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Appendix A The fourfold pattern to risk over outcome magnitude and

probabilities

Cumulative prospect theory accommodates the fourfold pattern to risk over outcome probabili-

ties, that is, as the probability increases from low to high, risk preferences change from risk seeking

to risk aversion over gains, while those preferences change from risk aversion to risk seeking over

losses. This is because, as Scholten and Read (2014) point out, prospect theory retained some of the

notions introduced by Markowitz (1952) such as reference dependence and loss aversion, but in-

troduced new ones such as probability weighting and a singly inflected value function. Scholten

and Read provide an insightful account about the possible reasons the fourfold pattern to risk

over outcome magnitude was not addressed by Kahnemann and Tversky. Furthermore, Scholten

and Read (2014) contribute to this literature by showing that it is in principle possible for a CPT

specification to account for both fourfold patterns. This is the case for a value function v(.) and a

weighting probability function w(.) that meet the following condition for the case of a lottery that

pays x with probability p and nothing otherwise (m > 1):

v (mx)

v
(

1
p mx

) > w (p) >
v (x)

v
(

1
p x

) . (a1)

Therefore, a necessary condition is that the value function has to be decreasingly elastic. Al-

though this theoretical insight is certainly appealing, it faces practical limitations. The reason is

that, even within decreasingly elastic value functions, inequalities (a1) are only met for a limited
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number of cases. We illustrate this point in Figure A.1. Following Scholten and Read, we use a

normalised logarithmic value function, v(x) = 1
a (log (1 + ax)) , and the Tversky and Kahnemann

probability weighting functions w(p) = pγ

(pγ+(1−p)γ)1/γ . We use the following range of parameter

values consistent with the literature: α ∈ [0.01, 0.1], γ ∈ [0.50, 0.95]. We use a payoff value x = 25

and p ∈ [0.01, 0.35], such that lowest expected payout is 0.25 as in Scholten and Read experimental

data. The red shaded areas are the ones for which (a1) is met. Similar result is obtained for differ-

ent values of m. As payoff value x is increased, the number of instances for which conditions (a1)

are met decreases substantially. Actually, the largest value of x where (a1) holds is x = 40 (shown

in blue in Figure A.1).

Figure A.1: Combination of parameters for which the inequality holds v(mx)

v
(

1
p mx

) > w (p) > v(x)

v
(

1
p x

)
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Appendix B Two additional reference points: MinMax and X at Max P

In addition to the reference points considered in Section 3 of this paper, Baillon et al. (2020) exam-

ined two additional deterministic reference points: MinMax and X at Max P. The use of these two

reference points in the literature is scarce. We are not aware of any study on higher order risk pref-

erences, either theoretical or empirical, that employ these two reference points. Nevertheless, we

present below the analytical derivations of the valuation of lottery pairs to elicit third and fourth

order risky choices assuming these two reference points under two different model specifications,

the M model and a CPT model.

B.1 MinMax

B.1.1 Third order risky choice

We recall the probabilities and outcomes of the lottery pair of order 3 are the following

B3 : 0.5, W + X − k2; 0.25, W + X + e1; 0.25, W + X − e1

A3 : 0.5, W + X; 0.25, W + X − k2 + e1; 0.25, W + X − k2 − e1.

There are two possible reference points for this lottery pair. First, when k2 ≥ e1, the MinMax

reference point is W + X.

For the M model of utility defined in (1), the expected utility of the lottery pair is

U(B3) = −λ0.5
(

1 − e−β(k2)
η
)
+ 0.25

(
1 − e−ρβ(e1)

η
)
− λ0.25

(
1 − e−β(e1)

η
)

U(A3) = −λ0.25
(

1 − e−β(k2−e1)
η
)
− λ0.25

(
1 − e−β(k2+e1)

η
)

.

For the CPT model, we assume a specification with a power value function, parameter α ∈

[0, 1], loss aversion parameter λ, and an inverse-S-shaped probability weighting function, w(p),

where w+(p) and w−(p) are the probability weighting functions for gains and losses, respectively.

In this case, the subjective expected values, V(•), are the following
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V(B3) = w+(0.25) (e1)
α − λw−(0.5) (k2)

α − λ
(
w−(0.75)− w−(0.5)

)
(e1)

α

V(A3) = −λw−(0.25) (k2 − e1)
α − λ

(
w−(0.5)− w−(0.25)

)
(k2 + e1)

α.

Second, when e1 > k2, the MinMax reference point becomes W + X − k2 + e1.

For the M model, the expected utility of the lottery pair is

U(B3) = −λ0.5
(

1 − e−β(e1)
η
)
+ 0.25

(
1 − e−ρβ(k2)

η
)
− λ0.25

(
1 − e−β(2e1−k2)

η
)

U(A3) = −λ0.5
(

1 − e−β(e1−k2)
η
)
− λ0.25

(
1 − e−β(2e1)

η
)

.

For the CPT model, the subjective expected values are the following

V(B3) = w+(0.25) (k2)
α − λw−(0.25) (2e1 − k2)

α − λ
(
w−(0.75)− w−(0.25)

)
(e1)

α

V(A3) = −λw−(0.25) (2e1)
α − λ

(
w−(0.75)− w−(0.25)

)
(e1 − k2)

α.

Our analysis reveals that the M DM can exhibit in both cases either prudent or imprudent

choices, depending on the value of the model parameters and payoff sizes, although the impru-

dent choice is present for a wider range of parameter values. However, we find that the CPT DM

chooses B3, except if the loss aversion parameter λ exceeds extreme values such as 6.

B.1.2 Fourth order risky choice

The payoffs of the two zero-mean independent risks can be different, e2 > e1. In this case, we recall

the probabilities and outcomes of the two lotteries are the following

B4 : 0.25, W + X + e2; 0.25, W + X + e1; 0.25, W + X − e1; 0.25, W + X − e2

A4 : 0.5, W + X; 0.125, W + X + e2 + e1; 0.125, W + X + e2 − e1;

0.125, W + X − e2 + e1; 0.125, W + X − e2 − e1.

The MinMax reference point is W + X + e2.

For the M model, the expected utility values of the lottery pair are given by
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U(B4) = −λ0.25
(

1 − e−β(e2−e1)
η
)
− λ0.25

(
1 − e−β(e2+e1)

η
)
− λ0.25

(
1 − e−β(2e2)

η
)

U(A4) = −λ0.5
(

1 − e−β(e2)
η
)
+ 0.125

(
1 − e−ρβ(e1)

η
)
− λ0.125

(
1 − e−β(e1)

η
)

−λ0.125
(

1 − e−β(2e2−e1)
η
)
− λ0.125

(
1 − e−β(2e2+e1)

η
)

.

For the CPT model, the value of the prospects are given by

V(B4) = −λw−(0.25)(2e2)
α − λ

(
w−(0.5)− w−(0.25)

)
(e1 + e2)

α − λ
(
w−(0.75)− w−(0.5)

)
(e2 − e1)

α

V(A4) = w+(0.125) (e1)
α − λw−(0.125) (2e2 + e1)

α − λ
(
w−(0.25)− w−(0.125)

)
(2e2 − e1)

α

−λ
(
w−(0.75)− w−(0.25)

)
(e2)

α − λ
(
w−(0.875)− w−(0.75)

)
(e1)

α .

Our analysis reveals that the M DM can exhibit either temperate or intemperate choices, de-

pending on the value of the model parameters and payoff sizes, although the intemperate choice

is present for a wider range of parameter values. However, we find that the CPT DM makes the

temperate choice.

Overall, taking into consideration both third and fourth order risky choices, we find that the

predictions of the two models under this reference point are similar to the case of MaxMin.

B.2 X at Max P

B.2.1 Third order risky choice

In the third order lottery pairs, there is one payoff in each lottery with equal probability of 0.5.

Following Baillon et al. (2020), we take as the reference point the payoff of the A lottery. Therefore,

the reference point is W + X.

There are two cases. First, when k2 ≥ e1, the value of the lottery pair is the same as in the case

under MinMax examine above.

Second, when e1 > k2, for the M model, the expected utility of the lottery pair is

U(B3) = −λ0.5
(

1 − e−β(k2)
η
)
+ 0.25

(
1 − e−ρβ(e1)

η
)
− λ0.25

(
1 − e−β(e1)

η
)

U(A3) = 0.25
(

1 − e−ρβ(−k2+e1)
η
)
− λ0.25

(
1 − e−β(k2+e1)

η
)

.
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For the CPT model, the subjective expected values are the following

V(B3) = w+(0.25) (e1)
α − λw−(0.25) (e1)

α − λ
(
w−(0.75)− w−(0.25)

)
(k2)

α

V(A3) = w+(0.25) (e1 − k2)
α − λw−(0.25) (k2 + e1)

α .

B.2.2 Fourth order risky choice

The reference point under X at max P is W + X. Therefore, the implications for both models are

the same as under the reference point average payout described in Section 3.2.

Appendix C Stimuli

Table C.1: List of choice tasks from Deck and Schlesinger (2010).

Task Order Option B Option A

1 3 [30, 30 + 25 + [25,−25] [30 + 25, 30 + [25,−25]

2 4 [15 + [5,−5], 5 + [5,−5]] [15, 15 + [5,−5] + [5,−5]]

3 3 [12.5, 12.5 + 9 + [5,−5] [12.5 + 9, 12.5 + [5,−5]

4 4 [15 + [9,−9], 15 + [1,−1]] [15, 15 + [9,−9] + [1,−1]]

5 3 [12.5,+12.5 + 1 + [5,−5] [12.5 + 1,+12.5 + [5,−5]

6 4 [55 + [25,−25], 55 + [25,−25]] [55, 55 + [25,−25] + [25,−25]]

7 3 [10.5,+10.5 + 9 + [1,−1] [10.5 + 9,+10.5 + [1,−1]

8 4 [55 + [5,−5], 55 + [45,−45]] [55, 55 + [5,−5] + [45,−45]]

9 3 [12.5,+12.5 + 5 + [5,−5] [12.5 + 5,+12.5 + [5,−5]

10 3 [14.5,+14.5 + 1 + [9,−9] [14.5 + 1,+14.5 + [9,−9]

List of choice tasks from Deck and Schlesinger (2010). [x, y] indicates a lottery with chances 50:50 of getting

either x or y. The first column refers to the corresponding name of the task from the data source. Choice of

option B indicates risk aversion, prudence and temperance for the 2nd, 3rd and 4th order respectively.
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Table C.2: List of choice tasks from Deck and Schlesinger (2014).

Task Order Option B Option A

4 2 [5 + 5, 10] [5, 10 + 5]

5 2 [2 + 8, 4] [2, 4 + 8]

6 2 [10 + 5, 15] [10, 15 + 5]

7 2 [2 + 3, 4] [2, 4 + 3]

8 2 [20 + 30, 40] [20, 40 + 30]

9 2 7 [4, 10]

10 2 10 [1, 19]

11 3 [5, 10 + [−2, 2]] [5 + [−2, 2], 10]

13 3 [5, 10 + [−4, 4]] [5 + [−4, 4], 10]

14 3 [2, 4 + [1,−1]] [2 + [1,−1], 4]

15 3 [20, 40 + [10,−10]] [20 + [10,−10], 40]

16 3 [8, 10 + [2,−2]] [8 + [2,−2], 10]

17 3 [12, 14 + [1,−1]] [12 + [1,−1], 14]

18 4 [[10, 24] + [14, 20], [14, 20] + [10, 24]] [[14, 20] + [14, 20], [10, 24] + [10, 24]]

19 4 [[5, 12] + [7, 10], [7, 10] + [5, 12]] [[7, 10] + [7, 10], [5, 12] + [5, 12]]

21 4 [[5, 12] + [1, 16], [1, 16] + [5, 12]] [[1, 16] + [1, 16], [5, 12] + [5, 12]]

22 4 [14 + 12B, 24 + 12A] [14 + 12A, 24 + 12B]

23 4 [7 + 11B, 12 + 11A] [7 + 11A, 12 + 11B]

24 4 [1 + 11B, 18 + 11A] [1 + 11A, 18 + 11B]

List of choice tasks from Deck and Schlesinger (2014). [x, y] indicates a lottery with chances 50:50 of getting

either x or y. The first column refers to the corresponding name of the task from the data source. Choice of

option B indicates risk aversion, prudence and temperance for the 2nd, 3rd and 4th order respectively.
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Table C.3: List of choice tasks from Noussair et al. (2014)

Task Order Option B Option A

Riskav 1 2 20 [65, 5]

Riskav 2 2 25 [65, 5]

Riskav 3 2 30 [65, 5]

Riskav 4 2 35 [65, 5]

Riskav 5 2 40 [65, 5]

Prud 1 3 [90 + [20,−20], 60] [90, 60 + [20,−20]]

Prud 2 3 [90 + [10,−10], 60] [90, 60 + [10,−10]]

Prud 3 3 [90 + [40,−40], 60] [90, 60 + [40,−40]]

Prud 4 3 [135 + [30,−30], 90] [135, 90 + [30,−30]]

Prud 5 3 [65 + [20,−20], 35] [65, 35 + [20,−20]]

Temp 1 4 [90 + [30,−30], 90 + [30,−30]] [90, 90 + [30,−30] + [30,−30]]

Temp 2 4 [90 + [30,−30], 90 + [10,−10]] [90, 90 + [30,−30] + [10,−10]]

Temp 3 4 [90 + [30,−30], 90 + [50,−50]] [90, 90 + [30,−30] + [50,−50]]

Temp 4 4 [30 + [10,−10], 30 + [10,−10]] [30, 30 + [10,−10] + [10,−10]]

Temp 5 4 [70 + [30,−30], 70 + [30,−30]] [70, 70 + [30,−30] + [30,−30]]

List of choice tasks from Noussair et al. (2014). [x, y] indicates a lottery with chances 50:50 of getting either

x or y. The first column refers to the corresponding name of the task from the data source. Choice of option

B indicates risk aversion, prudence and temperance for the 2nd, 3rd and 4th order respectively.

Appendix D Simulations

In this appendix, we describe two extensive Monte Carlo simulation exercises and report their re-

sults. The scope of the simulations is two-fold. First, we want to confirm that the statistical method

employed in the paper is able to identify the different model specifications as well as to discrimi-

nate among them. Second, we want to confirm that the tasks selected in the new experiment are

useful to empirically estimate and classify subjects across the alternative choice models.
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D.1 Simulation 1: Assessment of the econometric method

The objective of the first simulation exercise is to explore whether the statistical method employed

here can successfully identify and discriminate among the different model specifications using

the experimental designs analysed in this paper, and the model selection method we are using to

classify subjects, i,e, calculation of the Bayes Factor based on the Marginal Log-Likelihood. The

Bayes factor is known to balance the quality of the fit versus the model complexity, and it therefore,

rewards highly predictive models and penalises models with “wasted” parameter space.

We define a specification as the combination of a decision model and a reference point. We

have 2 decision models (M and CPT) and three reference points (SQ, AP and MaxMin), giving

a total of 6 specifications. Depending on the value of the parameters of some of those specifi-

cations, EUT is nested within them. The simulation follows a number of steps. For each of the

six specifications, and for a given set of choice tasks, we assume a set of behavioural parameters

and we generate an artificial dataset consisting of the choices of 100 subjects. We subsequently

run a cross-estimation exercise where all the specifications are used to estimate that dataset. For

each iteration, we check whether it is possible to identify the data generating specification and

recover the behavioural parameters that generated the simulated dataset. We repeat this process

100 times. For the set of behavioural parameters, we used values that fall within a range that can

be considered as representative for the utility curvature, the probability weighting and the preci-

sion (noise) (see Scholten and Read, 2014; Noussair et al., 2014, Abdellaoui et al. 2021). We have

repeated the simulation exercise for various levels of noise and the results reported below remain

qualitatively identical. Here we report the results of a medium value of the parameter ϕ that is

usually observed empirically.

The values of the parameters for all the specifications are listed in Table D1. Following the

assumptions of the Hierarchical Bayesian modeling, for each iteration of the simulation, the pa-

rameters of the individual subjects are drawn from a Normal distribution centered around the

true parameter values. Finally, for the set of choice tasks we are using the lotteries from DS10.

The reason behind this choice is that, from all the experimental data we analyse and report in

this study, the experimental design of DS10 is the less informative one as far as our objective to

estimate parametric models is concerned. In particular, DS10 includes only 10 pairwise choices (6

tasks for third order and 4 tasks for fourth order risk preferences) and therefore, it is expected to
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be the most challenging dataset in terms of identification and estimation of the models.

Table D2 reports the mean aggregate absolute value of the Log-Marginal Likelihood for all the

36 cross-specification combinations. The specifications across the rows represent the true DGP,

while the specifications across the columns represent the estimated ones. For instance, in the first

row, the DGP is M/SQ and the entry in each cell of that row is the average value of the marginal

likelihood when the corresponding column model is the estimated one. Across the diagonal is

when the true and the estimated models coincide. Hence, if identification is feasible, one would

expect the entry on the diagonal to be the smallest number for each of the rows (here a lower

value of the likelihood indicates a better fit of the model). This pattern is confirmed in Table D2.

In every row, the diagonal element is always the minimum, confirming that, on average, the true

DGP is identified. This evidence suggests that the different specifications are not observationally

indistinguishable.

Table D3 reports the pairwise comparison of specifications based on the value of the Bayes

Factor. Again, the specification in the rows represent the true DGP, and the ones in the columns

the estimated one. For example, in the first row, where M/SQ is the the DGP, the number of times

the M/SQ was classified as the best model when each of the other specifications was assumed,

is reported. As expected, the diagonal element is always 0 as the Bayes Factor is 1. Then, for

instance, when M/SQ is compared to M/AP, the former was identified as the best model for each

of the simulations, while when M/SQ was compared to CTP/SQ, the model was classified best in

93% of the simulations. Overall, it appears that, on average, the true DGP can be identified with

confidence.

Finally, we examine whether the value of the parameters can be successfully recovered. Tables

D4-D9 report the median estimates from this cross-estimation exercise. Following the standard

practice, we have constrained the upper bounds of the parameters. For the M model, we have

set the upper bound of α to 0.1, of η to 2 and λ to 5. For the CPT model, we have set the upper

bound of α and γ to 2, and λ to 5. For example, Table D4 reports the estimates when the true

DGP is M/SQ and each of the six model specifications has been employed to estimate the dataset.

The results of this table show that the recovered values are quite close to the true ones (0.041

for parameter α compared to the true value of 0.05, and 1.193 for the η parameter compared to

the true value of 1.200). However, when a different model specification is estimated, we obtain
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parameter estimates that differ substantially from the true ones. For example, α = 0.000 and

η = 1.945 in the case of M/AP, and α = 0.098, almost twice the true value, and η = 1.507 in

the case of M/MaxMin. Similarly, when CPT is estimated, we obtain large estimates for both the

probability weighting function and the utility curvature, with γ > 1 implying over-weighting of

all probabilities, or α > 1 implying risk seeking behaviour. A similar pattern is observed for the

remaining 5 cases.

Table D.1: Simulation parameters

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.050 0.050 0.050 - - -

β - 0.040 0.040 - - -

M η 1.200 1.200 1.200 - - -

λ - 1.500 1.500 - - -

ϕ 5.000 5.000 5.000 - - -

α - - - 0.750 0.750 0.750

CPT γ - - - 0.650 0.650 0.650

λ - - - - 1.500 1.500

ϕ - - - 5.000 5.000 5.000

Notes: The Table reports the true values of the simulation parameters. M stands for the Markowitz model,

CPT for the Cumulative Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP

the average payout and MAXMIN the MAXMIN.

11



Table D.2: Log-Marginal Likelihoods

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

M/SQ 1128.58 1144.20 1141.75 1133.49 1137.59 1140.95

M/AP 1073.87 944.37 1121.19 1227.78 989.25 1006.08

M/MAXMIN 1254.54 1082.97 1061.93 1261.80 1269.86 1280.56

CPT/SQ 897.99 900.45 893.32 868.38 874.84 875.59

CPT/AP 1231.10 1152.59 1196.50 1114.32 1091.59 1112.84

CPT/MAXMIN 748.36 750.62 721.12 707.06 709.45 692.17

Notes: The Table reports the mean aggregate Log-Marginal Likelihood for all the 36 possible combinations

between true and assumed models based on 100 simulations. The row specification is the true data gener-

ating process ,while the column specification is the estimated one. M stands for the Markowitz model, CPT

for the Cumulative Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the

average payout and MAXMIN the MAXMIN.

Table D.3: Classification based on Bayes Factor

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

M/SQ 0 100 100 93 100 100

M/AP 100 0 100 100 100 100

M/MAXMIN 100 100 0 100 100 100

CPT/SQ 100 100 100 0 100 100

CPT/AP 100 100 100 93 0 88

CPT/MAXMIN 100 100 100 94 100 0

Notes: The Table reports frequency with which each row model is classified better than each column model,

based on the value of the Bayes Factor. The row specification is the true data generating process ,while the

column specification is the estimated one. M stands for the Markowitz model, CPT for the Cumulative

Prospect Theory model. For the reference points, SQ indicates the Status Quo, AP the average payout and

MAXMIN the MAXMIN.

12



Table D.4: Estimates when M/SQ is the true DGP

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.041 0.000 0.098 - - -

s.d. 0.019 0.000 0.006 - - -

β - 0.098 0.005 - - -

s.d. - 0.012 0.006 - - -

M η 1.193 1.945 1.507 - - -

s.d. 0.211 0.129 0.358 - - -

λ - 0.44 1.147 - - -

s.d. - 0.574 0.251 - - -

ϕ 7.886 1.945 1.507 - - -

s.d. 7.996 0.129 0.358 - - -

α - - - 0.811 1.938 1.918

s.d. - - - 0.076 0.092 0.188

CPT γ - - - 0.989 1.288 1.054

s.d. - - - 0.102 0.199 0.06

λ - - - - 0.248 2.353

s.d. - - - - 0.308 1.175

ϕ - - - 22.954 0.137 0.06

s.d. - - - 3.572 0.044 0.044

Notes: The row specification is the true data generating process ,while the column specification is the

estimated one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For

the reference points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN.
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Table D.5: Estimates when M/AP is the true DGP

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.000 0.052 0.005 - - -

s.d. 0.000 0.037 0.001 - - -

β - 0.030 0.048 - - -

s.d. - 0.018 0.031 - - -

M η 2.000 1.240 1.127 - - -

s.d. 0.000 0.201 0.277 - - -

λ - 1.716 0.900 - - -

s.d. - 0.857 0.412 - - -

ϕ 0.179 1.240 1.127 - - -

s.d. 0.021 0.201 0.277 - - -

α - - - 1.126 1.515 0.998

s.d. - - - 0.018 0.126 0.068

γ - - - 2.000 1.612 0.921

s.d. - - - 0.000 0.132 0.052

CPT λ - - - - 2.877 0.717

s.d. - - - - 0.265 0.279

ϕ - - - 0.402 0.421 15.198

s.d. - - - 0.056 0.134 5.142

Notes: The row specification is the true data generating process ,while the column specification is the

estimated one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For

the reference points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN.
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Table D.6: Estimates when M/MAXMIN is the true DGP

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.001 0.026 0.042 - - -

s.d. 0.000 0.003 0.015 - - -

β - 0.001 0.025 - - -

s.d. - 0.000 0.022 - - -

M η 2.000 2.000 1.141 - - -

s.d. 0.000 0.000 0.102 - - -

λ - 0.266 1.322 - - -

s.d. - 0.031 0.240 - - -

ϕ 0.022 2.000 1.141 - - -

s.d. 0.001 0.000 0.102 - - -

α - - - 1.277 1.845 1.016

s.d. - - - 0.064 0.023 0.127

CPT γ - - - 1.337 2.000 0.994

s.d. - - - 0.489 0.000 0.106

λ - - - - 1.466 0.899

s.d. - - - - 0.110 0.613

ϕ - - - 3.860 0.102 13.475

- - - 2.827 0.020 7.582

Notes: The row specification is the true data generating process ,while the column specification is the

estimated one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For

the reference points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN.
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Table D.7: Estimates when CPT/SQ is the true DGP

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.018 0.001 0.090 - - -

s.d. 0.001 0.003 0.030 - - -

β - 0.041 0.023 - - -

s.d. - 0.045 0.015 - - -

M η 2.000 1.758 1.009 - - -

s.d. 0.005 0.214 0.031 - - -

λ - 0.238 3.273 - - -

s.d. - 0.226 1.306 - - -

ϕ 0.812 1.758 1.009 - - -

s.d. 0.065 0.214 0.031 - - -

α - - - 0.819 1.120 0.970

s.d. - - - 0.192 0.159 0.067

CPT γ - - - 0.659 0.598 0.546

s.d. - - - 0.166 0.235 0.299

λ - - - - 1.357 1.867

s.d. - - - - 1.088 0.512

ϕ - - - 5.186 17.322 5.222

- - - 5.265 34.880 6.240

Notes: The row specification is the true data generating process ,while the column specification is the

estimated one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For

the reference points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN.
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Table D.8: Estimates when CPT/AP is the true DGP

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.011 0.043 0.032 - - -

s.d. 0.000 0.045 0.003 - - -

β - 0.001 0.000 - - -

s.d. - 0.002 0.000 - - -

M η 1.092 1.539 1.062 - - -

s.d. 0.007 0.300 0.022 - - -

λ - 2.937 1.128 - - -

s.d. - 1.659 0.015 - - -

ϕ 14.356 1.539 1.062 - - -

s.d. 0.243 0.300 0.022 - - -

α - - - 1.219 0.724 0.991

s.d. - - - 0.084 0.154 0.063

CPT γ - - - 0.943 0.596 0.755

s.d. - - - 0.049 0.203 0.313

λ - - - - 1.366 0.846

s.d. - - - - 0.850 0.104

ϕ - - - 4.805 8.684 10.476

- - - 2.675 17.958 5.949

Notes: The row specification is the true data generating process ,while the column specification is the

estimated one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For

the reference points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN.
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Table D.9: Estimates when CPT/MAXMIN is the true DGP

M/SQ M/AP M/MAXMIN CPT/SQ CPT/AP CPT/MAXMIN

α 0.020 0.000 0.100 - - -

s.d. 0.001 0.000 0.000 - - -

β - 0.011 0.033 - - -

s.d. - 0.022 0.015 - - -

M η 2.000 1.460 1.000 - - -

s.d. 0.000 0.258 0.000 - - -

λ - 0.617 1.824 - - -

s.d. - 0.245 0.669 - - -

ϕ 1.242 1.460 1.000 - - -

s.d. 0.110 0.258 0.000 - - -

α - - - 0.845 1.217 0.800

s.d. - - - 0.065 0.108 0.088

CPT γ - - - 0.788 0.619 0.631

s.d. - - - 0.050 0.086 0.249

λ - - - - 2.825 1.449

s.d. - - - - 0.623 0.128

ϕ - - - 9.837 1.719 5.625

- - - 4.366 2.094 4.083

Notes: The row specification is the true data generating process ,while the column specification is the

estimated one. M stands for the Markowitz model, CPT for the Cumulative Prospect Theory model. For

the reference points, SQ indicates the Status Quo, AP the average payout and MAXMIN the MAXMIN.

D.2 Simulation 2: Tasks in the new experiment

The objective of the second simulation is to assist with the selection of choice tasks to use in our

experiment. The selection of the experimental tasks is based on four criteria. First, we selected
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lottery pairs that generated different choices across the two decision models for the majority of a

wide range of model parameter values. Second, we include in the experiment choice tasks with a

significant probabilistic information content. That is, for increased levels of noise in the stochastic

component of choice, and for a given set of parameters, we kept those tasks that would predict

choice probability in favour of a lottery of at least 60%. Third, the lottery pairs selected need to

provide enough information to satisfactorily recover the parameters of the DGP. Fourth, the choice

tasks selected should have discriminatory power between the two models based on the value of

the pairwise Bayes Factor.

This simulation is focused on the SQ reference point because is the one we endeavoured to im-

plement through experimental procedure as described in Section 5. Like we did in simulation 1,

we simulate data from an either M or CPT specification, and estimate those datasets with the two

possible specifications. Table D10 reports the mean aggregate absolute value of the Log-Marginal

Likelihood for all the 4 cross-specification combinations. The specifications across the rows repre-

sent the true data generating specification, while the specifications across the columns represent

the estimated ones. If the method correctly identifies the model, the diagonal element should be

the lowest in each row, which is the case in our simulation. In addition, we find that the true DGP

specification is identified 100% of the times based on the value of the Bayes Factor. Finally, Tables

D11 and D12 report the parameters that have been recovered in the estimations of the simulations.

The estimates are close to the true values when the DGP coincides with the assumed specification.

When the true DGP is M/SQ, the parameter in the CPT value function is close to unity, suggest-

ing linear utility and probability distortion. When the true DGP is CPT/SQ, parameter η in the

expo-power function is unity which would suggest an EUT model with exponential utility rather

than the M model of utility.
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Table D.10: Log-Marginal Likelihood

M/SQ CPT/SQ

M/SQ 1487.205 3662.528

CPT/SQ 1392.478 1260.302

Notes: The Table reports the mean aggregate Log-Marginal Likelihood for all the four possible combina-

tions between true and assumed models based on 100 simulations. The row model is the true data gen-

erating process ,while the column model is the assumed model. M/SQ stands for the Markowitz model

with Status Quo reference point, CPT for the Cumulative Prospect Theory model with Status Quo reference

point.

Table D.11: Estimates when M/SQ is the true DGP

Parameter M/SQ Parameter CPT/SQ

α 0.049 α 0.989

s.d. 0.004 s.d. 0.010

η 1.161 γ 0.645

s.d. 0.041 s.d. 0.025

ϕ 3.915 ϕ 4.954

s.d. 0.839 s.d. 0.527

Notes: The row specifications represent the true data generating process and the column ones the assumed

specification. M/SQ stands for the Markowitz model with Status Quo reference point, CPT for the Cumu-

lative Prospect Theory model with Status Quo reference point.
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Table D.12: Estimates when CPT/SQ is the true DGP

Parameter M/SQ Parameter CPT/SQ

α 0.093 α - 0.753

s.d. 0.003 s.d. - 0.032

η 1.001 γ - 0.658

s.d. 0.003 s.d. - 0.020

ϕ 9.227 ϕ - 3.168

s.d. 0.036 s.d. - 0.360

Notes: The row specifications represent the true data generating process and the column ones the assumed

specification. M/SQ stands for the Markowitz model with Status Quo reference point, CPT for the Cumu-

lative Prospect Theory model with Status Quo reference point.

Appendix E Screenshot

Figure E.1: Screenshot of the experimental interface
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