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A Theoretical model

This section outlines the formal theoretical model and discusses the identification of preferences

given driver behavior. The section begins by focusing on the axiomatic foundations for driver

behavior, given the officer’s choice of monitoring (mA,mB and m = mA + mB). The following

section establishes the equilibrium of the game.

Let UObs(X,mA,mB) denote the driver’s utility of choosing strategy X ∈ {A,B,C} when mon-

itoring is fully observable, and UUnobs(X,m) denote utility in the case where only m is observable.1

For convenience, and without loss of generality, we normalize the utility of choosing C to be 50 for

all levels of monitoring (i.e. UObs(C,mA,mB) = UUnobs(C,m) = 50 for all ma,mb,m).

The first assumption, Monotonicity, implies that driver utility is decreasing in monitoring levels.

In particular, in the observed case, the utility from choosing road A (B) is decreasing in mA (mB).

In the unobserved case, the utility of choosing either A or B is decreasing in the sum of monitoring

across the two roads.

Definition 1 (Monotonicity – observable monitoring).

For all mB ∈ [0, 0.9], mA < m′A ⇒ UObs(A,mA,mB) > UObs(A,m′A,mB); and for all mA ∈
[0, 0.9], mB < m′B ⇒ UObs(B,mA,mB) > UObs(B,mA,m

′
B).

Definition 2 (Monotonicity – unobservable monitoring).

m < m′ ⇒ UUnobs(A,m) > UUnobs(A,m′) and UUnobs(B,m) > UUnobs(B,m′).

The second assumption, Symmetry, has two components. In the observed case, it ensures that

the utility of choosing one road is not affected by the monitoring level on the other road, that road

A and B are treated symmetrically, and that the driver is indifferent between speeding and not

speeding when monitoring on a given road is observed to be 0.4. In the unobserved case it ensures

that the utility of road A and road B are always equal, and that the utility depends only on the

sum of the monitoring across the two roads.

Definition 3 (Symmetry – observable monitoring).

For all m′,mA,mB ∈ [0, 0.9], UObs(A,m′,mB) = UObs(B,mA,m
′); and for all mA,mB,

UObs(A, 0.4,mB) = UObs(B,mA, 0.4) = 50.

Definition 4 (Symmetry – unobservable monitoring).

m = m′ ⇒ UUnobs(A,m) = UUnobs(B,m′).

1The axiomatic structure is not dependent on whether the driver payoff is probabilistic or not, and therefore we

do not introduce additional notation to make this distinction here.
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The Non-triviality assumption is straightforward.

Definition 5 (Non-triviality).

UObs(A, 0, 0) > UObs(C, 0, 0); UObs(A, 0.9, 0.9) < UObs(C, 0.9, 0.9); UUnobs(A, 0) > UUnobs(C, 0);

and UUnobs(A, 1.8) < UUnobs(C, 1.8).

Notice that Non-triviality follows immediately from Monotonicity and Symmetry when I = Obs

but imposes weak additional restrictions when I = Unobs. Practically, Non-triviality ensures that

when monitoring is maximal the driver always prefer C and when monitoring is minimal the driver

will never prefer C.

Further, continuity of the utility function implies that there exists a value of mt ∈ (0, 1.8) such

that UUnobs
t (A,mt) = UUnobs

t (B,mt) = UUnobs
t (C,mt). That is, there exists a level of monitoring

that induces indifference in the driver.

Lemma 1, presented in the main text, provides the best response correspondence for drivers.

The proof of Lemma 1 is presented below, and makes use of the definitions above.

Proof of Lemma 1. For the case where I = Obs, the final row follows directly from symmetry. The

three preceding rows each follow from the final row after applying monotonicity. The third row

follows from rows four, six and monotonicity. The second row follows from rows four and five and

monotonicity. The first row follows from rows five, six and monotonicity.

For the case where I = Unobs, the existence of m is guaranteed by non-triviality and continuity

of the utility function. The first row then follows from the third row and monotonicity, and the

second row follows from the third row, monotonicity and symmetry.

The indifference point for the driver, m, provides a measure of the uncertainty preferences of

the driver. To see this, consider first an EU agent in the EV treatment. In this treatment, choosing

C provides a sure payoff of 50 points. Note also that given total monitoring, m, the expected value

of choosing A or B is 90 − 100m
2 points. When facing monitoring level of exactly m the driver

subjectively considers the prospect of choosing A or B to have a certainty equivalent of 50 points.

For the case where m > 0.8 the expected value of choosing A or B is less than 50 and, therefore,

less than the certainty equivalent of choosing A or B. The driver is, by definition, risk seeking in

this case. By a similar argument, the driver is risk neutral when m = 0.8 and risk averse when

m < 0.8.

For the Prob treatment the logic is the same. In this case, however, C provides a lottery that
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pays 100 points with probability 0.5 (and nothing otherwise). When facing monitoring level of

exactly m the driver subjectively considers the prospect of choosing A or B to have a probability

equivalent of 1
2 . For the case where m > 0.8 the expected probability of earning 100 points when

choosing A or B is less than 1
2 and, therefore, less than the probability equivalent of choosing A or

B. The driver is, by definition, uncertainty seeking in this case. By a similar argument, the driver

is uncertainty neutral when m = 0.8 and uncertainty averse when m < 0.8. Further, if we assume

that the driver has Expected Utility preferences over risk, then we can, in the Prob treatment,

identify uncertainty aversion with ambiguity aversion.

We summarize this intuition in the lemmas below, using the smooth ambiguity aversion func-

tional form to illustrate the role of ambiguity in our experimental design. To distinguish between

the Prob and EV treatments we introduce an additional piece of notation, mt, which denotes the

driver’s indifference point in treatment t ∈ {Prob,EV}. An empirical analysis of the effects of

non-EU risk preferences (i.e. non-linear probability weighting) is found in Section A.1, concluding

that non-EU risk preferences can only generate small deviations of m from 0.8.

Lemma 1. If a driver has Expected Utility preferences that satisfy Symmetry, then mProb = 0.8.

If, in addition, the driver is

� risk neutral, then mEV = 0.8;

� risk averse, then mEV < 0.8;

� risk seeking, then mEV > 0.8.

Proof of Lemma 1. The driver knows that mA +mB = m and assume that the driver believes the

distribution of mA has probability density function µ(x). Further, suppose that the driver has

expected utility preferences with Bernoulli utility function u(·). Definition 3 implies that µ(x) is

symmetric (i.e. µ(x) = µ(m− x) for x ≤ m
2 ). Then, in the Prob treatment the expected utility of

the driver playing A is given by:

EU(A) =

∫ m

0

[
u(100)(0.9− x) + u(0)(0.1 + x)

]
µ(x)dx

= u(100)
[ ∫ m

0
0.9µ(x)dx−

∫ m

0
xµ(x)dx

]
+ u(0)

[ ∫ m

0
0.1µ(x)dx+

∫ m

0
xµ(x)

]
= u(100)[0.9− m

2
] + u(0)[0.1 +

m

2
]
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where the third line has used the symmetry assumption. The expected utility of B is calculated

similarly, and EU(C) = u(100)+u(0)
2 . Clearly, EU(A) = EU(B) = EU(C) when m = 0.8.

In the EV treatment, the expected utility of the driver playing A is given by:

EU(A) =

∫ m

0
u(100(0.9− x))µ(x)dx

and note also that the expected value of playing A is given by EV (A) = 100(0.9 − m
2 ). If the

driver is risk averse then EU(A) ≤ u(EV (A)). At m = 0.8, EV (A) = EV (C) and u(EV (C)) =

u(C) because C generates a fixed payment. Therefore, if the driver is risk averse then EU(A) ≤
u(C), so that m ≤ 0.8. The opposite conclusion holds if the driver is risk seeking.

Before presenting Lemma 2, we provide a brief introduction to the smooth ambiguity model

(Klibanoff et al., 2005) in the context of our game. In the smooth ambiguity model preferences are

represented by a double expectational form, where the inner expectation is taken with respect to

objective uncertainty and the outer expectation with respect to subjective uncertainty. When mA

and mB are observable to the driver, I = Obs, there is no subjective uncertainty and the smooth

ambiguity model collapses to expected utility. We therefore focus on the case where mA and mB

are unobservable, I = Unobs, where we can write the driver’s utility from choosing A as

U(A) =

∫
φ

(
u(100)[0.9−mA] + u(0)[0.1 +mA]

)
dµ(mA)

in the Prob treatment where u is a Bernoulli utility function, µ(mA) is the agent’s subjective

belief regarding the distribution of mA, and φ is a mapping from R to R that encapsulates ambiguity

preferences. The utility of choosing C can be expressed as

U(C) = u(100)[0.5] + u(0)[0.5]

because C involves no subjective uncertainty. Notice that normalizing u(100) = 100 and u(0) =

0 is consistent with our previous normalization that U(C) = 50. Applying this normalization to

the utility of choosing A, U(A), we have

U(A) =

∫
φ
(
100[0.9−mA]

)
dµ(mA). (1)
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Equation 1 is independent of the curvature of the utility function, u. Intuitively utility in the

Prob treatment is independent of risk preferences because there are only two possible outcomes.

Uncertainty preferences in the Prob treatment are, therefore, entirely determined by the curvature

of φ, the ambiguity preferences of the agent.

This does not hold in the EV treatment where the utility of choosing A is given by

U(A) =

∫
φ
(
u(100[0.9−mA])

)
dµ(mA).

in this case, the utility of A, and aggregate uncertainty preferences are determined by both the

curvature of u and φ.

Lemma 2. Assume that the driver has risk neutral “smooth” ambiguity preferences (Klibanoff

et al., 2005) that satisfy Symmetry. If, in addition, the driver is

� ambiguity neutral, then mt = 0.8;

� ambiguity averse, then mt < 0.8;

� ambiguity seeking, then mt > 0.8.

for t ∈ {EV,Prob}.

Proof of Lemma 2. The driver knows that mA +mB = m and assume that the driver believes the

distribution of mA has probability density function µ(x). Further, suppose that the driver has

smooth ambiguity preferences with Bernoulli utility function u(c) = c. Definition 3 implies that

µ(x) is symmetric (i.e. µ(x) = µ(m − x) for x ≤ m
2 ). The utility of choosing A is therefore given

by:

U(A) =

∫
φ
(
u(100)[0.9−mA] + u(0)[0.1 +mA]

)
dµ(mA)

=

∫
φ
(
100[0.9−mA]

)
dµ(mA)

Note that the expected value of playing A is given by EV (A) = 100(0.9 − m
2 ). If φ is linear

(i.e. the driver is ambiguity neutral) then U(A) = EV (A). If φ is concave (i.e. the driver is

ambiguity averse) then U(A) ≤ EV (A) and if φ is convex (i.e. the driver is ambiguity seeking)

then U(A) ≥ EV (A). At m = 0.8, EV (A) = EV (C) and U(EV (C)) = U(C) because C generates a

6



fixed payment. Therefore, if the driver is ambiguity averse and U(A) ≤ EV (A) then U(A) ≤ U(C),

so that m ≤ 0.8. The opposite conclusion holds if the driver is ambiguity seeking.

A.1 The effects of non-linear probability weighting

So far, we have assumed Expected Utility over risk. In this section we consider the effect of

non-linear probability weighting on the driver’s indifference point, m. The overall conclusion of

this section is that, for realistic amounts of curvature, probability weighting has only a small

effect on m. Therefore, substantial deviations from m = 0.8 in the Prob treatment must be

generated by non-neutral ambiguity preferences. We reach this conclusion by simulating m for

a hypothetical driver with linear utility function and Prelec probability weighting function (with

parameter 0.4 < α < 1.2). We assume that the hypothetical driver has beliefs that are consistent

with the true distribution of monitoring levels in the Prob treatment of our experiment.

Figure 1: The effects of probability weighting on the driver’s indifference point, m. We assume that driver’s preferences

satisfy Rank Dependent Expected Utility with Prelec weighting function w(p) = e−(− ln(p))α , and plot m as a function

of α. Expected Utility is the special case of α = 1.

To estimate the empirical distribution of monitoring levels, in the unobserved case, we consider

the distribution of m̂A = mA
m in the data, and in doing so we restrict our attention to the middle 80%

of observations of total monitoring (that is, observations with 0.13 < m < 1.33).2 In approximately

2When monitoring is above, or below, this level the level of total monitoring is so far away from the driver’s

indifference point that we do not expect the distribution of monitoring in this region to affect beliefs near the

indifference point.
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20% of rounds (139 out of 694) we observe m̂A = 0.5, and in approximately 25% of rounds (171 out

of 694) we observe either m̂A = 0 or m̂A = 1. For the remaining observations, m̂A is approximately

normally distributed with mean 0.5 and standard deviation 0.2.

In our simulations, therefore, we assume that the driver has beliefs over m̂A that follow a

mixture distribution that places weight of 0.2 on m̂A = 0.5, 0.125 on m̂A = 0, 0.125 on m̂A = 1,

and is otherwise governed by a normal distribution N(0.5, 0.2) that is truncated at 0 and 1. Given

this belief distribution we calculate, via numerical simulation, the indifference point for a driver

with Rank Dependent Expected Utility preferences with u(x) = x and w(p) = e−(− ln(p))α for

0.4 < α < 1.2.3 Notice that α = 1 recovers the standard case of Expected Utility.

As can be seen from Figure 1, the effect of probability weighting on m is minor. Recall that an

Expected Utility agent will have m = 0.8 in the Prob treatment, and note that even at the rather

extreme value of α = 0.4 we estimate that m increases to only 0.85. At more realistic values of α

the effect is even smaller, with m ≈ 0.83 at α = 0.7 and m ≈ 0.82 at α = 0.8.

B Complete equilibrium characterization

This section provides a complete equilibrium characterization. Because the equilibrium structure,

and proof thereof, are the same for the Prob and EV treatments, we suppress the treatment notation

in what follows.

As stated in Section 3 of the main text the officer’s strategy can be summarized by the

vector M = (m,mA,mB, I) and the driver’s strategy can be summarized by the pair of func-

tions DObs : [0, 0.9]2 → {A,B,C} and DUnobs : [0, 1.8] → {A,B,C}. In some cases, when the

choice of information strategy is clear, we abuse notation and shorten the officer’s strategy to

M = (m,mA,mB).

We impose the following technical assumption on the driver’s strategy.

Assumption 1. Either the set {(x, y) : DObs(x, y) = C} is closed, or the set {(x, y) : DObs(x, y) ∈
{A,B}} is closed.

This assumption rules out several pathological driver strategies including, for example, the case

where D(0.4, y) = C if y > 0.4 is rational and D(0.4, y) = A if y > 0.4 is irrational. Recall that

each choice of m and I defines the start of a new subgame, and we use subgame perfect Nash

3The range of α was chosen to be consistent with a similar robustness exercise in Baillon and Placido (2019).
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equilibrium to solve the game.

Proposition 1. In the CrimMin treatment in the subgame where I = Obs, if M and DObs form

an equilibrium then M = (0.8, 0.4, 0.4) and DObs(0.4, 0.4) = C.

In the RevMax treatment in the subgame where I = Obs, if M and DObs form an equilibrium

then M = (0.8, 0.4, 0.4) and DObs(0.4, 0.4) ∈ {A,B}.

Proof. We begin with the CrimMin case. Subgame perfection requires thatD(mA,mB) is consistent

with Lemma 1. If, in addition, D(0.4, 0.4) = C, then it follows immediately that the officer’s best

response is M = (0.8, 0.4, 0.4). Therefore there exists an equilibrium with M = (0.8, 0.4, 0.4) and

D(0.4, 0.4) = C. To show that there are no other equilibrium, we consider two cases. First, if

the set of (x, y) values such that D(x, y) = C is closed then any best response function for the

driver satisfies D(0.4, 0.4) = C. Second, if the set of (x, y) values such that D(x, y) ∈ {A,B} is

closed then the set of (x, y) such that D(x, y) = C is open from below. There does not exist a best

response for the officer who seeks to minimize mA +mB subject to D(mA,mB) = C and, therefore,

no equilibrium exists.

We continue with the RevMax case. Subgame perfection requires that D(mA,mB) is consistent

with Lemma 1. If, in addition, D(0.4, 0.4) ∈ {A,B}, then it follows immediately that the officer’s

best response is M = (0.4, 0.4). Therefore there exists an equilibrium with M = (0.8, 0.4, 0.4) and

D(0.4, 0.4) ∈ {A,B}. To show that there are no other equilibrium, we consider two cases. First, if

the set of (x, y) values such that D(x, y) ∈ {A,B} is closed then any best response function for the

driver satisfies D(0.4, 0.4) ∈ {A,B}. Second, if the set (x, y) of values such that D(m,x, y) = C is

closed then the set of (x, y) such that D(x, y) ∈ {A,B} is open from above. There does not exist a

best response for the officer who seeks to maximize min{mA,mB} subject to D(mA,mB) ∈ {A,B}
and, therefore, no equilibrium exists.

Proposition 2. In the CrimMin treatment with I = Unobs, if M and DUnobs form an equilibrium

then M = (m,mA,mB) and DUnobs(m) = C with m as defined in Lemma 1.

In the RevMax treatment with I = Unobs, if M and DUnobs form an equilibrium then M =

(m,mA,mB) and DUnobs(m) ∈ {A,B} with m as defined in Lemma 1.

Proof. We begin with the CrimMin case. Subgame perfection requires that D(m,mA,mB) is

consistent with Lemma 1. If, in addition, D(m) = C, then it follows immediately that the officer’s

best response is any mA and mB such that mA +mB = m. Therefore there exists an equilibrium

with M = (m,mA,mB) and D(m) = C. To show that there are no other equilibrium consider
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the case where D(m) ∈ {A,B}. There does not exist a best response for the officer who seeks to

minimize mA +mB subject to D(mA +mB) = C and, therefore, no equilibrium exists.

We continue with the RevMax case. Subgame perfection requires that D(m) is consistent with

Lemma 1. If, in addition, D(m) ∈ {A,B}, then it follows immediately that the officer’s best

response is any mA and mB such that mA +mB = m. Therefore there exists an equilibrium with

M = (m,mA,mB) and D(m) ∈ {A,B}. To show that there are no other equilibrium consider the

case where D(m) = C. There does not exist a best response for the officer who seeks to maximize

min{mA,mB} subject to D(min{mA,mB}) ∈ {A,B} and, therefore, no equilibrium exists.

Clearly in the case of endogenous information the officer will select I ∈ {Obs,Unobs}, condi-

tional on the driver’s uncertainty preferences, to maximize her payoff.

Proposition 3. In the CrimMin treatment, there are three classes of equilibrium:

� if m < 0.8, then I∗ = Unobs and M∗ = (m,mA,mB) and D∗Unobs(m) = C in every equilib-

rium.

� if m = 0.8, then I∗ = Unobs and M∗ = (0.8,mA,mB) and D∗Unobs(0.8) = C or I∗ = Obs

and M∗ = (0.8, 0.4, 0.4) and D∗Obs(0.4, 0.4) = C in every equilibrium.

� if m > 0.8, then I∗ = Obs and M∗ = (0.8, 0.4, 0.4) and D∗Obs(0.4, 0.4) = C in every equilib-

rium.

In the RevMax treatment, there are three classes of equilibrium:

� if m < 0.8, then I∗ = Obs and M∗ = (0.8, 0.4, 0.4) and D∗Obs(0.4,0.4) ∈ {A,B} in every

equilibrium.

� if m = 0.8, then I∗ = Unobs and M∗ = (0.8,mA,mB) and D∗Unobs(0.8) ∈ {A,B} or I = Obs

and M = (0.8, 0.4, 0.4) and DObs(0.4, 0.4) ∈ {A,B} in every equilibrium.

� if m > 0.8, then I∗ = Unobs and M∗ = (m,mA,mB) and D∗Unobs(m) ∈ {A,B} in every

equilibrium.

Proof. Follows immediately from Proposition 1 and Proposition 2.
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C Supplementary Results

This section documents the demographics of our subjects, and shows that our main results are

robust to demographic controls. Table 1 displays the mean values of our demographic variables by

treatment. There is little variation in demographics across treatments. The largest difference is the

difference in gender composition of Officers (36% female) and Drivers (53% female) within the Prob

treatment, although this difference is not statistically significant at standard levels of significance

(p = 0.08).

Table 2 recreates Table 7 from the main paper, and also includes demographic controls. The

parameter estimates are almost unchanged when demographic controls are included. Further, the

coefficients on the demographic controls are all small in magnitude. For example, the effect of being

an Engineering or Science major, relative to “Other” majors, is equivalent to an increase in the

level of monitoring, V I
i,r(mA,mB), of approximately 0.06 in the EV treatment and 0.07 in the Prob

treatment with observed monitoring. The relative effects are even smaller in the case of unobserved

monitoring (0.01 and 0.02 for the EV and Prob treatments, respectively).

EV treatment Prob treatment

Aggregated Officers Drivers

1(Female) 0.46 0.45 0.36 0.53

(0.50) (0.50) (0.49) (0.50)

1(BusEcMajor) 0.21 0.28 0.25 0.31

(0.41) (0.45) (0.44) (0.47)

1(EngSciMajor) 0.56 0.52 0.58 0.45

(0.50) (0.50) (0.50) (0.50)

1(OtherMajor) 0.24 0.20 0.16 0.24

(0.43) (0.40) (0.37) (0.24)

Age 21.2 21.0 20.8 21.1

(2.2) (3.0) (2.5) (3.6)

Number of Econ Classes 2.0 2.0 1.9 2.1

(2.0) (3.1) (3.3) (2.9)

GPA 3.38 3.44 3.49 3.40

(0.58) (0.62) (0.76) (0.44)

Table 1: Summary of demographic variables by treatment. 1(X) denotes an indicator variable that takes on a value

of 1 if X is true, and 0 otherwise. Values presented are means. Standard errors are in parentheses.
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EV treatment Prob treatment

(1) (2) (3) (4)

Constant −3.94∗∗∗ −4.04∗∗∗ −3.09∗∗∗ −3.42∗∗

(0.41) (0.75) (0.33) (1.20)

1(Obs) −30.77∗∗ −31.47∗∗ −5.80∗∗∗ −5.81∗∗∗

(8.99) (9.29) (1.14) (1.12)

V I
i,r(mA,mB) 9.43∗∗∗ 9.68∗∗∗ 6.00∗∗∗ 6.12∗∗∗

(0.91) (0.92) (0.72) (0.73)

1(Obs)V I
i,r(mA,mB) 77.01∗∗ 78.83∗∗ 14.52∗∗∗ 14.60∗∗∗

(22.28) (23.04) (2.77) (2.70)

1(Female) 0.27 0.20

(0.18) (0.22)

1(BusEcMajor) 0.14 0.05

(0.25) (0.29)

1(EngSciMajor) 0.58∗ 0.42

(0.23) (0.28)

Age -0.02 0.02

(0.03) (0.04)

Number of Econ Classes 0.10 0.08∗

(0.06) (0.04)

GPA 0.02 -0.18

(0.14) (0.23)

Observations 1728 1728 1980 1980

Subjects 72 72 55 55

Table 2: Population average GEE parameter estimates, as shown in Table 7 of the main paper, with robust standard

errors in parentheses. Columns (1) and (3) replicate the main paper, and columns (2) and (4) add demographic

controls. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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D Instructions

The instructions for the Expected Value treatment are reproduced below, followed by the payoff

guide provided to subjects. The instructions for the Probabilistic treatment are very similar, and

are not reproduced below for space reasons.
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Experimental Overview (V2)

You will be participating in an experiment on human decision making. There are two roles in the

experiment: a Worker and a Supervisor. You will play one role for the first half of the experiment,

and then the other role for the remainder of the experiment. Your computer screen indicates which

role you will have in the first half of the experiment. Your computer screen will display useful

information. Remember that the information on your computer screen is private. Please do not

communicate with the other participants at any point during the experiment. If you have any

questions, or need assistance of any kind, raise your hand and the experimenter will come and help

you.

Please switch your phones off and place them away. The only materials you will need for this

experiment are the computer and the calculator in front of you. We will also provide you with

some paper if you wish to take notes.

This experiment will consist of multiple rounds. In each round there will be three tasks. The

choice of the supervisor will affect the payoffs for each of the tasks. The worker will then decide

which of the three tasks to implement. The points earned in each round will be added together and

converted to USD at the end of the experiment at an exchange rate of 100 points = $0.90. You

will also receive, in addition, a $5 show up fee.

Supervisor’s decision

The supervisor will set the values of two variables, OA and OB. The supervisor will input their

decisions using slider bars. To help fine tune your choice, you may click on the slider and then use

the arrow keys to adjust your decision. While the Supervisor is making their decision, the Worker

will see a wait screen. Each variable will take a value between 0 and 0.9, with increments of 0.01.

The variables will affect the payoffs for each of task A, task B and task C as follows.

Effect on worker’s payoffs

The worker will always earn 50 points if task C is implemented.

For task A, the worker’s payoff will decrease as OA increases. If OA = 0, then the worker

earns 90 points. If OA = 0.9, the worker earns 0 points. The rate of decrease is linear, so that

increasing OA by 0.1 reduces the worker’s payoff by 10 points. Equivalently, the formula is given

1
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by WA = 90 − 100OA, where WA is the points earned by the worker.

For task B, the worker’s payoff will decrease as OB increases. If OB = 0, then the worker

earns 90 points. If OB = 0.9, the worker earns 0 points. The rate of decrease is linear, so that

increasing OB by 0.1 reduces the worker’s payoff by 10 points. Equivalently, the formula is given

by WB = 90 − 100OB, where WB is the points earned by the worker.

You may also view the supplemental payoff guide that was given to you as a visual representation

of the payoffs.

Effect on supervisor’s payoffs: Payment scheme 1

There are two payment schemes that will be used for the supervisor.

In payment scheme 1, increases in OA will increase the supervisor’s payoff for task A, but

decrease their payoff for tasks B and C. Increases in OB will increase the supervisor’s payoff for

task B, but decrease their payoff for tasks A and C. The formulas are given by:

SA = 20 + 80OA − 20OB,

SB = 20 − 20OA + 80OB

and

SC = 20 − 20OA − 20OB

where SA, SB and SC are the points earned by supervisor in each task.

Note that if OA and OB are each increased by the same amount, then the supervisor’s payoff

for task A and B increases, and their payoff for task C decreases.

You may also view the supplemental payoff guide that was given to you as a visual representation

of the payoffs.

2
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Effect on supervisor’s payoffs: Payment scheme 2

In payment scheme 2, increases in either OA or OB will decrease the supervisor’s payoff for tasks

A, B and C with the payoff for task C always being larger than either tasks A or B.

SA = 40 − 20OA − 20OB,

SB = 40 − 20OA − 20OB

and

SC = 80 − 20OA − 20OB

where SA, SB and SC are the points earned by supervisor in each task.

You may also view the supplemental payoff guide that was given to you as a visual representation

of the payoffs.

A picture of the Supervisor’s decision screen is shown in figure 1.

The Worker’s decision

In each round the Worker will choose either Task A, Task B, or Task C using a drop down menu.

While the worker is making their decision, the supervisor will see a wait screen. The worker will

only be able to see their payoffs, and not the supervisors payoffs, when making their decision (figure

2).

Information schemes

There will be three information schemes. The information scheme will affect what the worker can

see when making their decision:

1. The Worker can see the exact payoffs of all outcomes at the time they make their decision.

2. The Worker can see only a range of possible payoffs, as described below.

3
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Figure 1: The Supervisor’s decision screen

Figure 2: The Supervisor’s decision screen

4
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3. The Supervisor can decide whether the information scheme is number 1 or number 2.

In information scheme 2, the worker observes a range of possible payoffs for tasks A and B.

The range will be presented as [ min, max ], where min is the smallest possible payoff and max is

the largest possible payoff. The range shown will be the same for task A and task B, but the true

payoffs may differ between task A and task B. The sum of the true payoffs for task A and

task B will always equal the sum of the minimum possible payoff plus the maximum

possible payoff.

The size of the range shown will depend on the sum of OA + OB. The supplemental payoff

guide that was given to you shows how the range varies with OA and OB.

To illustrate an example, figure 3 shows the supervisor’s screen under information scheme 2.

The supervisor can see the exact payoff that the worker would receive, as well as the range of

possible payoffs that will be shown to the worker. Note that the worker’s payoff for task A, plus

the payoff for task B, equals the sum of the minimum and maximum possible payoffs. Figure 4

shows the workers screen for the same round.

Figure 3: The Supervisor’s decision screen

Rounds

There will be a total of 48 rounds. Each round you will be randomly and anonymously matched

with another person in the room. You will maintain the same role (i.e. worker or supervisor) for

5
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Figure 4: The Supervisor’s decision screen

the first 24 rounds, and then switch to the other role for the next 24 rounds.

The first 12 rounds will be conducted using Payoff Scheme 1. Of these 12 rounds, the first 4

will use Information Structure 2, rounds 5-8 will use Information Structure 1, and rounds 9-12 will

use Information Structure 3.

Rounds 13-24 will be conducted using Payoff Scheme 2. Of these 12 rounds, rounds 13-16 will

use Information Structure 2, rounds 17-20 will use Information Structure 1, and rounds 21-24 will

use Information Structure 3.

Rounds 25-36 will be conducted using Payoff Scheme 1. Of these 12 rounds, rounds 25-28 will

use Information Structure 2, rounds 29-32 will use Information Structure 1, and rounds 33-36 will

use Information Structure 3.

Rounds 37-48 will be conducted using Payoff Scheme 2. Of these 12 rounds, rounds 37-40 will

use Information Structure 2, rounds 41-44 will use Information Structure 1, and rounds 45-48 will

use Information Structure 3.

Feedback

At the end of each round, you will receive feedback on the round. The feedback for the supervisor

will show the choice made by the worker and the payoffs of both parties. The feedback for the

6
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worker will include only the worker’s payoff.

Note on earnings

Your total earnings will be the sum of your earnings in each round. It is possible to earn negative

points in some rounds. In the unlikely event that someone has a negative points total after 48

rounds then their earnings will be set to 0 points.

Demographic survey

At the end of the experiment there will be a brief demographic survey. Please fill the survey in

accurately. Once you have completed the survey your total earnings will be displayed. You should

then sit quietly until an experimenter arrives at your terminal.

Summary

• In each round the Supervisor will select values for OA and OB.

• In each round the Worker will select one task; either A, B or C.

• In some rounds the Worker will be able to see their exact payoffs, in other rounds they will

observe only a range of possible payoffs.

• The task chosen by the Worker will be implemented.

• Points will be summed across all rounds, and converted to dollars at the end of the experiment.

• Each round you will be randomly re-matched with another player in the room.

7
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 20 18 16 14 12 10 8 6 4 2

0.1 28 26 24 22 20 18 16 14 12 10
0.2 36 34 32 30 28 26 24 22 20 18
0.3 44 42 40 38 36 34 32 30 28 26
0.4 52 50 48 46 44 42 40 38 36 34
0.5 60 58 56 54 52 50 48 46 44 42
0.6 68 66 64 62 60 58 56 54 52 50
0.7 76 74 72 70 68 66 64 62 60 58
0.8 84 82 80 78 76 74 72 70 68 66
0.9 92 90 88 86 84 82 80 78 76 74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 20 28 36 44 52 60 68 76 84 92

0.1 18 26 34 42 50 58 66 74 82 90
0.2 16 24 32 40 48 56 64 72 80 88
0.3 14 22 30 38 46 54 62 70 78 86
0.4 12 20 28 36 44 52 60 68 76 84
0.5 10 18 26 34 42 50 58 66 74 82
0.6 8 16 24 32 40 48 56 64 72 80
0.7 6 14 22 30 38 46 54 62 70 78
0.8 4 12 20 28 36 44 52 60 68 76
0.9 2 10 18 26 34 42 50 58 66 74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 20 18 16 14 12 10 8 6 4 2

0.1 18 16 14 12 10 8 6 4 2 0
0.2 16 14 12 10 8 6 4 2 0 -2
0.3 14 12 10 8 6 4 2 0 -2 -4
0.4 12 10 8 6 4 2 0 -2 -4 -6
0.5 10 8 6 4 2 0 -2 -4 -6 -8
0.6 8 6 4 2 0 -2 -4 -6 -8 -10
0.7 6 4 2 0 -2 -4 -6 -8 -10 -12
0.8 4 2 0 -2 -4 -6 -8 -10 -12 -14
0.9 2 0 -2 -4 -6 -8 -10 -12 -14 -16

OB

OA

Payoff for Task A

Payoff for Task B

Payoff for Task C

Supervisor Payoff Guide -- Scheme 1

OA

OB

OB

OA
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 40 38 36 34 32 30 28 26 24 22

0.1 38 36 34 32 30 28 26 24 22 20
0.2 36 34 32 30 28 26 24 22 20 18
0.3 34 32 30 28 26 24 22 20 18 16
0.4 32 30 28 26 24 22 20 18 16 14
0.5 30 28 26 24 22 20 18 16 14 12
0.6 28 26 24 22 20 18 16 14 12 10
0.7 26 24 22 20 18 16 14 12 10 8
0.8 24 22 20 18 16 14 12 10 8 6
0.9 22 20 18 16 14 12 10 8 6 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 40 38 36 34 32 30 28 26 24 22

0.1 38 36 34 32 30 28 26 24 22 20
0.2 36 34 32 30 28 26 24 22 20 18
0.3 34 32 30 28 26 24 22 20 18 16
0.4 32 30 28 26 24 22 20 18 16 14
0.5 30 28 26 24 22 20 18 16 14 12
0.6 28 26 24 22 20 18 16 14 12 10
0.7 26 24 22 20 18 16 14 12 10 8
0.8 24 22 20 18 16 14 12 10 8 6
0.9 22 20 18 16 14 12 10 8 6 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 80 78 76 74 72 70 68 66 64 62

0.1 78 76 74 72 70 68 66 64 62 60
0.2 76 74 72 70 68 66 64 62 60 58
0.3 74 72 70 68 66 64 62 60 58 56
0.4 72 70 68 66 64 62 60 58 56 54
0.5 70 68 66 64 62 60 58 56 54 52
0.6 68 66 64 62 60 58 56 54 52 50
0.7 66 64 62 60 58 56 54 52 50 48
0.8 64 62 60 58 56 54 52 50 48 46
0.9 62 60 58 56 54 52 50 48 46 44

OA

OB

Payoff for Task C

OA

Supervisor Payoff Guide -- Scheme 2
OB

Payoff for Task A

OA

OB

Payoff for Task B
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 90 90 90 90 90 90 90 90 90 90

0.1 80 80 80 80 80 80 80 80 80 80
0.2 70 70 70 70 70 70 70 70 70 70
0.3 60 60 60 60 60 60 60 60 60 60
0.4 50 50 50 50 50 50 50 50 50 50
0.5 40 40 40 40 40 40 40 40 40 40
0.6 30 30 30 30 30 30 30 30 30 30
0.7 20 20 20 20 20 20 20 20 20 20
0.8 10 10 10 10 10 10 10 10 10 10
0.9 0 0 0 0 0 0 0 0 0 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 90 80 70 60 50 40 30 20 10 0

0.1 90 80 70 60 50 40 30 20 10 0
0.2 90 80 70 60 50 40 30 20 10 0
0.3 90 80 70 60 50 40 30 20 10 0
0.4 90 80 70 60 50 40 30 20 10 0
0.5 90 80 70 60 50 40 30 20 10 0
0.6 90 80 70 60 50 40 30 20 10 0
0.7 90 80 70 60 50 40 30 20 10 0
0.8 90 80 70 60 50 40 30 20 10 0
0.9 90 80 70 60 50 40 30 20 10 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 50 50 50 50 50 50 50 50 50 50

0.1 50 50 50 50 50 50 50 50 50 50
0.2 50 50 50 50 50 50 50 50 50 50
0.3 50 50 50 50 50 50 50 50 50 50
0.4 50 50 50 50 50 50 50 50 50 50
0.5 50 50 50 50 50 50 50 50 50 50
0.6 50 50 50 50 50 50 50 50 50 50
0.7 50 50 50 50 50 50 50 50 50 50
0.8 50 50 50 50 50 50 50 50 50 50
0.9 50 50 50 50 50 50 50 50 50 50

OA

OB

Payoff for Task C

OA

Worker Payoff Guide -- exact payoffs
OB

Payoff for Task A

OA

OB

Payoff for Task B
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 [ 90 , 90 ] [ 80 , 90 ] [ 70 , 90 ] [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ]

0.1 [ 80 , 90 ] [ 70 , 90 ] [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ]
0.2 [ 70 , 90 ] [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ]
0.3 [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ]
0.4 [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ]
0.5 [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ]
0.6 [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ]
0.7 [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ] [ 0 , 20 ]
0.8 [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ] [ 0 , 20 ] [ 0 , 10 ]
0.9 [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ] [ 0 , 20 ] [ 0 , 10 ] [ 0 , 0 ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 [ 90 , 90 ] [ 80 , 90 ] [ 70 , 90 ] [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ]

0.1 [ 80 , 90 ] [ 70 , 90 ] [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ]
0.2 [ 70 , 90 ] [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ]
0.3 [ 60 , 90 ] [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ]
0.4 [ 50 , 90 ] [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ]
0.5 [ 40 , 90 ] [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ]
0.6 [ 30 , 90 ] [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ]
0.7 [ 20 , 90 ] [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ] [ 0 , 20 ]
0.8 [ 10 , 90 ] [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ] [ 0 , 20 ] [ 0 , 10 ]
0.9 [ 0 , 90 ] [ 0 , 80 ] [ 0 , 70 ] [ 0 , 60 ] [ 0 , 50 ] [ 0 , 40 ] [ 0 , 30 ] [ 0 , 20 ] [ 0 , 10 ] [ 0 , 0 ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 50 50 50 50 50 50 50 50 50 50

0.1 50 50 50 50 50 50 50 50 50 50
0.2 50 50 50 50 50 50 50 50 50 50
0.3 50 50 50 50 50 50 50 50 50 50
0.4 50 50 50 50 50 50 50 50 50 50
0.5 50 50 50 50 50 50 50 50 50 50
0.6 50 50 50 50 50 50 50 50 50 50
0.7 50 50 50 50 50 50 50 50 50 50
0.8 50 50 50 50 50 50 50 50 50 50
0.9 50 50 50 50 50 50 50 50 50 50

OA

OB

OA

Worker Payoff Guide -- range
OB

OA

OB

Range for 
Task A

Range for 
Task B

Payoff for 
Task C

24



References

Aurélien Baillon and Laetitia Placido. Testing constant absolute and relative ambiguity aversion.

Journal of Economic Theory, 181:309–332, 2019. → pages 8

Peter Klibanoff, Massimo Marinacci, and Sujoy Mukerji. A smooth model of decision making under

ambiguity. Econometrica, 73(6):1849–1892, 2005. → pages 5, 6

25


	A Theoretical model
	A.1 The effects of non-linear probability weighting

	B Complete equilibrium characterization
	C Supplementary Results
	D Instructions

