 0.25 0.25 0.73 0.74 0.75
MDE (κ = 0.8) 0.24 0.22 0.22 0.27 0.25 0.26 0.24 0.22 0.22
R2 0.73 0.31 0.74 0.21 0.84 0.34
1st Stage F 84.04 107.01 95.45
N 1,075 1,075 1,075 1,285 1,285 1,285 1,140 1,140 1,140

(i) Standard errors in parentheses (clustered at the individual level)
(ii) T-tests of H0: δ = 1; γa = 1; γb − γa = 0 indicated by * = 10%, ** = 5%, *** = 1%
(iii) MDE reports the minimum detectable effect size for a power of κ.
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Robustness Check 1: First-Differences Specification and Power Calculation

This section of the robustness checks serves two purposes. The first purpose is to check for the
robustness of the results from the core empirical specification to the use of a first differences
specification (DIFF), which essentially involves imposing the assumption that δ = 1. The second
purpose of this section is to report the size of the minimum detectable effect (MDE) from power
calculations for both our main OLS and IV empirical specification, and the DIFF specification.

One of the challenges in carrying out a statistical analysis of belief updating behavior is that an
individual’s current posterior belief necessarily depends upon her prior belief, which in turn is
the result of updating in response to past information. Therefore, when estimating a paramet-
ric belief updating function, one concern is that the individual’s prior belief is correlated with
unobservables. In the main text, we devoted substantial space to discussing how the experiment
was designed explicitly to address this concern by generating a completely exogenous information
set, facilitating a natural instrumental variables (IV) approach to estimation. The first differences
specification results presented here serve to further complement the IV analysis, since the DIFF
specification avoids the potential endogeneity issue by removing the lagged belief from the set of
dependent variables in the regression.

In columns (#a) and (#b), Table 4 repeats the OLS and IV results from Table 3 for the corrected
beliefs, with one minor change to the core specification in Equation 2. Here we report, instead,
the results for the equivalent specification:

π̃i,j,t+1 = δπ̃i,j,t + γaq̂ − (γb − γa)q̃ · 1(si,j,t+1 = b) + εi,j,t+1 (3)

where π̃i,j,t = logit(πi,j,t) and q̂ = log( q
1−q )·[1(si,j,t = a)−1(si,j,t = b)]; while as above, q̃ = log( q

1−q );
j refers to a round of decisions; t counts the decision numbers within a round, and the errors
εijt+1 are clustered at the individual (i) level. The difference γb − γa denotes a single parameter
estimated in the regression, but is denoted as the difference between γb and γa as this is the
natural way to think about this parameter in the context of the discussion above (i.e. the difference
between how subjects update in response to ‘bad news’ and ‘good news’).

The reason for the rearrangement of the equation is that, while it is equivalent21 to the specifica-
tion in Equation 2, it displays the test of the difference between γa and γb more clearly (i.e. the

21Notice that the regression coefficients and standard errors on δ and γa are the same in Tables 3 and 4 (where
we are only considering the corrected beliefs). Furthermore, we can see the equivalence from the following simple
rearrangement:

π̃i,j,t+1 = δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γbq̃ · 1(si,j,t+1 = b)
= δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γaq̃ · 1(si,j,t+1 = b) + γaq̃ · 1(si,j,t+1 = b)− γbq̃ · 1(si,j,t+1 = b)
= δπ̃i,j,t + γaq̃ · [1(si,j,t+1 = a)− q̃ · 1(si,j,t+1 = b)] + [γa − γb] · q̃ · 1(si,j,t+1 = b)
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test of the asymmetric updating hypothesis), and thereby also facilitates calculating the MDE. In
Table 3, we have presented the MDE for a power of κ = 0.8.

Columns (#c) report the results for the first difference specification, which imposes the restriction
that δ = 1:

∆π̃i,j,t+1 = γaq̂ − (γb − γa)q̃ · 1(si,j,t+1 = b) + εi,j,t+1 (4)

where ∆π̃i,j,t+1 = logit(πi,j,t+1)− logit(πi,j,t) and q̂ = log( q
1−q ) · [1(si,j,t = a)− 1(si,j,t = b)]; j refers

to a round of decisions; t counts the decision numbers within a round, and the errors εijt+1 are
clustered at the individual (i) level.

The results indicate that the γb − γa parameter is robust to the different empirical specifications
adopted, and also doesn’t vary substantially across treatment groups. In all treatment groups,
and for each of the empirical specifications considered, we cannot reject the null hypothesis that
this parameter is equal to zero, which implies that we do not find support for the asymmetric
updating hypothesis. Furthermore, we calculate the MDE for each specification, considering a
significance level of α = 0.05 and a power of κ = 0.8. Under these assumptions, the MDE for the
difference between the γb and γa parameters in each of the regressions considered in isolation
ranges between 0.22 and 0.27. As a result, we cannot conclusively reject the possibility that there
exists a small asymmetry in updating; however none of our results provide any support for this
conclusion.

Robustness Check 2: Allowing for Individual-Specific Updating Parameters

As discussed above, one reason we might think that endogeneity of the lagged belief could lead
to biased estimates is if there is heterogeneity in individual updating behavior and this leads to a
correlation between the unobserved error term and the lagged belief variable amongst the regres-
sors. We have tried to address this issue above using, firstly, an instrumental variable approach,
and secondly, a first differences empirical specification. However, since the data were collected
in the form of a panel of belief updates for each individual, the data lends itself to controlling
for individual-specific behavior through exploiting the panel. A typical fixed effects model is not
appropriate here, as it is not the level of the regression that shifts from individual to individual.
However, we can include individual-specific updating parameters to control for the slope to shift
at the individual level. This allows us to extract the individual heterogeneity in how responsive
individuals are to their prior belief, and to new information in general, and reduce the possible
bias in the main parameter of interest, the average difference in responsiveness to ‘bad news’
and ‘good news’ : γb − γa. With this in mind, our third robustness check involves estimating the
following empirical specification:
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π̃i,j,t+1 = δiπ̃i,j,t + γ
i
q̂ − (γb − γa)q̃ · 1(si,j,t+1 = b) + εi,j,t+1 (5)

where δi and γi are estimated at the individual level, and the remaining parameters and variables
are defined as above. The results from this exercise using the corrected beliefs are reported in
Table 5.

These results are very consistent with the estimates from the core specification, as well as from the
DIFF specification in Robustness Check 2. In summary, all the empirical estimates provide support
for the same underlying story that the data collected in this experiment provide no support for
the asymmetric updating hypothesis in this context.

Table 5: Allowing for Individual-Specific Updating Parameters.

T1 SYMMETRIC T2 COMBINED T3 SEPARATE T2+T3
(1) (2) (3) (4)

γb − γa 0.09 0.14 -0.04 0.06
(0.10) (0.10) (0.09) (0.07)

p(γa = γb) 0.35 0.18 0.67 0.41
MDE (κ = 0.8) 0.28 0.29 0.26 0.20
MDE (κ = 0.9) 0.33 0.33 0.30 0.23
N 1,075 1,285 1,140 2,425
R2 0.80 0.84 0.89 0.86
(i) Standard errors in parentheses
(ii) T-tests of H0: Coefficient = 0 reported: * = 10%, ** = 5%, *** = 1%
(iii) MDE reports the minimum detectable effect size for a power of κ.

Robustness Check 3: Between Treatments Comparison of Updating Parameters

This section tests whether the belief updating parameters in our core specification are significantly
different between the three treatment groups. This is done by pooling together the three treatment
groups and estimating Equation 2, but with the inclusion of treatment dummies interacted with
the updating coefficients. This provides us with a test of whether the parameters differ between
either of the two asymmetric treatments and symmetric.

More specifically, this involves estimating the following equation:
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π̃i,j,t+1 =δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γbq̃ · 1(si,j,t+1 = b)+
3∑

k=2
[δkπ̃i,j,t · T ki,j,t + γka q̃ · 1(si,j,t+1 = a) · T ki,j,t − γkb q̃ · 1(si,j,t+1 = b) · T ki,j,t] + εi,j,t+1

where T ki,j,t is an indicator variable for treatment k [i.e. T ki,j,t = 1(Ti,j,t = k)], with Ti,j,t a treatment
variable taking the values {1, 2, 3} corresponding to the three treatment groups. The coefficients
δ,γa, and γb reflect the baseline parameters without the influence of state-contingent stakes and
the parametersδk, γka and γkb estimate the movement from these parameters for each of the two
state-contingent stake treatments, k ∈ {2, 3}.

The results from this exercise are presented in Table 6. The results show that, for the average in-
dividual, there are no systematic differences in the updating parameters across treatment groups.
This implies that the differences in exogenous state-contingent incentives do not exert a strong
influence on how individuals update their beliefs in the different treatments.
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Table 6: Testing for Differences in Average Updating Behavior between Treatment Groups.

Belief 1 Belief 2 Belief 3 Belief 4 Belief 5 Pooled Full Sample
(1) (2) (3) (4) (5) (6) (7)

Priors

δ 0.93 0.89 1.03 1.00 1.02 0.99 1.00
(0.05) (0.04) (0.05) (0.06) (0.06) (0.03) (0.03)

δ * T2 -0.02 0.02 -0.02 0.01 0.01 -0.00 -0.04
(0.07) (0.07) (0.07) (0.07) (0.07) (0.04) (0.03)

δ * T3 0.02 0.06 -0.10 0.08 -0.04 0.00 -0.00
(0.08) (0.06) (0.06) (0.07) (0.09) (0.04) (0.03)

Signal: Blue (s = a)

γa 0.81 1.02 1.03 1.30 1.28 1.09 0.84
(0.14) (0.18) (0.18) (0.21) (0.21) (0.11) (0.09)

γa * T2 0.09 -0.07 -0.15 -0.08 -0.16 -0.07 -0.01
(0.22) (0.26) (0.22) (0.34) (0.29) (0.15) (0.13)

γa * T3 0.12 -0.05 -0.10 0.07 0.21 0.05 0.04
(0.21) (0.22) (0.20) (0.28) (0.31) (0.15) (0.13)

Signal: Red (s = b)

γb 0.69 0.79 1.18 1.40 1.80 1.16 0.78
(0.11) (0.16) (0.19) (0.21) (0.23) (0.11) (0.09)

γb * T2 0.21 0.06 -0.33 -0.21 0.14 -0.04 0.11
(0.20) (0.22) (0.25) (0.27) (0.40) (0.17) (0.15)

γb * T3 0.30 0.04 -0.15 -0.37 -0.06 -0.05 0.10
(0.18) (0.20) (0.21) (0.25) (0.33) (0.15) (0.12)

Observations 700 700 700 700 700 3,500 5,550
Kleibergen-Paap F 46.61 47.46 56.63 60.45 64.03 93.17 53.88

(i) Robust standard errors in parentheses (clustered at the individual level).
(ii) Estimates use the corrected beliefs and are instrumented using the correct lagged Bayesian posterior.
(iii) All of the non-interacted coefficients are significantly different from 0 at the 1% level. Only one of
the forty-two interaction coefficients are significantly different from zero at the 10% level. This is the γb
* T3 coefficient in the Belief 1 column, which is significant at the 10%, but not the 5% level.
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Appendix B.1: Core Properties of Bayes’ Rule

Möbius et al. (2014) argue that the core structure of Bayesian updating is captured by the fol-
lowing three properties:

1. invariance, whereby the difference in logit beliefs between t and t+ 1 depends only on the
history of signals, Ht+1, and the initial prior, p0 (i.e. on the agent’s information set). An
updating process is invariant if we can find a function gt such that:

logit(πt+1)− logit(πt) = gt(st+1, st, ..., s1; p0)

If an individual displayed base rate neglect or confirmatory bias, this would constitute a
violation of invariance (i.e. in the context of the model outlined in the main text, this
assumption stipulates that δ = 1).

2. πt is a sufficient statistic for all information received at time t or earlier, such that the change
in logit beliefs depends only on the new information in time t+ 1: logit(πt+1)− logit(πt) =
gt(st+1)

3. stability of the updating process over time. This property is satisfied if gt = g for all t.

Under the assumption that these properties are satisfied, the authors note that the class of updat-
ing processes that remain can be fully described by the two parameter function, g(st), where:

g(st) = log( q

1− q ) · 1(st+1 = a)− log( q

1− q ) · 1(st+1 = b)

This serves to motivate the model described in Equation 1.

Appendix B.2.1: The QSR and a Non-EU ‘Truth Serum’

In this section, we discuss how beliefs reported under the QSR might be distorted, and how we
address this challenge. Consider the binary event, denoted by Eω, where ω ∈ {A,B}. Therefore,
EA refers to the event that state ω = A is realized. The object that we would like to elicit is
the participant’s belief, πt = P (EA) = P (ω = A), regarding the likelihood that state ω = A is
the correct state at time t. However, the object that we will observe is the participant’s reported
belief, rt, at each point in time under the incentives prescribed by the quadratic scoring rule. The
Quadratic Scoring Rule at time t is defined by:

7



SA(rt) = 1− (1− rt)2 (6)

SB(rt) = 1− r2
t (7)

where rt is the reported probability of eventEA occurring; SA(rt) is the payment if the state ω = A

is realized; SB(rt) is the payment if the state ω = B is realized. Therefore, the QSR essentially
involves a single choice from a list of binary prospects, (1 − (1 − rt)2)EA(1 − r2

t ). The QSR is a
‘proper’ scoring rule since, if the agent is a risk neutral EU maximizer then she is incentivized to
truthfully reveal her belief, πt:

πt = arg max
rtε[0,1]

πtSA(rt) + (1− πt)SB(rt)

However, the QSR is no longer incentive compatible once we allow for (i) risk aversion / loving
and (ii) participants who have exogenous stakes in the state of the world. The reasons for this
are the following. Firstly, it has been well documented theoretically that, if the participant is risk
averse, then the QSR leads to reporting of beliefs, rt, that are distorted towards 0.5, away from
her true belief, πt, when the participant has no exogenous stakes in the realized state.22 This
distortion has been observed in experimental data (Offerman et al., 2009; Armantier and Treich,
2013). Secondly, in our experiment, we are also interested in eliciting beliefs when participants
have an exogenous stake associated with one of the two states. More precisely, we are interested
in recovering the participant’s true belief when she receives an exogenous payment, x, if state
ω = A is realized. This payment, x, is in addition to the payment she receives from the QSR. In
other words, she chooses from a menu of binary prospects of the form: (x+1−(1−rt)2)EA(1−r2

t ).

In the context of state-dependant stakes, a risk averse EU maximizer23 faces two distortionary
motives in reporting her belief: (i) she faces the motive to distort her belief towards 0.5 as dis-
cussed above; and (ii) in addition, there is a hedging motive, which will compel a risk averse
individual to lower her reported belief, rt, towards zero as x increases.

If the participants in our experiment are risk neutral expected utility maximizers, the reported be-
liefs, rt, that we elicit under the QSR will coincide with their true beliefs, πt. However, in order to
allow for choice behaviors consistent with a wider range of decision models, we measure the size
of the distortionary influence of the elicitation incentives at an individual level and correct the

22i.e. if πt > 0.5 then πt > rt > 0.5, and if πt < 0.5 then πt < rt < 0.5 for a risk averse individual reporting her
beliefs under QSR incentives.

23A participant who is a risk averse EU maximizer chooses her reported belief rt by solving the following maxi-
mization problem:

max
rtε[0,1]

πtU(x+ 1− (1− rt)2) + (1− πt)U(1− r2
t )
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beliefs accordingly. This approach is valid under the weak assumption that individuals evaluate
binary prospects according to the biseparable preferences24 model and are probabilistically sophis-
ticated.25 This restriction on behavior is very weak and includes individuals who behave according
to EU with any risk preferences as well as the majority of commonly used NEU models.26

A Non-EU ‘Truth Serum’

The discussion above has highlighted how beliefs might be distorted under QSR incentives. The
Offerman et al. (2009) approach proposes correcting the reported beliefs for the risk aversion
caused by the curvature of the utility function or by non-linear probability weighting. This ap-
proach involves eliciting participants’ reported belief parameter, r, for a set of risky events where
they know the objective probability, p (known probability). This is done under precisely the same
QSR incentive environment in which we elicit the participants’ subjective beliefs, π, regarding the
events of interest (where they don’t know the objective probability: unknown probability). If a
subject’s reported beliefs, r, differ from the known objective probabilities, p, this indicates that
the subject is distorting her beliefs due to the incentive environment (e.g. due to risk aversion).
The objective of the correction mechanism is therefore to construct a map, R, from the objec-
tive beliefs, p ∈ [0, 1], to the reported beliefs, r, for each individual under the relevant incentive
environment.

Offerman et al. (2009) show that under the assumption that individuals evaluate prospects in
a way that is consistent with the weak assumptions of the biseparable preferences model, then in
the scenario where there are no state-contingent stakes (i.e. x = 0), individuals evaluate the
QSR menu of prospects (1 − (1 − rt)2)EA(1 − r2

t ) according to w(P (EA))U(1 − (1 − rt)2) + (1 −
w(P (EA)))U(1− r2

t ) for rt ≥ 0.5 and therefore the inverse of the map from objective probabilities
24The biseparable preference model holds if the preference ordering, %, over prospects of the form, yEz, can be

represented by:
yEz →W (E)U(y) + (1−W (E))U(z)

where U is a real-valued function unique up to level and unit; and W is a unique weighting function, satisfying
W (∅) = 0, W (S) = 1 and W (E) ≤ W (F ) if E ⊆ F . S is the set of all states and events are subsets of the full set
of states: i.e. E,F ⊆ S. In this paper, we only consider two-state prospects, where the state-space is partitioned
into two parts by an event, E and its complement Ec. Making the further assumption that the decision maker is
probabilistically sophisticated gives the following refinement:

yEz → w(P (E))U(y) + (1− w(P (E)))U(z)

25Probabilistic sophistication is the assumption that we can model that individual’s preferences over prospects as
if the individual’s beliefs over states can be summarized by a probability measure, P . In other words, probabilistic
sophistication implies that we can model the individual’s belief regarding the likelihood of an event E as being
completely summarized by a single probability judgment, P (EA).

26Amongst the models subsumed within the biseparable preferences model are EU, Choquet expected utility
(Schmeidler, 1989), maxmin expected utility (Gilboa and Schmeidler, 1989), prospect theory (Tversky and Kahne-
man, 1992), and α-maxmin expected utility (Ghirardato et al., 2004). See Offerman et al. (2009) for a discussion.
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to reported probabilities, R, is given by:

p = R−1(r) = w−1

 r

r + (1− r)U ′(1−(1−r)2)
U ′(1−r2)

 (8)

In the next section, we provide a derivation for this equation, as well as augmenting the Offerman
et al. (2009) approach to allow for the scenario where there are state-contingent stakes (i.e.
x 6= 0). This extension to Offerman et al. (2009) represents a special case of the more general
treatment of correction methods for binary proper scoring rules considered by Kothiyal et al.
(2011). In our empirical analysis, we discuss how we use Equation 8 to recover the function, R,
for each individual and thereby recover their beliefs, πt, from their reported beliefs, rt.

Appendix B.2.2: Augmenting the Offerman et al. (2009) ‘Truth
Serum’ Approach to Include Stakes

The previous section discussed the central ideas motivating the Offerman et al. (2009) approach
for correcting for hedging in cases where there are no state-dependent stakes (i.e. x = 0). In
projects studying the asymmetric updating hypothesis, allowing for state-dependent stakes (i.e.
x 6= 0) is of fundamental importance. Therefore, in this section, we consider an extension to the
Offerman et al. (2009) approach to correcting for hedging. The extension we consider is tailored
specifically to our experimental setting, however it is a special case of the more general set of
correction techniques studied by Kothiyal et al. (2011).27

In the case where x 6= 0, the text above discussed how participants who face the quadratic scor-
ing rule incentives, along with the non-zero state-contingent bonus x, essentially face a choice
from a menu of lotteries denoted by (x + 1 − (1 − rt)2)EA(1 − r2

t ). An individual who satisfies
the biseparable preferences model and is probabilistically sophisticated will evaluate this prospect
using the following Equations:28

For x ≥ 1 or rt ≥ 0.5 :

w(P (EA))U(x+ 1− (1− rt)2) + (1− w(P (EA)))U(1− r2
t ) (9)

27Kothiyal et al. (2011) extend the basic idea used by techniques aiming to correct elicited beliefs for reporting
bias (e.g. hedging) to apply to the set of all binary proper scoring rules, and cover the full domain of beliefs. In
conjunction with Offerman et al. (2009), this paper therefore offers a useful set of tools for accessing subjects’ true
beliefs in situations where they may have reason to distort their reports.

28For expositional simplicity, we don’t consider x ∈ (0, 1). The discussion below is easily extended to these cases,
but they are irrelevant for the purposes of this paper. This case is slightly different due to the fact that the probability
weights on events or states may depend on their ordinal ranking according to preferences in this model.
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and similarly,

For x = 0 & rt < 0.5 :

(1− w(P (Ec
A)))U(x+ 1− (1− r)2

t ) + w(P (Ec
A))U(1− r2

t ) (10)

The reason for the two separate conditions is due to the way in which many NEU models, sub-
sumed within biseparable preferences model, allow the probability weighting function, w(.), over
events to be influenced by the ordinal ranking over the associated outcomes, from best to worst.29

Since the case where x = 0 is discussed extensively in Offerman et al. (2009), we will focus on the
case where x ≥ 1 in the discussion that follows. This case only requires a very minor adjustment
to their discussion. The key results are the following (adjusted to include the influence of x):

Result 1: Under NEU with known probabilities, p, the optimal reported probability, r = Rx(p)
satisfies:

If x ≥ 1,then p = R−1
x (rt) = w−1

 rt

rt + (1− rt)U
′(x+1−(1−rt)2)
U ′(1−r2

t )

 (11)

Result 2: Under NEU with unknown probabilities, the optimal reported probability, r, satisfies:

If x ≥ 1,then P (E) = w−1

 rt

rt + (1− rt)U
′(x+1−(1−r)2

t )
U ′(1−r2

t )

 (12)

This motivates the simple strategy for recovering the agent’s subjective beliefs from her reported
beliefs under the specific incentive environment that she faces. Since the RHS of (11) and (12)
agree, we have:

P (E) = R−1
x (r) (13)

which implies that if we can recover the function R−1
x then we can map the reported beliefs to the

participant’s subjective beliefs. Equation 11 shows that we can recover this R−1
x function in the

same way here, with the bonus payment of x, as in the case where x = 0 considered in Offerman
et al. (2009). Essentially, we provide the participant with prospects over known probabilities, p,
and ask them for their belief regarding the likelihood that one state will be realized. In order to
ensure the incentives to distort one’s reported beliefs are kept constant, we do this exercise under
precisely the same incentive environment as in the main belief updating task. By eliciting these

29When x = 0 and rt < 0.5, then 1− r2
t > 1− (1− rt)2 (i.e. in this case, EcA becomes the preferred event, rather

than EA, and therefore the probability weighting function is reversed).
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reported beliefs associated with known probabilities spanning the whole unit interval, we can
use these (p, rt) pairs to estimate Rx(p) for each individual for the relevant incentive environment
created by the belief elicitation. Having estimated Rx(p), we can calculate its inverse, R−1

x (r).

We can take any beliefs reported by the participant under the same belief elicitation incentives
and then use this estimated R−1

x (r) to recover her true beliefs. In particular, we can use this
estimated function to recover her true beliefs from her reported beliefs in the belief updating task
that is the focus of this paper. Essentially, we are using this procedure to remove any misreporting
effect that the belief elicitation incentive environment may have. It allows us to correct for the
possibility that individuals may hold some belief P (E) or π, but instead report a different belief,
r.

If the incentive environment does not cause the participant to report a belief different from her
true belief, then this procedure is unnecessary, but applying the procedure to her reported beliefs
will not have any effect. In this case, the corrected beliefs will be the same as the reported beliefs.

Appendix B.2.3: Calibration of the Belief Correction Procedure:
Theory

It is clear from the discussion in the main text and Equation 8, that we could recover R(.) non-
parametrically for each individual if we were to collect a large number of (p, r) pairs from partic-
ipants, such that the interval between the known probabilities, p, is sufficiently small. However,
since it is not practical here to elicit such a large number of observations from each participant,
we instead impose a parametric structure similar to the one used by Offerman et al. (2009).

For the utility function, U(.), we use the constant relative risk aversion (CRRA) functional form:

U(x) =


xρ if ρ > 0

ln x if ρ = 0

−xρ if ρ < 0

(14)

For the probability weighting function, w(.), we adopt Prelec’s (1998), one-parameter family:30

30This is a special case of Prelec’s two-parameter family of weighting functions:

w(p) = exp[−β(− ln(p))α]

For the purposes of the current context, the two-parameter family is not practically suitable due to the limited
data we use at the individual level. This functional form permits the standard inverse-S shaped probability weighting
function that has been found to be consistent with the majority of the existing empirical evidence. When β = 1 in the
one-parameter family, the α parameter captures the degree of curvature of the inverse-S shape but the point at which
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w(p) = exp[−(− ln(p))α] (15)

Substituting these parametric functional form specifications into Equation 8 for the case where
x = 0 gives:

p = R−1(rt) = exp
− [− ln

(
rt(2rt − r2

t )1−ρ

rt(2rt − r2
t )1−ρ + (1− rt)(1− r2

t )1−ρ

)] 1
α

 (16)

For the the case where x 6= 0, substituting these parametric functional form specifications de-
scribed in Equations 14 and 15 into Equation 11 gives:

p = R−1
x (rt) = exp

− [− ln
(

rt(1− (1− rt)2 + x)1−ρ

rt(1− (1− rt)2 + x)1−ρ + (1− rt)(1− r2
t )1−ρ

)] 1
α

 (17)

We therefore use this adapted specification for our correction mechanism for the combined and
separate treatment groups.

In our core analysis, for our individual level reported belief corrections, we will make the simpli-
fying assumption that α = 1, such that risk aversion is captured only through the curvature of
the utility function and not through the probability weighting function. The results are similar
when we use Prelec’s one parameter weighting function. Furthermore, it is substantially easier
to interpret the risk aversion parameter estimates when we estimate ρ alone, due to the strong
relationship between the ρ and α estimates .

We therefore estimate the following model, for each participant, in order to acquire a numerical
estimate for the inverse of this function, R(.):

logit[R(j/20)] = logit[h(j/20, α, ρ)] + uj (18)

where R(j/20) is the probability reported by the individual that corresponds to true known prob-
ability, p = j

20 where 1 ≤ j ≤ 19.31 As discussed above, α is the parameter of the probability
weighting function; ρ gives the curvature of the utility function. The function h(.) is the inverse
of R−1. We estimate this function, h(.) numerically at each step32 within the maximum likelihood
estimation. The error terms, uj, are independently and identically distributed across participants
and choices and are drawn from a normal distribution. Essentially, here we are using each partic-
ipant’s 20 (r, p) pairs in order to estimate an R function that reflects the distortion in her reported

w(p) intersects the 45 degree line is predetermined. Adding the second parameter, β, extends the one-parameter
specification by allowing this fixed point to vary.

31In other words, for known probabilities, p, between 0.05 and 0.95 at intervals of 0.05.
32i.e. given the current parameter guesses.
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beliefs due to the particular quadratic scoring rule incentive structure that she is subject to. No-
tice, that this structure varies across treatments as x varies and therefore the same subject would
require a different adjustment curve if she were reassigned to a different treatment.

Using these estimates at an individual level allows us to recover the participants’ true subjective
beliefs, πt, from the first stage of the experiment in which they report their beliefs, rt, regarding
the likelihood of ω = A being the true state. In Figure 6, we graph the individual level correction
curve estimates for two individuals in each treatment group. It is clear from these examples,
firstly, that individuals in the sample are distorting their reported beliefs substantially relative to
the known probabilities, and secondly, that the estimated correction curves are sufficiently flexible
to fit different types of belief distortion behavior reasonably well. Furthermore, importantly, the
graph in the top-left panel of the figure shows that, when an individual accurately reports her
beliefs, then the correction mechanism has no harmful effect.

At the aggregate level, for each treatment group, T ∈ {1, 2, 3}, we estimate:

logit[Ri(j/20)] = logit[hi(j/20, α, ρ)] + ui,j (19)

where j indexes the 20 reported probabilities of individual i. This specification allows us to ex-
amine the distortion caused by the incentive environment to the average individual in each of the
three treatment groups.

Appendix B.2.4: Calibration of the Belief Correction Procedure:
Estimation

The belief correction procedure that we adopt involves assuming a flexible parametric form for
the participants’ utility and probability weighting functions in order to estimate the R function
discussed in Equation 8 above. We estimate this function for each individual separately in order
to correct the reported beliefs at the individual level. In addition, we estimate this function at
the aggregate level for each of the treatment groups in order to obtain a measure of the average
distortion of the incentive environment faced in each of the treatment groups. A detailed discus-
sion of the mechanics of the Belief Correction Procedure we use is provided in Appendix B.2.3
above. Essentially, we are simply fitting a curve through each subject’s belief elicitation incentive
distortion.

Figure 5 displays the average correction curves for each of the treatment groups, fitting a sin-
gle curve to the reported belief data observed across all subjects in the relevant treatment group.
Comparing the three subgraphs, we see that the average individual distorts the beliefs she reports

14



in a way that is consistent with what risk aversion under EU would predict, with the inverse-S
shape distortion in the T1.Symmetric stakes treatment and the strong distortion downwards
(away from the more desirable state) in both of the Asymmetric stakes treatments. Further-
more, we see that the different ways of framing the same incentives in the two Asymmetric
treatments has a clear influence on behavior. In T2.Combined, the participants hedge far more
when choosing their reported beliefs in comparison to those in the T3.Separate group. This is
in spite of the fact that the incentives are identical in these two treatments. This indicates that
the reported beliefs in the T3.Separate treatment are closer to the participants’ true beliefs and
motivates this presentation of incentives as preferable for future work that calls for the elicitation
of beliefs when there are exogenous state-contingent payments.

At the individual level, there is a large degree of heterogeneity in the degree to which individuals
distorted their reported belief away from their actual belief, given the incentive environment. Fig-
ure 6 displays the correction curves estimated for two individuals from each treatment group. It is
clear from this figure that some individuals responded very strongly to the incentive environment
in which their belief was elicited, while others reported their belief more accurately. The belief
correction procedure is therefore very helpful for recovering the true beliefs of participants who
responded strongly to the incentive environment. In cases where the individual simply reported
their belief accurately, the corrected beliefs and the reported beliefs are exactly the same.
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Figure 5: Average Correction Functions across Treatments.
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Figure 6: Individual Level Estimates of the Incentive Correction Function.
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Appendix C: Endogeneity—An Illustrative Example

This section provides a simple illustrative example of why it is important to exercise caution in
addressing possible endogeneity issues when studying belief updating. When considering belief
updating in real world scenarios, we are often interested in studying how individuals update
their beliefs from home-grown prior beliefs (i.e. subjective prior beliefs that are not exogenously
endowed to subjects). However, when studying how subjects update beliefs from a home-grown
prior, it is important to pay careful attention to the possible endogenous relationships between:
(i) individual updating types, (ii) states of the world, and (iii) prior beliefs.33 In the illustrative
example I discuss below, I consider the implications of a relationship between (i) and (ii), allowing
for (iii) to be completely exogenous.

One domain where studying belief updating from home-grown priors is essential is the domain
of beliefs about the self. Beliefs about one’s self deserve special attention since they are of critical
importance in guiding our interaction with the world around us. This set of beliefs are also of
central importance to the literature considering the good-news, bad-news hypothesis, since these
beliefs are often heavy in affect, and are amongst the beliefs that we care most about.

However, when we study belief updating from subjective priors, there is a danger that an indi-
viduals prior beliefs are related to the way she updates her beliefs. Furthermore, if the beliefs
pertain to her self, her prior belief may be related to this fundamental, implying that the distri-
bution of signals she receives is related to this fundamental and to her prior. This is true even if
the individual receives “exogenous” noisy signals about the fundamental.

The following discussion has the objective of illustrating one possible way in which neglecting to
pay attention to the endogeneity of the signal distribution can be problematic. The example is
purely hypothetical, and rather contrived, but serves to illustrate the basic point. In particular, I
use a very simple “toy” simulation to demonstrate that ignoring this issue can (in principal) lead
to mistakenly find evidence for asymmetric updating when all individuals update symmetrically.
It is important to point out that I am not suggesting that this is the explanation for asymmetric
updating results observed in the literature34—I am simply highlighting a potential endogeneity
issue that should be addressed in this literature going forwards. In this regard, I also suggest a
simple solution for dealing with the issue.

Much of the belief updating literature considers situations that resemble the following basic struc-
ture: consider an agent who updates about two states of theworld, ω ∈ {High, Low}, and receives
a sequence of noisy signals, st ∈ {UP,DOWN}. This also reflects the setup considered in the

33In some cases, e.g. when forming beliefs about the self, there are differences across individuals in the fundamen-
tal (ii) that they are forming beliefs about. In these cases, the relationship between (i) and (iii) might be mediated
by a natural relationship between the fundamental (ii) and the priors.

34For example, Figure 3 in Möbius et al. (2014) suggests that this is probably not a major concern for their main
results. However, it is still important to control for this potential endogeneity issue as a robustness check.
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current paper. However, since it is very important to also understand how we form beliefs about
the self, in some studies the states are determined by personal characteristics of the individual
(e.g. IQ). This means that states are essentially equivalent to personal types (i.e. states = types).
The implication of this is that if signals are informative about the state of the world, then High
types are more likely than Low types to receive Up signals (and vice versa for Down signals). If
High types update their beliefs differently from Low types, this can (in principal) lead to finding
(what looks like) evidence that the average individual updates asymmetrically when no individual
actually does.

In order to show this, I conduct a very simple simulation exercise. I construct a population of 10
000 individuals who are randomly assigned to one of two types, ω ∈ {High, Low}. Within each
type, the agents’ prior beliefs about the likelihood of being the High type are assigned randomly
using a uniform distribution, distributed between zero and one.35 High types receive an Up signal
with probability q = 5

8 and Low types receive a Down signal with probability q = 5
8 . Using a seed

of 1000 in STATA, the observed empirical distribution of signals across types is shown in Figure
7.

Figure 7: Frequencies of Signals by Type
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Now, the important part of this story is that belief updating may (in principal) be related to the
underlying fundamental of interest. For example, it is conceivable that high IQ individuals process
information and update their beliefs differently from low IQ individuals.36

35Note, this is an unrealistic assumption. In general, prior beliefs are related to the true state of the world. For
example, beliefs about one’s rank in an IQ distribution tend to be correlated with one’s actual rank. However, for the
purposes of this illustration, constructing type and prior belief to be orthogonal allows us to isolate only the effect
of the endogeneity of types and signals (with exogenous priors). Allowing for priors to be related to the underlying
fundamental would add an additional layer of endogeneity issues.

36Note, even if one doesn’t find the story that the two types (here, High and Low) might update their beliefs dif-
ferently compelling, a very similar pattern could also be generated if there is a relationship between prior beliefs and
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Here, we consider two types that use different, but always symmetric, updating rules. In particular,
we consider a High type that is perfectly Bayesian, and a Low type that is not very responsive to
new information (but otherwise very well behaved her belief updating).37

The High type updates according to the following rule (δ = 1, γUP = 1, γDOWN = 1):

logit(πt+1) = 1 · logit(πt) + 1 · log(5
3) · 1(st+1 = UP )− 1 · log(5

3) · 1(st+1 = DOWN) (20)

The Low type updates according to the following rule (δ = 1, γUP = 0.2, γDOWN = 0.2):

logit(πt+1) = 1 · logit(πt) + (0.2) · log(5
3) · 1(st+1 = UP )− (0.2) · log(5

3) · 1(st+1 = DOWN) (21)

However, if we as the analyst neglect the possibility that the two types update their beliefs dif-
ferently, then we might obtain biased parameters. This is illustrated by the regression estimates
presented in column 1 and 2 of Table 7 below. These columns reflect the estimates from the
standard specification used in this literature (i.e. equation 2). These parameter estimates, along
with the true population averages are summarised as follows:

True Parameter Values (Population Ave.) Estimates

δ 1 1
γUP 0.6 0.7

γDOWN 0.6 0.5

It is clear from this that in spite of the fact that there is not a single individual in this population
who updates asymmetrically that the estimated parameters suggest that there is an asymmetry.
Notice, the standard errors are small and the adjusted R2 suggests a good model fit (see Table

updating. This follows because: (i) prior beliefs about one’s self are typically related to the underlying fundamental
in question (e.g. beliefs about one’s IQ positively correlated with actual IQ), (ii) types are mechanically related to
the distribution of signals in the class of experiments we’re considering, and therefore (iii) prior beliefs are related
to the distribution of signals observed. Therefore, the story described in this section is worth paying attention to in
any situation where at least one of the following might be violated:

(1) states of the world ⊥ belief updating and (2) priors ⊥ belief updating

37Note, neither of the typesmakes any errors in their belief updating. They both follow their updating rule perfectly.
This exercise therefore rules out several other channels that can make life challenging for the analyst (e.g. errors
related to priors or types).
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7). As mentioned above, this is simply an illustration of why it is important to pay attention to
the relationship between the distribution of signals and the types. Furthermore, it is important to
point out that one can make an similar argument to show that even if the majority of individuals
in the population are asymmetric updaters that the neglect of a relationship between signals and
types could (in principal) generate estimates that suggest symmetric updating.

Fortunately, this particular endogeneity issue is easy to deal with by simply considering updating
behavior within each type (e.g. interacting the RHS variables of equation 2 with the Type dummy
variable). This is illustrated in column 3 of Table 7. Notice, also, that simply including the Type
dummy variable in the regression does not solve the problem (see column 2).

Table 7: Estimates of Simulated Data Parameters

Model 1 Model 2 Model 3
(1) (2) (3)

δ 1.002 1.002 1.000
(0.001) (0.001) (.)

γUP 0.696 0.683 0.200
(0.005) (0.007) (.)

γDOWN 0.504 0.513 0.200
(0.006) (0.006) (.)

High Type (=1) 0.0114
(0.004)

High Type (=1) * δ 0.000
(.)

High Type (=1) * γUP 0.800
(.)

High Type (=1) * γDOWN 0.800
(.)

N 10000 10000 10000
Adjusted R2 0.99 0.99 1.00
(i) Standard errors in parentheses
(ii) Note: Std errors in column 3 missing due to perfect fit.
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Appendix D: Supplementary Figures, Results and Experimental
Instructions

Figure 8: Comparison of Initial (Period 0) Belief with the Exogenous Prior
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Table 8: First Stage Regressions Output Associated with Table 3

T1: SYMMETRIC T2: COMBINED T3: SEPARATE
Reported Corrected Reported Corrected Reported Corrected
(1a) (1b) (2a) (2b) (3a) (3b)

δIV 0.81 0.82 0.95 0.92 0.88 0.85
(0.06)*** (0.05)*** (0.06)*** (0.06)*** (0.06)*** (0.05)***

γa -0.07 -0.07 -0.60 -0.05 -0.03 -0.09
(0.11) (0.10) (0.22)*** (0.20) (0.25) (0.25)

γb -0.17 -0.20 0.34 -0.20 -0.24 -0.21
(0.10)* (0.11)* (0.20)* (0.17) (0.23) (0.26)

Kleibergen Paap F 170.39 228.03 238.80 256.15 220.64 276.53
Shea Partial R2 0.58 0.61 0.48 0.50 0.50 0.49
N 1,075 1,075 1,285 1,285 1,140 1,140

(i) Standard errors in parentheses (clustered at the individual level).
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Table 10: Average Updating Behavior across Treatments (Full Sample)

T1: SYMMETRIC T2: COMBINED T3: SEPARATE
Reported Corrected Reported Corrected Reported Corrected
(1a) (1b) (2a) (2b) (3a) (3b)

OLS

δ 0.74 0.73 0.80 0.80 0.84 0.86
(0.05)*** (0.06)*** (0.03)*** (0.03)*** (0.04)*** (0.03)***

γa 0.95 0.92 0.86 0.91 1.00 0.93
(0.10) (0.09) (0.10) (0.10) (0.11) (0.10)

γb 0.83 0.78 0.99 0.90 0.96 0.91
(0.10)* (0.10)** (0.14) (0.12) (0.10) (0.09)

p (H0 : γa = γb) 0.26 0.19 0.25 0.90 0.64 0.80
N 1,875 1,875 1,850 1,850 1,825 1,825
R2 0.52 0.51 0.62 0.64 0.67 0.70

IV

δ 0.99 1.00 0.96 0.95 0.99 1.00
(0.03) (0.03) (0.02) (0.02)** (0.02) (0.02)

γa 0.87 0.84 0.87 0.83 0.95 0.88
(0.09) (0.09)* (0.10) (0.09)* (0.11) (0.09)

γb 0.82 0.78 0.89 0.89 0.92 0.88
(0.09)* (0.09)** (0.12) (0.12) (0.09) (0.08)

p (H0 : γa = γb) 0.47 0.44 0.83 0.51 0.74 0.98
N 1,875 1,875 1,850 1,850 1,825 1,825
1st Stage F 70.89 82.63 82.83 82.45 54.72 59.90

(i) Standard errors in parentheses (clustered at the individual level).
(ii) All coefficients are significantly different from 0 at the 1% level. Therefore, t-tests of the null
hypothesis (H0: Coefficient = 1) are reported: * = 10%, ** = 5%, *** = 1%.
(iii) The rows corresponding to p (H0 : γa = γb) report the p-statistic from a t-test of the equality
of the coefficients γa and γb (i.e. a test of the asymmetric updating hypothesis).
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Notes about relating the instructions to the discussion in the paper:  

1. In the instructions below, the differences in the text between the treatments has been 

highlighted using a different colour for each of the three treatments – orange for T1: the 

; purple for T2: the ASYMMETRIC COMBINED treatment; and green SYMMETRIC treatment

for T3: the ASYMMETRIC SEPARATE TREATMENT. For tables that differ across treatments, I 

have noted in the heading which is the relevant treatment.  

2. Astute readers will notice that in the instructions Urn B corresponds to the state paying a 

larger bonus payment, while in the text of the paper state A is always the preferred state. 

This reversal of the labels A and B was made for expositional simplicity in the paper. 

Stages of Today’s Experiment 

Today’s experiment will have three stages. In each of the first two stages of the experiment, you can 

earn money. In addition to this, you will be paid a fixed fee for completing the third stage of £5, as 

well as a fixed participation fee of £5.  

Within each stage, your earnings will depend partly on your decisions and partly on chance. The 

three stages are completely separate from one another – the choices made in one stage have no 

influence over the earnings from another stage. At the end of the third stage, your earnings will be 

calculated and you will be paid, privately. After this, the experiment will end. 

Brief Overview of Stages of the Experiment: 

Stage 1: In the first stage, you will face a task that involves estimating the likelihood of an event 

taking place. The more accurate your estimates, the higher your earnings will be on average. At the 

end of the experiment, one of these choices will be randomly selected and will determine your 

payment from Stage 1. 

Stage 2: In the second stage, you will make a series of choices. At the end of the experiment, one of 

these choices will be randomly selected and will determine your payment from Stage 2.  

Stage 3: You will be paid a fixed fee of £5 for completing this section. The answers to these questions 

will not affect your earnings, but are important for our study, so please try to answer them as 

accurately as possible.  

After you have completed all three stages, we will calculate your earnings from Stage 1 and Stage 2 

and add these to the £5 fixed fee from Stage 3, as well as the £5 participation fee. Therefore, you 

will earn at minimum £10 for completing the experiment and the remainder will depend on your 

choices in Stage 1 and Stage 2 as well as luck.  

 

 

If you have any questions, please raise your hand. If not, we will proceed to Stage 1. 
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Instructions for Stage 1 

Basic Setup 

In this stage there will be five rounds. In each round, there are two possible “urns”, each containing 

red and blue balls. In each round one of the two urns will be randomly chosen. You will not be told 

which urn has been chosen, but you will be given five pieces of information that will help you to 

decide which urn is more likely to be the one that was chosen in that round.  

In each round you will be asked to make six probability judgements, expressed in percentages, about 

which urn was chosen, once before receiving any information and once after receiving each of these 

five pieces of information. Therefore, in Stage 1, you will make in total 30 probability judgements (6 

probability judgements in each of 5 rounds).  

Your payment for this round will be determined by randomly selecting one of these probability 

judgements in one of these rounds. While your payment will also depend on luck, the more accurate 

your chosen probability judgement, the higher your payoff will be on average.  

Therefore, since the probability judgement that determines your payment will be chosen at random, 

you should pay attention and choose each of these probability judgements as accurately as possible 

if you would like to try to ensure that you receive a high payment. The specific details of how your 

payment will be determined are explained below. 

Urn Selection 

The two urns will be called Urn A and Urn B. Urn A contains 5 red balls and 3 blue balls; while Urn B 

contains 3 red balls and 5 blue balls, as depicted in the picture below.  

 

 

 

 

 

 

In each round, one of these two urns, Urn A or Urn B, will be randomly chosen through the computer 

rolling a six sided die1, however the chance of each urn being chosen will differ across rounds. For 

example, in one of the rounds Urn A will be used if the dice shows 1, 2, or 3 and Urn B being used if 

the die shows 4, 5, or 6.  Therefore, in this round, each urn is equally likely to be used.  

In another round, Urn A will be chosen if the die shows a 1, while Urn B will be chosen if the die 

shows 2, 3, 4, 5, or 6. In this round, Urn B is five times more likely to be chosen. You will be told at 

                                                           
1
 The word “die” is used as the singular for the word “dice” in this experiment. 

  

    

    

    

    

Urn A Urn B 
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the beginning of each round which numbers on the die will lead to Urn A being chosen and which 

will lead to Urn B being chosen. There will be five rounds in total. In each round, a new urn is chosen. 

Information 

In order to help you in making your probability judgements, in each round you will be provided with 

five pieces of information regarding which urn has been chosen.  

This information will come in the form of a series of five ball draws from the chosen urn in that 

round. After each ball is drawn, you will observe the colour of the ball and then it will be replaced in 

the chosen urn. Therefore, within a specific round, the chosen urn will always contain the same 8 

balls, and for each draw the computer will randomly select one of these balls with equal chance. 

In each round, you will be asked to state six probability judgements, expressed in percentages, 

regarding the chance that Urn B is being used: once before you have seen any ball draws, and then 

once after each of the five draws. 

Earnings and Experimental Points: 

During experiment, you will earn experimental points. These points will be determined by the 

probability judgments you record and by whether the urn that is randomly chosen by the computer 

is actually Urn A or Urn B. The experimental points that you earn will be converted into real money 

at the end of the experiment. The rate of conversion is £1 = 6 000 points.  

As discussed above, in each of the 5 rounds, you will report your probability judgement 6 times. 
Therefore, in total you will report your probability judgement about the chance of Urn B being used 
30 times in Stage 1. At the very end of the experiment, one of these 30 reported probability 
judgements will be chosen at random to determine the points that you will earn from Stage 1.  This 
will be done by first choosing one of the 5 rounds at random, and then within the chosen round, 
choosing one of the 6 reported probability judgements.  

Your payment will then consist of two components:  

(1) A Probability Judgement Payment: This payment depends on what you write down for the 

chosen probability judgement as well as the Urn that is used in the chosen round.  

(2) An Urn Bonus: This is a bonus payment that depends on which Urn was being used in the 

round that is chosen for payment at the end of the experiment. If Urn A is chosen, this is 600 

experimental points; if Urn B is chosen, this is [  / 60 000 / 60 000] experimental also 600

points.  

[  / We have combined these two payments / The probability We have combined these two payments

judgement payment is summarised] in the ‘Stage 1: Score Sheet’ in front of you to show you what 

you would earn for each possible probability judgement that you might write down, between 0 and 

100, for both the case where Urn A is the urn being used and for the case where Urn B is the urn 

being used. [  / _ / In addition to this payment, you will receive the urn bonus, which will depend on _

which urn is being used.]   

The payments in this table are designed in a way that makes it in your best interests to truthfully 

report your actual probability judgement if you want to ensure your payment is as high as possible, 



4 
 

since the more accurate the probability judgement you report, the higher your payment will be on 

average. 

If you look at your `Stage 1: Score Sheet’, you will see that the higher the probability judgement you 

report about Urn B being the urn that is being used, the more points you will receive if Urn B is the 

chosen urn, and the fewer points you will receive if Urn A is the chosen urn.  

Similarly, the lower the probability judgement you report about Urn B being used, the more points 

you will receive if Urn A is actually being used, and the fewer points you will receive if Urn B is 

actually being used.  

How your score is calculated: A Summary 

Your score for this stage consists of two components: 

1. Firstly, one of the 6 recorded probability judgements that you write down in this round will 

be randomly chosen to determine the first part of your score.  

2. Secondly, you will receive a bonus of [  / 60 000/ 60 000] points if Urn B is the urn that is 600

being used, and 600 points if Urn A is being used, in the round that is randomly chosen for 

payment.  

[  / These two components are combined together / These two components are combined together

The first component, the probability judgement payment, is summarised] in the ‘Stage 1: Score 

Sheet’ 

Procedure: A Summary 

In each round you will proceed according to the following procedure:  

1. Urn selection: First, the computer will choose which Urn will be used through the throw of a 

six sided die. You will not observe this die throw and therefore will not know which Urn is 

selected.  

 

2. Drawing balls: Once the Urn has been selected, the computer will draw a sequence of 5 balls 

from the chosen Urn. After each draw, the ball will be replaced in the container, so that each 

draw is made from the same 8 balls. Therefore, it is possible, for example, to see the same 

exact ball drawn 5 times.  

 

3. Recording your probability judgements: On the computer in front of you, you will be asked to 

record your probability judgements about the likelihood that Urn B is being used (similar to 

the example table below). You will then record your probability judgement, a number 

between 0 and 100 (up to two decimal places), about the likelihood that Urn B is being used. 

In other words, you should write down the percentage chance that you think Urn B is being 

used. 

 

 



5 
 

A Hypothetical Example:  

Just to illustrate how this process works, consider the following hypothetical example. Suppose that 

an imaginary person, Amy, is a participant in the experiment. In one of the rounds, Amy is told that 

Urn A will be chosen if the die shows 1, 2, or 3 and Urn B will be chosen if the die shows 4, 5, or 6.  

 

 

 

 

  

  

  

  

Urn A: Bonus 600 Urn B: Bonus 600 

 

  

  

  

  

(used if the die shows 1, 2, or 3) (used if the die shows 4, 5, or 6) 

 

  

  

  

  

Urn A: Bonus 600 Urn B: Bonus 60 000 

 

  

  

  

  

(used if the die shows 1, 2, or 3) (used if the die shows 4, 5, or 6) 

 

  

  

  

  

Urn A: Bonus 600 Urn B: Bonus 60 000 

 

  

  

  

  

(used if the die shows 1, 2, or 3) (used if the die shows 4, 5, or 6) 
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In order to show you how the payments work, suppose Amy wrote down the six probability 

judgements 80, 50, 20, 55, 85, 50 (as in the table below, although you might not think they were 

very good choices). Then if the fifth row (ball draw number 4) of this round is randomly selected for 

her payment and the actual urn being used is Urn B, then Amy would receive [ / 71 730 12 330 points 

points / 11 730 points plus the bonus of 60 000, giving 71 730 points in total]. If the fifth row of this 

round is randomly selected for her payment and Urn A is being used, then Amy would receive [3 930 

/ 3 930 points / 3 330 points plus the bonus of 600, giving 3 930 points in total]. points 

Table 1: Example showing how Amy’s score is determined for Stage 1  [T1: Symmetric]

    True Urn 

 Ball Draw 
Number 

Ball 
Colour 

Probability judgement about 
likelihood of Urn B 

Urn A Urn B 

 - 80 4 920 12 120 

1 R 50 9 600 9 600 

2 R 20 12 120 4 920 

3 R 55 8 970 10 170 

4 R 85 3 930 12 330 

5 B 50 9 600 9 600 

 

             Table 2: Example showing how Amy’s score is determined for Stage 1 [T2: Combined] 

    True Urn 

 Ball Draw 
Number 

Ball 
Colour 

Probability judgement about 
likelihood of Urn B 

Urn A Urn B 

 - 80 4 920 71 520 

1 R 50 9 600 69 000 

2 R 20 12 120 64 320 

3 R 55 8 970 69 570 

4 R 85 3 930 71 730 

5 B 50 9 600 69 000 

 

             Table 3: Example showing how Amy’s score is determined for Stage 1 [T3: Separate] 

    True Urn 

 Ball Draw 
Number 

Ball 
Colour 

Probability judgement about 
likelihood of Urn B 

Urn A Urn B 

 - 80   4 320 11 520 

1 R 50   9 000   9 000 

2 R 20 11 520   4 320 

3 R 55   8 370   9 570 

4 R 85   3 330 11 730 

5 B 50   9 000   9 000 
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Stage 1: Score Sheet  [T1: Symmetric]

Probability 
judgement 
for Urn B 

True Urn 
 

Probability 
judgement 
for Urn B 

True Urn 
 

Probability 
judgement 
for Urn B 

True Urn 

Urn A Urn B 
 

Urn A Urn B 
 

Urn A Urn B 

100 600 12 600 
 

66 7 373 11 213 
 

32 11 371 7 051 

99 839 12 599 
 

65 7 530 11 130 
 

31 11 447 6 887 

98 1 075 12 595 
 

64 7 685 11 045 
 

30 11 520 6 720 

97 1 309 12 589 
 

63 7 837 10 957 
 

29 11 591 6 551 

96 1 541 12 581 
 

62 7 987 10 867 
 

28 11 659 6 379 

95 1 770 12 570 
 

61 8 135 10 775 
 

27 11 725 6 205 

94 1 997 12 557 
 

60 8 280 10 680 
 

26 11 789 6 029 

93 2 221 12 541 
 

59 8 423 10 583 
 

25 11 850 5 850 

92 2 443 12 523 
 

58 8 563 10 483 
 

24 11 909 5 669 

91 2 663 12 503 
 

57 8 701 10 381 
 

23 11 965 5 485 

90 2 880 12 480 
 

56 8 837 10 277 
 

22 12 019 5 299 

89 3 095 12 455 
 

55 8 970 10 170 
 

21 12 071 5 111 

88 3 307 12 427 
 

54 9 101 10 061 
 

20 12 120 4 920 

87 3 517 12 397 
 

53 9 229 9 949 
 

19 12 167 4 727 

86 3 725 12 365 
 

52 9 355 9 835 
 

18 12 211 4 531 

85 3 930 12 330 
 

51 9 479 9 719 
 

17 12 253 4 333 

84 4 133 12 293 
 

50 9 600 9 600 
 

16 12 293 4 133 

83 4 333 12 253 
 

49 9 719 9 479 
 

15 12 330 3 930 

82 4 531 12 211 
 

48 9 835 9 355 
 

14 12 365 3 725 

81 4 727 12 167 
 

47 9 949 9 229 
 

13 12 397 3 517 

80 4 920 12 120 
 

46 10 061 9 101 
 

12 12 427 3 307 

79 5 111 12 071 
 

45 10 170 8 970 
 

11 12 455 3 095 

78 5 299 12 019 
 

44 10 277 8 837 
 

10 12 480 2 880 

77 5 485 11 965 
 

43 10 381 8 701 
 

9 12 503 2 663 

76 5 669 11 909 
 

42 10 483 8 563 
 

8 12 523 2 443 

75 5 850 11 850 
 

41 10 583 8 423 
 

7 12 541 2 221 

74 6 029 11 789 
 

40 10 680 8 280 
 

6 12 557 1 997 

73 6 205 11 725 
 

39 10 775 8 135 
 

5 12 570 1 770 

72 6 379 11 659 
 

38 10 867 7 987 
 

4 12 581 1 541 

71 6 551 11 591 
 

37 10 957 7 837 
 

3 12 589 1 309 

70 6 720 11 520 
 

36 11 045 7 685 
 

2 12 595 1 075 

69 6 887 11 447 
 

35 11 130 7 530 
 

1 12 599 839 

68 7 051 11 371 
 

34 11 213 7 373 
 

0 12 600 600 

67 7 213 11 293 
 

33 11 293 7 213 
    

 

 



8 
 

Stage 1: Score Sheet [T2: Combined] 

Probability 
judgement 
for Urn B 

True Urn 
 

Probability 
judgement 
for Urn B 

True Urn 
 

Probability 
judgement 
for Urn B 

True Urn 

Urn A Urn B 
 

Urn A Urn B 
 

Urn A Urn B 

100 600 72 000 
 

66 7 373 70 613 
 

32 11 371 66 451 

99 839 71 999 
 

65 7 530 70 530 
 

31 11 447 66 287 

98 1 075 71 995 
 

64 7 685 70 445 
 

30 11 520 66 120 

97 1 309 71 989 
 

63 7 837 70 357 
 

29 11 591 65 951 

96 1 541 71 981 
 

62 7 987 70 267 
 

28 11 659 65 779 

95 1 770 71 970 
 

61 8 135 70 175 
 

27 11 725 65 605 

94 1 997 71 957 
 

60 8 280 70 080 
 

26 11 789 65 429 

93 2 221 71 941 
 

59 8 423 69 983 
 

25 11 850 65 250 

92 2 443 71 923 
 

58 8 563 69 883 
 

24 11 909 65 069 

91 2 663 71 903 
 

57 8 701 69 781 
 

23 11 965 64 885 

90 2 880 71 880 
 

56 8 837 69 677 
 

22 12 019 64 699 

89 3 095 71 855 
 

55 8 970 69 570 
 

21 12 071 64 511 

88 3 307 71 827 
 

54 9 101 69 461 
 

20 12 120 64 320 

87 3 517 71 797 
 

53 9 229 69 349 
 

19 12 167 64 127 

86 3725 71 765 
 

52 9 355 69 235 
 

18 12 211 63 931 

85 3 930 71 730 
 

51 9 479 69 119 
 

17 12 253 63 733 

84 4 133 71 693 
 

50 9 600 69 000 
 

16 12 293 63 533 

83 4 333 71 653 
 

49 9 719 68 879 
 

15 12 330 63 330 

82 4 531 71 611 
 

48 9 835 68 755 
 

14 12 365 63 125 

81 4 727 71 567 
 

47 9 949 68 629 
 

13 12 397 62 917 

80 4 920 71 520 
 

46 10 061 68 501 
 

12 12 427 62 707 

79 5 111 71 471 
 

45 10 170 68 370 
 

11 12 455 62 495 

78 5 299 71 419 
 

44 10 277 68 237 
 

10 12 480 62 280 

77 5485 71 365 
 

43 10 381 68 101 
 

9 12 503 62 063 

76 5 669 71 309 
 

42 10 483 67 963 
 

8 12 523 61 843 

75 5 850 71 250 
 

41 10 583 67 823 
 

7 12 541 61 621 

74 6 029 71 189 
 

40 10 680 67 680 
 

6 12 557 61 397 

73 6 205 71 125 
 

39 10 775 67 535 
 

5 12 570 61 170 

72 6 379 71 059 
 

38 10 867 67 387 
 

4 12 581 60 941 

71 6 551 70 991 
 

37 10 957 67 237 
 

3 12 589 60 709 

70 6 720 70 920 
 

36 11 045 67 085 
 

2 12 595 60 475 

69 6 887 70 847 
 

35 11 130 66 930 
 

1 12 599 60 239 

68 7 051 70 771 
 

34 11 213 66 773 
 

0 12 600 60 000 

67 7 213 70 693 
 

33 11 293 66 613 
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Stage 1: Score Sheet [T3: Separate] 

Probability 
judgement 
for Urn B 

True Urn   Probability 
judgement 
for Urn B 

True Urn   Probability 
judgement 
for Urn B 

True Urn 

Urn A Urn B   Urn A Urn B   Urn A Urn B 

100 0 12 000 
 

66 6 773 10 613 
 

32 10 771 6 451 

99 239 11 999 
 

65 6 930 10 530 
 

31 10 847 6 287 

98 475 11 995 
 

64 7 085 10 445 
 

30 10 920 6 120 

97 709 11 989 
 

63 7 237 10 357 
 

29 10 991 5 951 

96 941 11 981 
 

62 7 387 10 267 
 

28 11 059 5 779 

95 1 170 11 970 
 

61 7 535 10 175 
 

27 11 125 5 605 

94 1 397 11 957 
 

60 7 680 10 080 
 

26 11 189 5 429 

93 1 621 11 941 
 

59 7 823 9 983 
 

25 11 250 5 250 

92 1 843 11 923 
 

58 7 963 9 883 
 

24 11 309 5 069 

91 2 063 11 903 
 

57 8 101 9 781 
 

23 11 365 4 885 

90 2 280 11 880 
 

56 8 237 9 677 
 

22 11 419 4 699 

89 2 495 11 855 
 

55 8 370 9 570 
 

21 11 471 4 511 

88 2 707 11 827 
 

54 8 501 9 461 
 

20 11 520 4 320 

87 2 917 11 797 
 

53 8 629 9 349 
 

19 11 567 4 127 

86 3 125 11 765 
 

52 8 755 9 235 
 

18 11 611 3 931 

85 3 330 11 730 
 

51 8 879 9 119 
 

17 11 653 3 733 

84 3 533 11 693 
 

50 9 000 9 000 
 

16 11 693 3 533 

83 3 733 11 653 
 

49 9 119 8 879 
 

15 11 730 3 330 

82 3 931 11 611 
 

48 9 235 8 755 
 

14 11 765 3 125 

81 4 127 11 567 
 

47 9 349 8 629 
 

13 11 797 2 917 

80 4 320 11 520 
 

46 9 461 8 501 
 

12 11 827 2 707 

79 4 511 11 471 
 

45 9 570 8 370 
 

11 11 855 2 495 

78 4 699 11 419 
 

44 9 677 8 237 
 

10 11 880 2 280 

77 4 885 11 365 
 

43 9 781 8 101 
 

9 11 903 2 063 

76 5 069 11 309 
 

42 9 883 7 963 
 

8 11 923 1 843 

75 5 250 11 250 
 

41 9 983 7 823 
 

7 11 941 1 621 

74 5 429 11 189 
 

40 10 080 7 680 
 

6 11 957 1 397 

73 5 605 11 125 
 

39 10 175 7 535 
 

5 11 970 1 170 

72 5 779 11 059 
 

38 10 267 7 387 
 

4 11 981 941 

71 5 951 10 991 
 

37 10 357 7 237 
 

3 11 989 709 

70 6 120 10 920 
 

36 10 445 7 085 
 

2 11 995 475 

69 6 287 10 847 
 

35 10 530 6 930 
 

1 11 999 239 

68 6 451 10 771 
 

34 10 613 6 773 
 

0 12 000 0 

67 6 613 10 693 
 

33 10 693 6 613 
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Stage 2: Part A 

Part A consists of 20 statements. As in Stage 1, you will be asked to report a probability judgement 

for the likelihood of an event occurring. The difference here is that you will be making probability 

judgements for the truth of statements that depend on the computer randomly choosing a number 

between 1 and 100. Each number between 1 and 100 has an equal probability of being chosen.  

An example of a possible statement in Stage 2 is:   

“the number the computer chooses will be between 1 and 75”. 

This statement will be evaluated as true if the randomly chosen number is a value between 1 and 75 

(including 1 and 75). This statement will be evaluated as false if the computer randomly chooses a 

number that is higher than 75. So, for example, if the computer randomly chooses 91 then the 

statement would be evaluated as false. However, if the computer were to randomly choose the 

number 71, then the statement would be evaluated as true. 

During Stage 2: Part A, the computer will show you 20 statements of this type. For each of these 

statements, you should write down a probability judgement as you did in Part A of the experiment.  

Recall that your earnings from Stage 2 will be determined by randomly selecting one of your 

decisions to determine your payment. Therefore, you should make your decisions carefully and for 

each decision act as if that is the one that will determine your payment for Stage 2. If this chosen 

decision is one of the probability judgements from Part A then the computer will randomly choose a 

number between 1 and 100, with equal probability, to evaluate this statement and determine your 

earnings from Stage 2. 

Also, in this section there is no right or wrong answer; you can choose what you want best. You 

should use the ‘Stage 2: Part A: Score Sheet’ to see what your payment will be if the statement is 

true and if it is false, for each probability judgement you could write down. [ / _ / In addition to the _ 

payments in the ‘Stage 2: Part A: Score Sheet’, if one of the probability judgements from Part A is 

chosen to determine your Stage 2 payment, then you will receive a bonus of 60 000 if the chosen 

statement is evaluated as true, and a bonus of 600 if the chosen statement is evaluated as false.] 

A Hypothetical Example 

Just to illustrate how this process works, suppose that our imaginary person, Amy, is choosing what 

probability judgement to write down for the statement “the number the computer chooses will be 

between 1 and 75”. Suppose that Amy writes down 10. Then Amy would receive [   / 12 12 480 points

480 points / 11 880 plus a bonus of 600, giving a total of 12 480 points] if the random number 

chosen by the computer is between 76 and 100 and she would receive [ / 62 280 points 2 880 points 

/ 2 280 plus a bonus of 60 000, giving 62 280 points] if the randomly chosen number is between 1 

and 75.  

If instead, Amy had written down 50, then she would receive [  / 9 600 points / 9 000 9 600 points

plus a bonus of 600, giving 9 600 points] if the random number is between 76 and 100; and [9 600 

 / 69 000 points / 9 000 plus a bonus of 60 000, giving 69 000 points] if the random number is points

between 1 and 75. 
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 Table 4: Example showing how Amy’s score is determined for Stage 2: Part A  [T1: Symmetric]

Probability judgement for 
the statement being ‘True’ 

Statement 

False True 

10 12 480 2 880 

50 9 600 9 600 

100 600 12 600 

 

Table 5: Example showing how Amy’s score is determined for Stage 2: Part A [T2: Symmetric] 

Probability judgement for 
the statement being ‘True’ 

Statement 

False True 

10 12 480 62 280 

50 9 600 69 000 

100 600 72 000 

 

Table 6: Example showing how Amy’s score is determined for Stage 2: Part A [T3: Separate] 

Probability judgement for 
the statement being ‘True’ 

Statement 

False True 

10 11 880    2 280 

50   9 000    9 000 

100 0 12 000 

 

 

 

 

We will now proceed to carrying out Stage 2: Part A of the experiment. Before we do, if you have 

any questions at this moment, raise your hand. The experimenter will come to you. 
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Stage 2: Part A: Score Sheet  [T1: Symmetric]

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 
 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 
 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 

False True 
 

False True 
 

False True 

100 600 12 600 
 

66 7 373 11 213 
 

32 11 371 7 051 

99 839 12 599 
 

65 7 530 11 130 
 

31 11 447 6 887 

98 1 075 12 595 
 

64 7 685 11 045 
 

30 11 520 6 720 

97 1 309 12 589 
 

63 7 837 10 957 
 

29 11 591 6 551 

96 1 541 12 581 
 

62 7 987 10 867 
 

28 11 659 6 379 

95 1 770 12 570 
 

61 8 135 10 775 
 

27 11 725 6 205 

94 1 997 12 557 
 

60 8 280 10 680 
 

26 11 789 6 029 

93 2 221 12 541 
 

59 8 423 10 583 
 

25 11 850 5 850 

92 2 443 12 523 
 

58 8 563 10 483 
 

24 11 909 5 669 

91 2 663 12 503 
 

57 8 701 10 381 
 

23 11 965 5 485 

90 2 880 12 480 
 

56 8 837 10 277 
 

22 12 019 5 299 

89 3 095 12 455 
 

55 8 970 10 170 
 

21 12 071 5 111 

88 3 307 12 427 
 

54 9 101 10 061 
 

20 12 120 4 920 

87 3 517 12 397 
 

53 9 229 9 949 
 

19 12 167 4 727 

86 3 725 12 365 
 

52 9 355 9 835 
 

18 12 211 4 531 

85 3 930 12 330 
 

51 9 479 9 719 
 

17 12 253 4 333 

84 4 133 12 293 
 

50 9 600 9 600 
 

16 12 293 4 133 

83 4 333 12 253 
 

49 9 719 9 479 
 

15 12 330 3 930 

82 4 531 12 211 
 

48 9 835 9 355 
 

14 12 365 3 725 

81 4 727 12 167 
 

47 9 949 9 229 
 

13 12 397 3 517 

80 4 920 12 120 
 

46 10 061 9 101 
 

12 12 427 3 307 

79 5 111 12 071 
 

45 10 170 8 970 
 

11 12 455 3 095 

78 5 299 12 019 
 

44 10 277 8 837 
 

10 12 480 2 880 

77 5 485 11 965 
 

43 10 381 8 701 
 

9 12 503 2 663 

76 5 669 11 909 
 

42 10 483 8 563 
 

8 12 523 2 443 

75 5 850 11 850 
 

41 10 583 8 423 
 

7 12 541 2 221 

74 6 029 11 789 
 

40 10 680 8 280 
 

6 12 557 1 997 

73 6 205 11 725 
 

39 10 775 8 135 
 

5 12 570 1 770 

72 6 379 11 659 
 

38 10 867 7 987 
 

4 12 581 1 541 

71 6 551 11 591 
 

37 10 957 7 837 
 

3 12 589 1 309 

70 6 720 11 520 
 

36 11 045 7 685 
 

2 12 595 1 075 

69 6 887 11 447 
 

35 11 130 7 530 
 

1 12 599 839 

68 7 051 11 371 
 

34 11 213 7 373 
 

0 12 600 600 

67 7 213 11 293 
 

33 11 293 7 213 
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Stage 2: Part A: Score Sheet [T2: Combined] 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 
 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 
 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 

False True 
 

False True 
 

False True 

100 600 72 000 
 

66 7 373 70 613 
 

32 11 371 66 451 

99 839 71 999 
 

65 7 530 70 530 
 

31 11 447 66 287 

98 1 075 71 995 
 

64 7 685 70 445 
 

30 11 520 66 120 

97 1 309 71 989 
 

63 7 837 70 357 
 

29 11 591 65 951 

96 1 541 71 981 
 

62 7 987 70 267 
 

28 11 659 65 779 

95 1 770 71 970 
 

61 8 135 70 175 
 

27 11 725 65 605 

94 1 997 71 957 
 

60 8 280 70 080 
 

26 11 789 65 429 

93 2 221 71 941 
 

59 8 423 69 983 
 

25 11 850 65 250 

92 2 443 71 923 
 

58 8 563 69 883 
 

24 11 909 65 069 

91 2 663 71 903 
 

57 8 701 69 781 
 

23 11 965 64 885 

90 2 880 71 880 
 

56 8 837 69 677 
 

22 12 019 64 699 

89 3 095 71 855 
 

55 8 970 69 570 
 

21 12 071 64 511 

88 3 307 71 827 
 

54 9 101 69 461 
 

20 12 120 64 320 

87 3 517 71 797 
 

53 9 229 69 349 
 

19 12 167 64 127 

86 3725 71 765 
 

52 9 355 69 235 
 

18 12 211 63 931 

85 3 930 71 730 
 

51 9 479 69 119 
 

17 12 253 63 733 

84 4 133 71 693 
 

50 9 600 69 000 
 

16 12 293 63 533 

83 4 333 71 653 
 

49 9 719 68 879 
 

15 12 330 63 330 

82 4 531 71 611 
 

48 9 835 68 755 
 

14 12 365 63 125 

81 4 727 71 567 
 

47 9 949 68 629 
 

13 12 397 62 917 

80 4 920 71 520 
 

46 10 061 68 501 
 

12 12 427 62 707 

79 5 111 71 471 
 

45 10 170 68 370 
 

11 12 455 62 495 

78 5 299 71 419 
 

44 10 277 68 237 
 

10 12 480 62 280 

77 5485 71 365 
 

43 10 381 68 101 
 

9 12 503 62 063 

76 5 669 71 309 
 

42 10 483 67 963 
 

8 12 523 61 843 

75 5 850 71 250 
 

41 10 583 67 823 
 

7 12 541 61 621 

74 6 029 71 189 
 

40 10 680 67 680 
 

6 12 557 61 397 

73 6 205 71 125 
 

39 10 775 67 535 
 

5 12 570 61 170 

72 6 379 71 059 
 

38 10 867 67 387 
 

4 12 581 60 941 

71 6 551 70 991 
 

37 10 957 67 237 
 

3 12 589 60 709 

70 6 720 70 920 
 

36 11 045 67 085 
 

2 12 595 60 475 

69 6 887 70 847 
 

35 11 130 66 930 
 

1 12 599 60 239 

68 7 051 70 771 
 

34 11 213 66 773 
 

0 12 600 60 000 

67 7 213 70 693 
 

33 11 293 66 613 
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Stage 2: Part A: Score Sheet [T3: Separate] 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 
 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 
 

Probability 
judgement for 
the statement 

being ‘True’ 

Statement 

False True 
 

False True 
 

False True 

100 0 12 000 
 

66 6 773 10 613 
 

32 10 771 6 451 

99 239 11 999 
 

65 6 930 10 530 
 

31 10 847 6 287 

98 475 11 995 
 

64 7 085 10 445 
 

30 10 920 6 120 

97 709 11 989 
 

63 7 237 10 357 
 

29 10 991 5 951 

96 941 11 981 
 

62 7 387 10 267 
 

28 11 059 5 779 

95 1 170 11 970 
 

61 7 535 10 175 
 

27 11 125 5 605 

94 1 397 11 957 
 

60 7 680 10 080 
 

26 11 189 5 429 

93 1 621 11 941 
 

59 7 823 9 983 
 

25 11 250 5 250 

92 1 843 11 923 
 

58 7 963 9 883 
 

24 11 309 5 069 

91 2 063 11 903 
 

57 8 101 9 781 
 

23 11 365 4 885 

90 2 280 11 880 
 

56 8 237 9 677 
 

22 11 419 4 699 

89 2 495 11 855 
 

55 8 370 9 570 
 

21 11 471 4 511 

88 2 707 11 827 
 

54 8 501 9 461 
 

20 11 520 4 320 

87 2 917 11 797 
 

53 8 629 9 349 
 

19 11 567 4 127 

86 3 125 11 765 
 

52 8 755 9 235 
 

18 11 611 3 931 

85 3 330 11 730 
 

51 8 879 9 119 
 

17 11 653 3 733 

84 3 533 11 693 
 

50 9 000 9 000 
 

16 11 693 3 533 

83 3 733 11 653 
 

49 9 119 8 879 
 

15 11 730 3 330 

82 3 931 11 611 
 

48 9 235 8 755 
 

14 11 765 3 125 

81 4 127 11 567 
 

47 9 349 8 629 
 

13 11 797 2 917 

80 4 320 11 520 
 

46 9 461 8 501 
 

12 11 827 2 707 

79 4 511 11 471 
 

45 9 570 8 370 
 

11 11 855 2 495 

78 4 699 11 419 
 

44 9 677 8 237 
 

10 11 880 2 280 

77 4 885 11 365 
 

43 9 781 8 101 
 

9 11 903 2 063 

76 5 069 11 309 
 

42 9 883 7 963 
 

8 11 923 1 843 

75 5 250 11 250 
 

41 9 983 7 823 
 

7 11 941 1 621 

74 5 429 11 189 
 

40 10 080 7 680 
 

6 11 957 1 397 

73 5 605 11 125 
 

39 10 175 7 535 
 

5 11 970 1 170 

72 5 779 11 059 
 

38 10 267 7 387 
 

4 11 981 941 

71 5 951 10 991 
 

37 10 357 7 237 
 

3 11 989 709 

70 6 120 10 920 
 

36 10 445 7 085 
 

2 11 995 475 

69 6 287 10 847 
 

35 10 530 6 930 
 

1 11 999 239 

68 6 451 10 771 
 

34 10 613 6 773 
 

0 12 000 0 

67 6 613 10 693 
 

33 10 693 6 613 
    

 

 

 


