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1) Have any data been collected for this study already?

It's complicated. We have already collected some data but explain in Question 8 why readers may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?

We will examine whether risk/time preferences change during the outbreak of the coronavirus and at key points of the timeline of events as defined by

response measures to slow the spread taken by the government.

3) Describe the key dependent variable(s) specifying how they will be measured.

Subjects make incentivized discrete choices between lottery options and sooner vs later amounts of money. We use these discrete choices as the

dependent variable to estimate structural econometric models of risk and time preferences.

4) How many and which conditions will participants be assigned to?

Three conditions: 

Condition 1: Subjects choices are elicited until a couple of days later after the occurrence of the first death (in March 12) from the coronavirus in the

country in 2020 (January 29 - March 17). 

Condition 2: Subjects are then re-invited to participate in the survey eliciting their risk/time measures after the onset of the curfew in the country (March

23).

Condition 3: Data will be also compared with a wave of subjects from last year (where no pandemic occurred). Data collection was for the period

30/1/2019 to 20/3/2019.

5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

We will jointly estimate structural econometric models of risk and time preferences. We will try estimating competing models of EUT, RDU with various

errors stories and hyperbolic/exponential discounting functions. We will select the best fitting model based on information criteria. The models will also be

estimated with dummies indicating the major time events during the spread of the coronavirus epidemic (e.g., first reported case, first reported death,

curfew initiated etc.). Results will also be compared with risk/time preferences estimates from last year’s wave characterized by the absence of a

pandemic.

Additional basic demographic controls will be introduced in the models to compare with models without controls.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations.

We will exclude subjects that chose the dominated option in the Holt and Laury task and subjects with no variation in their choices.

7) How many observations will be collected or what will determine sample size? No need to justify decision, but be precise about exactly how the

number will be determined.

We will invite 501 subjects to participate in the wave after the onset of the curfew in the country. This is the overlap of subjects that participated in the

2019 wave and subjects that participated in the wave before the onset of the curfew.

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)

This study is pre-registered midway the data collection. This is because we had originally planned to collect data up to March 17, 2020 but then the

coronavirus pandemic occurred halfway the project. 

Data are collected annually for purposes of having a battery of measures for part of the student population in case these need to be matched later with

other experimental data. The idea came when the coronavirus pandemic started in Greece and we thought it would be a good opportunity to re-invite

subjects that had participated before the curfew due to the coronavirus. The start of the second wave in 2020, coincided with the curfew enforcement in

the country. We have already collected incentivized data for risk and time preferences for subjects that participated in the 2019 wave (where no pandemic

occurred) which will be used for comparison purposes.

Available at https://aspredicted.org/8aj68.pdf 
(Permanently  archived at http://web.archive.org/web/*/https://aspredicted.org/8aj68.pdf)

Version of AsPredicted Questions: 2.00
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C Literature on stability of preferences

Our study adds to a stream of literature that examines the effect of major negative shocks
on people’s preferences.3 A large portion of the studies we are aware of examine the effect
of natural disasters on RTPs. Results from these studies point to contradictory results with
respect to risk. Some studies find an increase in risk seeking behavior due to a natural disaster.
For example, Eckel et al. (2009) investigated risk preferences of a sample of hurricane Katrina
evacuees shortly after evacuation, another sample of evacuees a year later, and a third sample
of residents with demographics similar to the Katrina evacuees. Women in the Katrina sample
shortly after evacuation were found to be significantly more risk loving than other samples.
Page et al. (2014) found that homeowners, who were victims of the 2011 Australian floods in
Brisbane and faced large losses in property values, were more likely to opt for risky gambles.
Hanaoka et al. (2018) investigated individuals’ risk preferences after experiencing the 2011 Great
East Japan Earthquake and found no effect for females, while males that were exposed to higher
intensities of the earthquake become more risk tolerant one year after the earthquake. Moreover,
this effect was persistent even five years after the earthquake.

On the other hand, Cameron and Shah (2015) found that individuals who suffered a flood
or earthquake in rural Indonesia exhibited more risk-aversion as a consequence of increased
background risk perception of a future disaster. Similarly, Cassar et al. (2017) found that the
2004 tsunami in Thailand led to substantial and long-lasting increases in risk aversion as well
as in impatience. More recently, Beine et al. (2020) examined how two large earthquakes that
shook the Tirana area in Albania affected RTPs and found unambiguous effects towards more
risk aversion and impatience for affected individuals. Moreover, the second earthquake amplified
the effect of the first one, suggesting that experiences accumulate in their influence on RTPs.
Finally, Callen (2015) found that exposure to the Indian Ocean Earthquake tsunami increased
patience in a sample of Sri Lankan wage workers.

A related stream of research examines the effect of conflict and violence on RTPs. Voors
et al. (2012) used a series of field experiments in rural Burundi to examine the impact of exposure
to conflict on RTPs. They found that individuals exposed to violence were more risk-seeking
and had higher discount rates. Callen et al. (2014) studied preferences in Afghanistan and
found that individuals exposed to violence, when primed to recall fear, exhibited an increased
preference for certainty. We are aware of only one study that examined the effect of a financial
crisis on RTPs. Jetter et al. (2020) found that males (but not females) were systematically more
sensitive to local economic conditions (e.g., their region’s unemployment rate) since the global
financial crisis of 2008.

3Our study is also related to the stream of research that examines the intertemporal stability of RTPs. A
literature review of this research stream can be found in Drichoutis and Vassilopoulos (2021). Moreover, there
is a strand of research that examines the effect of major early life experiences on risk preferences. For example,
Bellucci et al. (2020) show that warfare exposure during childhood in the World War II was associated with
lower financial risk taking in later life. Moreover, Bellucci et al. (2020) review the literature on similar studies
that track and associate major early life experiences with preferences.
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D Theory and econometrics of risk and time preferences:

Details

Let the utility function be the constant relative risk aversion (CRRA) specification:

U(M) =
M1−r

1− r
(A.1)

where r is the relative risk aversion (RRA) coefficient, r = 0 denotes risk neutral behavior,
r > 0 denotes risk averse behavior and r < 0 denotes risk loving behavior. If we assume that
Expected Utility Theory (EUT) describes subjects’ risk preferences, then the expected utility
of lottery i can be written as:

EUi =
∑
j=1,2

pi(Mj)U(Mj) (A.2)

where p(Mj) are the probabilities for each outcome Mj that are induced by the experimenter
(shown in Tables 3 and 4). A popular alternative is Rank Dependent Utility (RDU) developed by
Quiggin (1982). RDU extends the EUT model by allowing for non-linear probability weighting
associated with lottery outcomes.4 To calculate decision weights under RDU, we can replace
expected utility in equation (A.2) with:

RDUi =
∑
j=1,2

wi[p(Mj)]U(Mj) =
∑
j=1,2

wijU(Mj) (A.3)

where wi2 = wi(p2 + p1)−wi(p1) = 1−wi(p1) and wi1 = wi(p1) with outcomes ranked from
worst to best and w(·) is the probability weighting function.

There are many probability weighting functions that have been used in the literature and
here we consider Prelec’s (1998) two parameter function: w(p) = exp(−βr(−lnp)ar) where
ar > 0, 0 < p < 1, βr > 0 (if ar = 1 it collapses to the power function w(p) = pβr ; if ar = βr = 1
it collapses to w(p) = p). ar primarily controls curvature and βr primarily controls elevation.5

We assume subjects have some latent preferences over risk which are linked to observed
choices via a probabilistic model function of the general form:

PrRAB = Λ

(
(VB−VA)

C

µ

)
(A.4)

4As in most experiments of choice under risk, our experiment involved multiple choices over lotteries for
which subjects where randomly paid for one of these choices. This payoff mechanism, known as the Random
Lottery Incentive Mechanism (RLIM), is incentive compatible if and only if the Independence Axiom holds
(Holt, 1986). Given that RDU does not include the independence axiom, then RLIM is inappropriate for non-
EUT theories on theoretical grounds. The use of the RLIM under non-EUT specifications either invokes the
assumption of the isolation effect i.e., that a subject views each choice in an experiment as independent of other
choices in the experiment or assumes two independence axioms as in Harrison and Swarthout (2021): one axiom
that applies to the evaluation of a given prospect which is assumed to be violated by RDU, and another axiom
that applies to the evaluation of the experimental payment protocol. Only the validity of the latter axiom is
required to ensure incentive compatibility of the RLIM.

5Note, that the Prelec function is often applied with the constraint 0 < ar < 1 which requires that the
probability weighting function exhibits subproportionality (weighting function exhibits an inverse-S shape form).
We follow Andersen et al. (2018, 2014) and Harrison and Ng (2016) and use the more general specification from
Prelec (1998, Proposition 1: (C)), which only requires ar > 0 and nests the case where 0 < ar < 1.
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where Pr(B) is the probability of choosing lottery B (the right hand side lottery), µ is a
structural ‘noise parameter’ associated with the Fechner error story (sometimes called a scale or
precision parameter) used to allow some errors from the perspective of the deterministic model
and VA, VB are the decision-theoretic representations of values associated with lotteries A and
B i.e., Vk = EUk for k = A, B if the theory is EU or Vk = RDUk for k = A, B if the theory is
RDU. Λ(·) : R → [0, 1] is the standard logistic distribution function with Λ(ζ) = 1/(1 + e−ζ),
Λ(0) = 0.5 and Λ(x) = 1− Λ(−x), that is, Λ takes any argument between ±∞ and transforms
it to a number between 0 and 1 i.e., a probability.

C is a normalizing term that defines the heteroskedastic class of models.6 Wilcox (2008,
2011) proposed a ‘contextual utility’ error specification which adjusts the scale parameter by
C = Vmax − Vmin to account for the range of possible outcome utilities. C is defined as the
maximum utility Vmax over all prizes in a lottery pair minus the minimum utility Vmin over all
prizes in the same lottery pair. It changes from lottery pair to lottery pair, and thus it is said
to be contextual. Contextual utility maintains that the error specification is mediated by the

range of possible outcome utilities in a pair, so that Pr(B) = Λ

(
(VB−VA)

Vmax−Vmin
µ

)
.

With respect to time preferences, assume that EUT holds for choices over risky alternatives
and that discounting is exponential. Then a subject is indifferent between two income options
Mt and Mt+τ if and only if:

U(Mt) =
1

(1 + δ)τ
U(Mt+τ ) (A.5)

where DE(τ) = 1
(1+δ)τ

is the discount factor for τ ≥ 0 and where the discount rate is

dE(τ) = δ. The discount rate equalizes the present value of the two monetary outcomes in the
indifference condition (A.5). Under exponential discounting, the discount rate is stable over
time.

Another class of discounting models is the family of hyperbolic specifications. A popular
hyperbolic specification is due to Mazur (1984) which specifies the discount factor as DH(τ) =

1
(1+Kτ)

for some parameter K > 0 and discount rates dH(τ) = (1 +Kτ)(1/τ) − 1.7

We can write the discounted utility of each option as:

PVA =
M1−r

A

1− r
and PVB = D

M1−r
B

1− r
(A.6)

where D can be either the exponential DE or the hyperbolic discount factor DH . The probability
of choosing one of the options is given by:

PrDB = Λ

(
PVB − PVA

ν

)
(A.7)

6Note that this form of heteroskedasticity, refers to models where the standard deviation of utility dif-
ferences is conditioned on lottery pairs. Econometrically this can be considered as pair- and subject-specific
heteroskedasticity but one that requires no extra parameters into the model since the form of the heteroscedas-
ticity is determined by outcome utilities. See Wilcox (2008) for a related discussion.

7The hyperbolic specification does not nest exponential discounting in the way RDU nests EUT and, there-
fore, other alternatives have been proposed. A two parameter specification based on the Weibull distribution
from statistics, defines the discount factor as DW (τ) = exp(−rdt(1/sd)) for rd, sd > 0. For sd = 1 this collapses
to the exponential discounting specification. Unfortunately, when we tried to fit this specification with our data,
we run into severe numerical optimization problems and none of our efforts was fruitful.
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Given that some choice sets in the time preferences task presented subjects with choices
between three options i.e., a payment option A, a payment option B and a middle option C (see
Table 5), we can model the probability of choosing any of the three options using a multinomial
logit setup:

PrDJ =
exp(PVJ/ν)∑C
j=A exp(PVj/ν)

for J = A,B,C (A.8)

This is a particularly attractive form as it is comparable with Equation A.7 since for the case
of two options it can easily be shown that PrDB = Λ

(
PVB−PVA

ν

)
= exp(PVB/ν)

exp(PVA/ν)+exp(PVB/ν)
given

that Λ(ζ) = 1
1+e−ζ

.
We can write the conditional log-likelihood for the risk preferences tasks as:

lnLRA(r, µ; y,X) =
N∑
i=1

[
(ln(PrRAB )|yi = 1) + (ln(1− PrRAB )|yi = 0)

+(
1

2
ln(PrRAB ) +

1

2
ln(1− PrRAB )|yi = −1)

] (A.9)

where yi = 1, 0 denotes the choice of lottery B or A in the ith risk preference task, respectively,
and yi = −1 denotes the choice of indifference. X is a vector of variables that are assumed to
affect the estimated parameters. The conditional log-likelihood for the time preferences task
can be written as:

lnLD(T, ν; y,X) =
N∑
i=1

[
(ln(PrDB )|yi = 1) + (ln(PrDA )|yi = 0)

+(
1

2
ln(PrDA ) +

1

2
ln(PrDB )|yi = −1) + (ln(PrDC )|yi = 2)

] (A.10)

where yi = 1, 0 denotes the choice of option B (the later option) or A (the sooner option) in
the ith time preference task, respectively, yi = −1 denotes the choice of indifference and yi = 2
denotes the choice of the middle option C.8 X is a vector of variables that are assumed to
affect the estimated parameters. T is either δ under exponential discounting or K under the
hyperbolic specification.

The joint likelihood of the risk aversion and discount rate responses can then be written as:

lnL(r, T, µ, ν; y,X) = lnLRA + lnLD (A.11)

Equation (A.11) is maximized using standard numerical methods. The statistical specifica-
tion also takes into account the multiple responses given by the same subject and allows for
correlation between responses by clustering standard errors; i.e., it relaxes the independence as-
sumption and requires only that the observations be independent across the clusters. The robust
estimator of variance that relaxes the assumption of independent observations involves a slight
modification of the robust (or sandwich) estimator of variance which requires independence
across all observations (StataCorp, 2013, pp. 312).

8It is implied that for choice tasks 21 to 30, PrDA and PrDB are calculated based on Equation A.8 and not
based Equation A.7.
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E Phases of the pandemic

The successful flattening of the curve was followed by a second phase of the pandemic that
started building up during the summer of 2020 and received exploding dimensions in Autumn,
leading to a second curfew that was imposed on November 7, 2020 and was in place until March
2021. Therefore, our study took place in the first phase of the pandemic, missing the next and
deadlier phase. One might rightly wonder whether any effects of the pandemic on risk/time
preferences would be more pronounced in a phase where there was a larger number of cases and
deaths due to the coronavirus.

We believe that the first phase, although lower in number of cases/deaths, might had a
larger measured impact on risk/time preferences. We base this on the likely adaptation in
human behavior that comes after a large shock. We can find some support for this adaptive
behavior by looking at Google’s COVID-19 Community Mobility Reports. We downloaded
the publicly available data for Greece for the whole period starting from February 2020 up to
February 2021, and graphed the mobility trends for residential visits, visits at parks, retail and
work. Graph A1b shows that cases and deaths in the 1st curfew were a very small part of what
came later, before and during the 2nd curfew. Figure A1a shows mobility trends along with
cases/deaths in log scale. A few things are noteworthy: a) retail mobility levels are similar
under both curfews; this is to be expected given a strict enforcement by the state b) both
park mobility and work mobility are negatively affected under both curfews with respect to the
baseline but are less affected under the 2nd curfew despite the huge increase in cases/deaths
during the 2nd curfew. We should note that the same restrictions were in place in both curfews
for park and work mobility. We interpret this as evidence that some adaptation occurred with
time and people have learned to cope with the pandemic. Thus, we believe that any effect on
risk/time preferences might be stronger during the early phase of the pandemic where people
came across an unprecedented shock.
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Figure A1: Mobility trends and cases/deaths

(a) Mobility in percentage change from baseline (5-day rolling average) and case/deaths
in log scale

(b) Case/deaths (in thousands)
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F Stated preferences measures for risk and time prefer-

ences

In this section, we examine the potential effects of the pandemic on stated measures of risk
and time preferences. Economists are typically skeptical about whether self-reported measures of
attitudes and traits are meaningful measures of preferences. However, due to budget constrains
(as well as due to unforeseen obstacles posed by a pandemic), conducting large scale laboratory
experiments to elicit preferences from representative samples is usually infeasible. Furthermore,
although incentivized measures of risk and time preferences have been found to perform fairly
well in predicting real life financial decisions, there is doubt on whether they can be generalized
to important domains of life other than financial decision-making (see discussions in Arslan
et al., 2020; Drichoutis and Vassilopoulos, 2021). For the sake of completeness, we examine
here potential effects on popular stated risk and time preference measures.

We included a battery of questions across all waves that elicited three measures of risk
preferences and three measures of time preferences. For time preferences, we included self-
reported general purpose measures for patience and impulsivity (Vischer et al., 2013) as well as
the 15-item abbreviated form (Spinella, 2007) of the Barratt Impulsiveness Scale (BIS), designed
to assess the personality trait of impulsiveness (Patton et al., 1995).

For risk preferences, we elicited a general measure of risk-taking propensity, asking respon-
dents to state their risk perception of themselves on a 0-10 scale (‘Are you generally a person
who is fully prepared to take risks or do you try to avoid taking risks?’, anchored by ‘Not willing
at all to take risk’ and ‘Very willing to take risk’) (Dohmen et al., 2011). We also included a risk
investment question that asks respondents to place themselves in a situation where they have
won e100,000 in a lottery and they have to decide how much to invest in a 50/50 lottery with
the potential to double the money or lose the investment.9 Possible answers range from nothing
to the full amount with steps of e20,000. A final measure of risk that we utilize is a 15-item
version of Weber et al.’s (2002) Domain-Specific Risk-Taking (DOSPERT) scale (Drichoutis and
Vassilopoulos, 2021).

Table A1 and Table A2 show the ordered logit coefficients for models (1), (2) and (4) that
account for the ordinal nature of the dependent variables and OLS regressions for all other
models. Table A1 uses the wave dummies and Table A2 uses the event dummies. Reported
standard errors are clustered standard errors.10 As evident, the only robust effect across all
specifications is the gender dummy. With respect to time preferences, males are more likely
to be patient than females and they tend to have lower scores on the BIS, indicating lower
impulsiveness. With respect to risk preferences, males are more likely to state they are willing
to take risks, invest a higher amount in the risky investment and score higher in the DOSPERT
scale. Note that, despite the statistically significant effect of gender on stated measures of
risk and time preferences, gender did not statistically significantly affect any of the structural

9The risk investment measure has been found to be a strong predictor for decisions in the financial domain
(Dohmen et al., 2011) and has been reported to have a significant relationship with the incentivized Holt and
Laury (2002) risk preferences elicitation task (Leuermann and Roth, 2012).

10We report only the coefficient estimates for ordered logit models instead of the marginal effects (which
would take considerably more space to show) since statistical significance of marginal effects follows statistical
significance of the raw coefficients and the sign of the marginal effects changes exactly once when one moves
from the smallest to the highest category, a property known as the single crossing property (Drichoutis et al.,
2006; Greene and Hensher, 2010).
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Table A1: OLS and ordered logit regressions

Time preferences Risk preferences
Patience Impulsiveness BIS General risk taking Risk investment DOSPERT

(1) (2) (3) (4) (5) (6)
Constant - - 29.743∗∗∗ - 26.648∗∗∗ 49.772∗∗∗

- - (0.359) - (1.436) (0.928)
2020A wave -0.005 0.106 0.407 -0.051 -1.525 -1.527

(0.154) (0.155) (0.448) (0.142) (1.874) (1.205)
2020B wave -0.204 -0.103 0.739 -0.266 0.744 -0.074

(0.209) (0.202) (0.720) (0.237) (3.153) (1.927)
Males 0.362∗∗∗ 0.201 -0.745∗∗ 0.505∗∗∗ 5.327∗∗∗ 5.437∗∗∗

(0.124) (0.122) (0.376) (0.128) (1.674) (1.047)
N of cases/100K
population

0.005 0.005 -0.048 0.014 -0.149 -0.036

(0.012) (0.009) (0.039) (0.012) (0.164) (0.084)
N of deaths/100K
population

0.061 0.088 0.764 -0.336 2.427 -0.752

(0.241) (0.186) (0.812) (0.243) (3.307) (1.818)
N 986 986 986 986 986 986
Log-likelihood -2196.566 -2184.522 - -1982.754 - -
R2 - - 0.007 - 0.013 0.035
R2-adjusted - - 0.002 - 0.008 0.030

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
BIS stands for the Barratt Impulsiveness Scale (Patton et al., 1995). DOSPERT stands for the Domain-Specific Risk-Taking
scale (Weber et al., 2002).

parameters reported in the previous section.
Lastly, Table A3 shows estimates when the sample is constrained to the 2020B wave (robust

standard errors are reported) and includes the same set of coronavirus related variables as in
Table 10. An additional result that comes out of this table is that perceiving social distancing
measures as more efficient, is related to a higher likelihood of the subject being patient and
a lower score in the BIS, showing lower impulsivity. In addition, the stress score variable
related to coronavirus is associated with a lower BIS score (indicating lower impulsivity), a
lower likelihood of willingness to take risks and a lower score in the DOSPERT scale (indicating
lower risk taking).

Overall, we conclude that the stated measures of risk and time preferences reported in this
section also show stability across time and during the pandemic period. This corroborates well
with the null effect reported on the structural parameters of risk and time preferences from the
incentivized tasks.
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Table A2: OLS and ordered logit regressions with event dummies

Patience Impulsiveness BIS General risk taking Risk investment DOSPERT
(1) (2) (3) (4) (5) (6)

Constant - - 29.739∗∗∗ - 26.614∗∗∗ 49.766∗∗∗

- - (0.359) - (1.438) (0.929)
Before first case 0.101 0.153 0.677 0.030 -0.093 -0.758

(0.181) (0.192) (0.524) (0.164) (2.216) (1.425)
Before first death -0.306 0.147 0.048 -0.220 -5.151∗∗ -2.009

(0.210) (0.205) (0.598) (0.206) (2.520) (1.730)
Before curfew 0.526 -0.342 0.146 0.059 3.677 -4.302∗

(0.371) (0.363) (1.279) (0.270) (4.900) (2.300)
Curfew starts -0.193 -0.114 0.740 -0.261 0.823 -0.072

(0.211) (0.203) (0.727) (0.239) (3.145) (1.946)
Curfew announced
relaxation

-0.213 -0.110 0.242 -0.366 1.826 -3.428

(0.278) (0.287) (0.961) (0.339) (4.909) (3.182)
Males 0.370∗∗∗ 0.203∗ -0.734∗ 0.511∗∗∗ 5.422∗∗∗ 5.454∗∗∗

(0.124) (0.122) (0.376) (0.128) (1.675) (1.046)
N of cases/100K
population

0.003 0.007 -0.052 0.013 -0.151 -0.060

(0.012) (0.009) (0.040) (0.012) (0.162) (0.087)
N of deaths/100K
population

0.099 0.063 1.027 -0.273 2.061 1.018

(0.274) (0.217) (0.908) (0.277) (3.668) (2.295)
N 986 986 986 986 986 986
Log-likelihood -2193.420 -2183.530 - -1981.908 - -
R2 - - 0.008 - 0.018 0.039
R2-adjusted - - -0.000 - 0.010 0.031

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
BIS stands for the Barratt Impulsiveness Scale (Patton et al., 1995). DOSPERT stands for the Domain-Specific Risk-Taking
scale (Weber et al., 2002).
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Table A3: OLS and ordered logit regressions with coronavirus related control variables
(sample constrained to the 2020B wave)

Patience Impulsiveness BIS General risk taking Risk investment DOSPERT
(1) (2) (3) (4) (5) (6)

Constant - - 33.983∗∗∗ - 33.633∗∗∗ 61.431∗∗∗

- - (2.069) - (8.159) (4.853)
Males 0.285 0.233 -0.724 0.414∗ 2.904 5.356∗∗∗

(0.230) (0.256) (0.675) (0.240) (2.919) (1.775)
N of cases/100K popula-
tion

0.006 0.007 -0.047 0.014 -0.161 -0.006

(0.015) (0.011) (0.038) (0.012) (0.166) (0.080)
N of deaths/100K popu-
lation

0.181 0.130 0.573 -0.362 2.132 -1.120

(0.300) (0.234) (0.790) (0.250) (3.311) (1.698)
Neither inefficient, nor
efficient

0.253 0.315 -0.013 0.356 -1.250 0.902

(0.387) (0.395) (1.136) (0.385) (4.338) (3.012)
Efficient 0.469 0.611∗ -1.722∗ -0.379 -1.289 -2.008

(0.349) (0.325) (1.016) (0.344) (3.316) (2.559)
Very efficient 1.351∗∗∗ 0.627 -2.541∗∗ -0.054 -1.386 -1.751

(0.421) (0.391) (1.231) (0.407) (4.335) (2.953)
Close ones in high risk
group

-0.242 -0.290 1.214 0.488∗ 4.133 1.541

(0.265) (0.243) (0.776) (0.257) (3.055) (1.934)
Coronavirus stress score -0.034 0.057∗ -0.175∗∗ -0.070∗∗∗ -0.358 -1.151∗∗∗

(0.029) (0.029) (0.086) (0.027) (0.350) (0.206)
Conspiracy theories score -0.002 -0.015 -0.045 0.035 -0.177 0.272

(0.025) (0.027) (0.083) (0.026) (0.318) (0.203)
N 347 347 347 347 347 347
Log-likelihood -728.986 -710.426 - -678.238 - -
R2 - - 0.054 - 0.018 0.154
R2-adjusted - - 0.029 - -0.009 0.131

Notes: Standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave.
BIS stands for the Barratt Impulsiveness Scale (Patton et al., 1995). DOSPERT stands for the Domain-Specific Risk-Taking
scale (Weber et al., 2002).
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Table A4: Structural estimates with exponential discounting (sample restricted to those that
participated to at least two waves)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.542∗∗∗ (0.031) 0.699∗∗∗ (0.060) 0.542∗∗∗ (0.031) 0.706∗∗∗ (0.059)
2020A wave 0.031 (0.043) -0.008 (0.071)
2020B wave -0.022 (0.042) 0.026 (0.058)

2020 events:
Before first case 0.048 (0.050) -0.050 (0.090)
Before first death 0.035 (0.059) 0.053 (0.090)
Before curfew -0.090 (0.104) 0.013 (0.174)
Curfew starts 0.020 (0.051) 0.062 (0.066)
Curfew announced relaxation -0.071 (0.053) -0.021 (0.075)
ar

Constant 0.815∗∗∗ (0.059) 0.811∗∗∗ (0.058)
2020A wave -0.009 (0.081)
2020B wave -0.037 (0.078)

2020 events:
Before first case 0.022 (0.100)
Before first death -0.017 (0.104)
Before curfew -0.120 (0.161)
Curfew starts -0.054 (0.089)
Curfew announced relaxation -0.016 (0.098)
βr

Constant 0.729∗∗∗ (0.067) 0.720∗∗∗ (0.065)
2020A wave 0.040 (0.075)
2020B wave -0.060 (0.061)

2020 events:
Before first case 0.118 (0.093)
Before first death -0.024 (0.100)
Before curfew -0.117 (0.153)
Curfew starts -0.065 (0.072)
Curfew announced relaxation -0.047 (0.073)
δ

Constant 0.214∗∗∗ (0.018) 0.137∗∗∗ (0.028) 0.214∗∗∗ (0.018) 0.134∗∗∗ (0.028)
2020A wave -0.013 (0.024) 0.006 (0.036)
2020B wave 0.029 (0.026) -0.005 (0.029)

2020 events:
Before first case -0.022 (0.029) 0.028 (0.045)
Before first death -0.013 (0.033) -0.023 (0.045)
Before curfew 0.045 (0.067) -0.009 (0.085)
Curfew starts 0.006 (0.030) -0.023 (0.033)
Curfew announced relaxation 0.054 (0.033) 0.019 (0.039)
µ 0.129∗∗∗ (0.003) 0.108∗∗∗ (0.006) 0.129∗∗∗ (0.003) 0.107∗∗∗ (0.006)
ν 0.065∗∗∗ (0.002) 0.071∗∗∗ (0.003) 0.065∗∗∗ (0.003) 0.071∗∗∗ (0.003)
Wald tests (joint significance):

Wave/event dummies = 0 χ2 = 2.34 (0.674) χ2 = 1.77 (0.987) χ2 = 7.96 (0.633) χ2 = 7.48 (0.995)
Wald test ar = βr = 1 χ2 = 27.77 (0.0001) χ2 = 33.43 (0.0008)

N 40700 40700 40700 40700
Log-likelihood -23965.13 -23939.04 -23952.72 -23922.71

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. *
p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave which is captured by the
constant for each parameter. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability
weighting function; δ is the discount rate of the exponential function.

15



Table A5: Structural estimates with hyperbolic discounting (sample restricted to those that
participated to at least two waves)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.537∗∗∗ (0.030) 0.581∗∗∗ (0.058) 0.537∗∗∗ (0.030) 0.580∗∗∗ (0.056)
2020A wave 0.031 (0.043) -0.038 (0.087)
2020B wave -0.022 (0.042) 0.030 (0.065)

2020 events:
Before first case 0.048 (0.050) -0.085 (0.107)
Before first death 0.034 (0.058) 0.018 (0.114)
Before curfew -0.089 (0.104) -0.001 (0.195)
Curfew starts 0.018 (0.050) 0.052 (0.075)
Curfew announced relaxation -0.070 (0.052) -0.014 (0.084)
ar

Constant 0.844∗∗∗ (0.063) 0.843∗∗∗ (0.062)
2020A wave -0.019 (0.085)
2020B wave -0.035 (0.083)

2020 events:
Before first case 0.010 (0.104)
Before first death -0.031 (0.110)
Before curfew -0.125 (0.176)
Curfew starts -0.061 (0.095)
Curfew announced relaxation -0.008 (0.105)
βr

Constant 0.949∗∗∗ (0.076) 0.941∗∗∗ (0.075)
2020A wave 0.123 (0.113)
2020B wave -0.059 (0.084)

2020 events:
Before first case 0.210∗ (0.127)
Before first death 0.007 (0.155)
Before curfew 0.008 (0.321)
Curfew starts -0.061 (0.100)
Curfew announced relaxation -0.039 (0.103)
K

Constant 0.871∗∗∗ (0.076) 0.871∗∗∗ (0.073)
2020A wave 0.079 (0.105)
2020B wave -0.074 (0.077)

2020 events:
Before first case 0.179 (0.127)
Before first death 0.006 (0.145)
Before curfew -0.132 (0.202)
Curfew starts -0.067 (0.094)
Curfew announced relaxation -0.064 (0.093)
µ 0.129∗∗∗ (0.003) 0.118∗∗∗ (0.005) 0.129∗∗∗ (0.003) 0.118∗∗∗ (0.005)
ν 0.065∗∗∗ (0.002) 0.066∗∗∗ (0.003) 0.065∗∗∗ (0.002) 0.066∗∗∗ (0.003)
Wald tests (joint significance):

Wave/event dummies = 0 χ2 = 2.48 (0.648) χ2 = 2.43 (0.965) χ2 = 7.71 (0.657) χ2 = 6.62 (0.998)
Wald test ar = βr = 1 χ2 = 10.77 (0.096) χ2 = 13.95 (0.304)

N 40700 40700 40700 40700
Log-likelihood -23924.70 -23906.66 -23909.66 -23888.83

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. *
p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave which is captured by the
constant for each parameter. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability
weighting function; K is the parameter of the hyperbolic function.
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Table A6: Structural estimates with exponential discounting (sample restricted to those that
participated to all three waves)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.594∗∗∗ (0.039) 0.669∗∗∗ (0.099) 0.593∗∗∗ (0.039) 0.659∗∗∗ (0.097)
2020A wave -0.075 (0.061) -0.023 (0.114)
2020B wave -0.044 (0.065) 0.108 (0.087)

2020 events:
Before first case -0.014 (0.077) -0.032 (0.149)
Before first death -0.148∗ (0.086) -0.115 (0.192)
Before curfew -0.120 (0.130) 0.149 (0.191)
Curfew starts 0.032 (0.078) 0.073 (0.111)
Curfew announced relaxation -0.142 (0.088) 0.122 (0.108)
ar

Constant 0.879∗∗∗ (0.094) 0.880∗∗∗ (0.094)
2020A wave 0.065 (0.133)
2020B wave -0.060 (0.131)

2020 events:
Before first case 0.047 (0.162)
Before first death 0.070 (0.196)
Before curfew 0.149 (0.249)
Curfew starts 0.031 (0.183)
Curfew announced relaxation -0.119 (0.149)
βr

Constant 0.843∗∗∗ (0.124) 0.855∗∗∗ (0.122)
2020A wave -0.025 (0.126)
2020B wave -0.187∗ (0.100)

2020 events:
Before first case 0.049 (0.175)
Before first death 0.004 (0.231)
Before curfew -0.230 (0.178)
Curfew starts -0.042 (0.149)
Curfew announced relaxation -0.297∗∗∗ (0.110)
δ

Constant 0.186∗∗∗ (0.022) 0.151∗∗∗ (0.047) 0.187∗∗∗ (0.022) 0.156∗∗∗ (0.046)
2020A wave 0.029 (0.034) 0.004 (0.055)
2020B wave 0.029 (0.037) -0.050 (0.043)

2020 events:
Before first case -0.000 (0.043) 0.010 (0.070)
Before first death 0.060 (0.046) 0.044 (0.096)
Before curfew 0.061 (0.080) -0.073 (0.090)
Curfew starts 0.003 (0.047) -0.023 (0.058)
Curfew announced relaxation 0.059 (0.048) -0.066 (0.051)
µ 0.127∗∗∗ (0.005) 0.111∗∗∗ (0.010) 0.126∗∗∗ (0.005) 0.111∗∗∗ (0.009)
ν 0.061∗∗∗ (0.003) 0.065∗∗∗ (0.004) 0.061∗∗∗ (0.003) 0.064∗∗∗ (0.004)
Wald tests (joint significance):

Wave/event dummies = 0 χ2 = 3.31 (0.508) χ2 = 6.96 (0.541) χ2 = 10.43 (0.404) χ2 = 15.87 (0.724)
Wald test ar = βr = 1 χ2 = 7.28 (0.296) χ2 = 13.48 (0.335)

N 16850 16850 16850 16850
Log-likelihood -9879.54 -9869.65 -9849.15 -9833.57

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. *
p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave which is captured by the
constant for each parameter. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability
weighting function; δ is the discount rate of the exponential function.
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Table A7: Structural estimates with hyperbolic discounting (sample restricted to those that
participated to all three waves)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.589∗∗∗ (0.038) 0.561∗∗∗ (0.091) 0.589∗∗∗ (0.038) 0.533∗∗∗ (0.084)
2020A wave -0.075 (0.061) -0.041 (0.135)
2020B wave -0.042 (0.064) 0.131 (0.096)

2020 events:
Before first case -0.013 (0.076) -0.066 (0.175)
Before first death -0.150∗ (0.086) -0.158 (0.225)
Before curfew -0.118 (0.130) 0.164 (0.207)
Curfew starts 0.026 (0.078) 0.044 (0.135)
Curfew announced relaxation -0.142 (0.088) 0.153 (0.111)
ar

Constant 0.903∗∗∗ (0.097) 0.912∗∗∗ (0.096)
2020A wave 0.065 (0.138)
2020B wave -0.062 (0.136)

2020 events:
Before first case 0.029 (0.172)
Before first death 0.097 (0.215)
Before curfew 0.151 (0.264)
Curfew starts 0.010 (0.187)
Curfew announced relaxation -0.126 (0.155)
βr

Constant 0.990∗∗∗ (0.130) 1.032∗∗∗ (0.120)
2020A wave -0.011 (0.168)
2020B wave -0.240∗∗ (0.119)

2020 events:
Before first case 0.092 (0.238)
Before first death 0.059 (0.327)
Before curfew -0.289 (0.217)
Curfew starts -0.019 (0.193)
Curfew announced relaxation -0.386∗∗∗ (0.126)
K

Constant 0.184∗∗∗ (0.021) 0.199∗∗∗ (0.043) 0.184∗∗∗ (0.021) 0.211∗∗∗ (0.040)
2020A wave 0.026 (0.032) 0.010 (0.064)
2020B wave 0.028 (0.035) -0.060 (0.047)

2020 events:
Before first case 0.000 (0.041) 0.026 (0.082)
Before first death 0.055 (0.043) 0.058 (0.113)
Before curfew 0.052 (0.073) -0.083 (0.099)
Curfew starts 0.009 (0.046) 0.003 (0.076)
Curfew announced relaxation 0.053 (0.045) -0.084 (0.052)
µ 0.127∗∗∗ (0.005) 0.119∗∗∗ (0.009) 0.126∗∗∗ (0.005) 0.122∗∗∗ (0.007)
ν 0.061∗∗∗ (0.003) 0.062∗∗∗ (0.004) 0.060∗∗∗ (0.003) 0.060∗∗∗ (0.004)
Wald tests (joint significance):

Wave/event dummies = 0 χ2 = 3.24 (0.518) χ2 = 8.08 (0.425) χ2 = 10.25 (0.419) χ2 = 19.53 (0.489)
Wald test ar = βr = 1 χ2 = 5.48 (0.484) χ2 = 13.46 (0.337)

N 16850 16850 16850 16850
Log-likelihood -9865.63 -9857.95 -9830.79 -9817.01

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. *
p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave which is captured by the
constant for each parameter. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability
weighting function; K is the parameter of the hyperbolic function.
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Table A8: Structural estimates with exponential discounting (sample constrained to only
those that accepted electronic bank transfer)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.551∗∗∗ (0.029) 0.653∗∗∗ (0.060) 0.551∗∗∗ (0.029) 0.659∗∗∗ (0.059)
2020A wave 0.028 (0.042) -0.065 (0.086)
2020B wave -0.027 (0.043) -0.003 (0.062)

2020 events:
Before first case 0.035 (0.050) -0.099 (0.104)
Before first death 0.048 (0.059) 0.017 (0.106)
Before curfew -0.090 (0.097) -0.139 (0.243)
Curfew starts 0.010 (0.052) 0.005 (0.073)
Curfew announced relaxation -0.068 (0.053) -0.019 (0.080)
ar

Constant 0.850∗∗∗ (0.062) 0.846∗∗∗ (0.061)
2020A wave -0.003 (0.084)
2020B wave -0.024 (0.083)

2020 events:
Before first case 0.052 (0.105)
Before first death -0.047 (0.110)
Before curfew -0.098 (0.180)
Curfew starts -0.064 (0.095)
Curfew announced relaxation 0.021 (0.109)
βr

Constant 0.802∗∗∗ (0.076) 0.794∗∗∗ (0.074)
2020A wave 0.113 (0.104)
2020B wave -0.033 (0.072)

2020 events:
Before first case 0.190 (0.125)
Before first death 0.017 (0.127)
Before curfew 0.033 (0.276)
Curfew starts -0.019 (0.087)
Curfew announced relaxation -0.041 (0.087)
δ

Constant 0.208∗∗∗ (0.017) 0.157∗∗∗ (0.028) 0.208∗∗∗ (0.017) 0.154∗∗∗ (0.028)
2020A wave -0.013 (0.023) 0.035 (0.044)
2020B wave 0.034 (0.026) 0.015 (0.032)

2020 events:
Before first case -0.019 (0.027) 0.051 (0.052)
Before first death -0.018 (0.032) -0.003 (0.056)
Before curfew 0.037 (0.059) 0.063 (0.128)
Curfew starts 0.016 (0.032) 0.013 (0.038)
Curfew announced relaxation 0.054∗ (0.032) 0.020 (0.042)
µ 0.133∗∗∗ (0.003) 0.119∗∗∗ (0.006) 0.133∗∗∗ (0.003) 0.118∗∗∗ (0.006)
ν 0.067∗∗∗ (0.003) 0.069∗∗∗ (0.003) 0.067∗∗∗ (0.003) 0.070∗∗∗ (0.003)
Wald tests (joint significance):

Wave/event dummies = 0 χ2 = 2.85 (0.583) χ2 = 2.88 (0.942) χ2 = 7.87 (0.641) χ2 = 6.71 (0.997)
Wald test ar = βr = 1 χ2 = 14.30 (0.027) χ2 = 18.07 (0.113)

N 41850 41850 41850 41850
Log-likelihood -24963.22 -24946.98 -24950.53 -24931.10

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. *
p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave which is captured by the
constant for each parameter. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability
weighting function; δ is the discount rate of the exponential function.
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Table A9: Structural estimates with hyperbolic discounting (sample constrained to only those
that accepted electronic bank transfer)

EUT RDU EUT RDU
(1) (2) (3) (4)

r
Constant 0.546∗∗∗ (0.029) 0.548∗∗∗ (0.055) 0.546∗∗∗ (0.029) 0.547∗∗∗ (0.054)
2020A wave 0.027 (0.042) -0.113 (0.099)
2020B wave -0.026 (0.042) -0.000 (0.069)

2020 events:
Before first case 0.034 (0.050) -0.141 (0.114)
Before first death 0.047 (0.059) -0.044 (0.140)
Before curfew -0.088 (0.097) -0.176 (0.271)
Curfew starts 0.007 (0.052) -0.016 (0.082)
Curfew announced relaxation -0.067 (0.053) -0.010 (0.087)
ar

Constant 0.877∗∗∗ (0.064) 0.876∗∗∗ (0.063)
2020A wave -0.006 (0.089)
2020B wave -0.018 (0.088)

2020 events:
Before first case 0.050 (0.109)
Before first death -0.060 (0.116)
Before curfew -0.085 (0.202)
Curfew starts -0.068 (0.102)
Curfew announced relaxation 0.035 (0.118)
βr

Constant 0.937∗∗∗ (0.079) 0.939∗∗∗ (0.077)
2020A wave 0.190 (0.136)
2020B wave -0.040 (0.089)

2020 events:
Before first case 0.278∗ (0.155)
Before first death 0.091 (0.192)
Before curfew 0.078 (0.363)
Curfew starts -0.000 (0.111)
Curfew announced relaxation -0.055 (0.108)
K

Constant 0.204∗∗∗ (0.016) 0.202∗∗∗ (0.026) 0.204∗∗∗ (0.016) 0.202∗∗∗ (0.025)
2020A wave -0.012 (0.022) 0.060 (0.051)
2020B wave 0.033 (0.024) 0.018 (0.035)

2020 events:
Before first case -0.017 (0.026) 0.075 (0.057)
Before first death -0.017 (0.030) 0.030 (0.076)
Before curfew 0.031 (0.054) 0.074 (0.137)
Curfew starts 0.020 (0.031) 0.034 (0.045)
Curfew announced relaxation 0.049 (0.030) 0.017 (0.045)
µ 0.133∗∗∗ (0.003) 0.128∗∗∗ (0.005) 0.132∗∗∗ (0.003) 0.128∗∗∗ (0.005)
ν 0.067∗∗∗ (0.003) 0.065∗∗∗ (0.003) 0.066∗∗∗ (0.003) 0.065∗∗∗ (0.003)
Wald tests (joint significance):

Wave/event dummies = 0 χ2 = 2.98 (0.561) χ2 = 5.15 (0.741) χ2 = 7.68 (0.660) χ2 = 9.96 (0.969)
Wald test ar = βr = 1 χ2 = 6.56 (0.364) χ2 = 9.41 (0.668)

N 41850 41850 41850 41850
Log-likelihood -24922.90 -24908.23 -24908.08 -24890.44

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. *
p<0.1, ** p<0.05 *** p<0.01. For all models, the base category is the 2019 wave which is captured by the
constant for each parameter. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability
weighting function; K is the parameter of the hyperbolic function.

20



Table A10: Structural estimates with coronavirus related control variables (RDU with
balanced set of covariates)

Exponential Hyperbolic
(1) (2)

r
Constant 0.970∗∗∗ (0.256) 0.954∗∗∗ (0.333)
Males 0.137 (0.102) 0.179 (0.126)
Age -0.014 (0.017) -0.019 (0.020)
Not smoking 0.002 (0.017) 0.001 (0.023)

Is social distancing effective?
Neither inefficient, nor efficient 0.064 (0.069) 0.085 (0.083)
Efficient 0.081 (0.077) 0.107 (0.087)
Very efficient 0.088 (0.090) 0.115 (0.102)
Close ones in high risk group 0.099 (0.186) 0.146 (0.246)
Coronavirus stress score 0.000 (0.007) 0.000 (0.009)
Conspiracy theories score -0.007 (0.004) -0.009 (0.006)

ar
Constant 0.595 (0.616) 0.668 (0.734)
Males -0.063 (0.128) -0.071 (0.154)
Age 0.020∗ (0.011) 0.021 (0.013)
Not smoking 0.222 (0.278) 0.269 (0.355)

Is social distancing effective?
Neither inefficient, nor efficient -0.156 (0.251) -0.191 (0.321)
Efficient -0.095 (0.193) -0.125 (0.250)
Very efficient -0.259 (0.308) -0.304 (0.386)
Close ones in high risk group -0.031 (0.135) -0.034 (0.165)
Coronavirus stress score -0.003 (0.011) -0.004 (0.013)
Conspiracy theories score -0.018 (0.024) -0.021 (0.030)

βr
Constant 0.309 (0.216) 0.334 (0.257)
Males -0.049 (0.059) -0.067 (0.078)
Age 0.007 (0.006) 0.010 (0.007)
Not smoking 0.096 (0.078) 0.108 (0.097)

Is social distancing effective?
Neither inefficient, nor efficient -0.003 (0.062) -0.014 (0.075)
Efficient 0.012 (0.060) -0.000 (0.069)
Very efficient -0.037 (0.072) -0.053 (0.087)
Close ones in high risk group -0.052 (0.080) -0.070 (0.109)
Coronavirus stress score 0.004 (0.005) 0.004 (0.006)
Conspiracy theories score 0.001 (0.004) 0.001 (0.005)

δ, K
Constant 0.020 (0.029) 0.027 (0.037)
Males -0.012 (0.020) -0.015 (0.026)
Age 0.002 (0.002) 0.003 (0.002)
Not smoking 0.002 (0.004) 0.003 (0.005)

Is social distancing effective?
Neither inefficient, nor efficient -0.004 (0.006) -0.005 (0.008)
Efficient -0.005 (0.008) -0.007 (0.010)
Very efficient -0.007 (0.008) -0.009 (0.010)
Close ones in high risk group -0.007 (0.014) -0.011 (0.019)
Coronavirus stress score -0.000 (0.001) -0.000 (0.001)
Conspiracy theories score 0.001 (0.001) 0.001 (0.001)

µ 0.101∗∗∗ (0.008) 0.108∗∗∗ (0.008)
ν 0.072∗∗∗ (0.005) 0.069∗∗∗ (0.005)
Wald test (joint significance):
ar = βr = 1 χ2 = 21.42 (0.314) χ2 = 17.14 (0.581)

N 16650 16650
Log-likelihood -9575.97 -9566.11

Notes: Standard errors in parentheses for coefficient estimates. P-values in parenthesis for Wald tests. * p<0.1, ** p<0.05
*** p<0.01. r is the CRRA coefficient; ar, βr are the parameters of the Prelec probability weighting function; δ, K are the
parameters of the exponential and hyperbolic functions, respectively.
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Table A11: Responses per region

Region N %
Athens 811 84.83

Thessaloniki 39 4.08
Piraeus 14 1.46
Achaea 8 0.84

Heraklion 7 0.73
West Attica 7 0.73

Cyclades 5 0.52
Dodecanese 5 0.52

Euboea 5 0.52
Argolis 4 0.42

Corinthia 4 0.42
Zakynthos 4 0.42

East Attica 3 0.31
Laconia 3 0.31
Larissa 3 0.31

Aetolia-Acarnania 2 0.21
Boeotia 2 0.21
Chania 2 0.21

Grevena 2 0.21
Imathia 2 0.21
Kozani 2 0.21

Magnesia 2 0.21
Messenia 2 0.21

Rethymno 2 0.21
Trikala 2 0.21

Arcadia 1 0.1
Chios 1 0.1

Karditsa 1 0.1
Kastoria 1 0.1

Lesbos 1 0.1
Phthiotis 1 0.1

Pieria 1 0.1
Abroad 7 0.73

Total 956
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