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1 Appendix A - Proofs

1.1 Proposition 1 (All-Pay auction)

We characterize subgame perfect equilibria and thus start the analysis with round 2. As
shown below, player A’s round 2 best response correspondence is straightforward to char-
acterize. Given player A’s round 2 best response, round 1 shares important features with
a complete information all-pay auction and asymmetric valuations. In particular, it fol-
lows from Baye et al. (1996) that in any equilibrium, the players must randomize. Baye et
al.’s analysis and their Theorem 3 provide some background results.

In the proof, we assume that ties in expenditure are broken in favor of player A to
avoid an open-set problem with player A’s best response in round 2. It follows that if
xB = xA2, player A wins the prize. Thus if round 2 is reached and xB < V , player A’s best
response is x∗

A2 = xB, while if xB = V , then player A’s best response is the set {0, V }. In
the former case, Player A wins the auction with certainty and earns a payoff of V − xB

and in the latter, Player A’s payoff is equal to V − xB = V − V = 0 if x∗
A2 = V and to

0 as well if x∗
A2 = 0. Thus, in any equilibrium, in the second round player A’s payoff is

V − xB if xB < V and 0 if xB = V . Importantly for player B, in round 2 if xB < V player
B’s payoff is −xB and if xB = V , then player B’s payoff is −V if x∗

A2 = V while it is equal
to 0 if x∗

A2 = 0.
In equilibrium in the first round, the players must randomize. We construct first round

equilibrium distributions such that (a) both players randomize continuously on [0, (1 −
α)V ] and player B may have (b) a mass point at zero and (c) a gap on ((1− α)V, V ) with a
mass point at V . In the proof we assume that if xB = V , then x∗

A2 = 0 and player B wins
with probability one, though netting a zero payoff. This generates equilibria in which
player B has a mass point at V . We note that such equilibria do not arise if player B best
responds to xB = V by setting x∗

A2 = V .
Let FA(xA1) be player A’s distribution and let FB(xB) be player B’s distribution. Also,

define SB ⊂ [0, V ] as the support of FB. Using the above argument about round 2 ex-
pected payoffs, Player B’s expected payoff from playing xB ∈ [0, V ) is given by

EuB(x, FA) = (1− α)[FA(x)V − x] + α(−x)

= (1− α)FA(x)V − x.

Since EuB(x, FA) = (1 − α)FA(x)V − x ≤ (1 − α)V − x and EuB(x, FA) ≥ 0 must hold
(because player B can guarantee a payoff of zero by playing xB = 0), it follows that player
B’s support does not contain expenditure levels in ((1− α)V, V ). Moreover, either player
B has xB = V in his support or (1− α)V is the upper bound of his support. In the former
case, it is clear that player B’s equilibrium payoff must be zero since his payoff at x2 = V
is zero. In the latter case, player B’s payoff at xB = (1− α)V is

EuB((1− α)V, FA) = (1− α)[FA((1− α)V )V − (1− α)V ] + α(−(1− α)V )

which is less than zero if FA((1− α)V ) < 1 and equal to zero is FA((1− α)V ) = 1.
We thus seek to characterize equilibrium in which (1 − α)V is the upper bound of
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player A’s support and player B’s equilibrium payoff is zero. Using the fact that player
B’s expected payoff is equal to zero at any x ∈ SB, his expected payoff at x = (1 − α)V
satisfies:

U∗
B = (1− α)[V − (1− α)V ] + α(−(1− α)V )

= 0.

Therefore at any x ∈ (0, (1− α)V ],

EUB(x, FA) = 0 ⇐⇒ (1− α)[FA(x)V − x] + α(−x) = 0

⇐⇒ FA(x) =
x

(1− α)V
.

Now let hB(V ) denote the size of player B’s mass point at xB = V and hB(0) the size of
player B’s mass point at xB = 0. From the standpoint of round 1, player A’s expected
payoff when playing xA1 = x is given by

EUA(x, FB) = (1− α)[FB(x)V − x] + α

∫
xB∈S2\{V }

(V − xB)dFB(xB) + αhB(V )× 0

= (1− α)[FB(x)V − x] + α(V − E[xB|xB < V ])

and at any point on the support, player A’s expected payoff is constant and equal to some
U∗
A:

(1− α)[FB(x)V − x] + α(V − E[xB|xB < V ]) = U∗
A.

In particular at x = (1− α)V ,

(1− α)[(1− hB(x))V − (1− α)V ] + α(V − E[xB|xB < V ]) = U∗
A

and at x = 0,
(1− α)hB(0)V + α(V − E[xB|xB < V ]) = U∗

A,

from which it follows that

hB(0)V = (1− hB(x))V − (1− α)V ⇐⇒ hB(0) = α− hB(V )

Moreover, at x such that 0 < x < (1− α)V ,

(1− α)[FB(x)V − x] + α(V − E[xB|xB < V ]) = U∗
A.

from which it follows that

(1− α)[(1− hB(x))V − (1− α)V ] = (1− α)[FB(x)V − x] ⇐⇒ FB(x) = α− hB(V ) +
x

V
.

For any hB(V ) ∈ [0, α], the following distributions form round 1 equilibrium behavior
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strategies in a subgame perfect equilibrium:

FA(x) =

{
x

(1−α)V
if x ∈ [0, (1− α)V ]

1 if x > (1− α)V

and

FB(x) =


α− hB(V ) + x

V
if x ∈ [0, (1− α)V ]

1− hB(V ) if x ∈ ((1− α)V, V ]

1 if x ≥ V

Using FB(x), player A’s equilibrium expected payoff is given by

U∗
A = (1− α)(α− hB(V ))V + α(V − E[xB|xB < V ])

=
αV

2
(3− α2 − 2hB(V )) > 0

while player B’s expected payoff is equal to zero.
Expected expenditure levels are given by

E[xA1] =

∫ V

0

xdFA(x)dx =
(1− α)V

2

E[xB] =

∫ V

0

xdFB(x)dx =
(1− α)2V

2
+ hB(V )V.

Player A’s probability of winning in round 2, ProbA2 is equal to 1 − hB(V ) and in round
1, it is given by

ProbA1 =

∫ V

0

FB(x)F
′

A(x)dx =
1 + α− 2hB(V )

2
.

Figure A1 illustrates equilibrium distributions for the case of no mass point at V and for
an example where player B has a mass point at V .

Pareto dominant equilibrium: Since U∗
A above is strictly decreasing in hB(V ) and U∗

B = 0
in every equilibrium, the equilibrium in which hB(V ) = 0 Pareto dominates equilibria in
which hB(V ) > 0. For the experimental hypotheses, we focus on that equilibrium. Setting
hB(V ) = 0, we have

FA(x) =

{
x

(1−α)V
if x ∈ [0, (1− α)V ]

1 if x > (1− α)V

and

FB(x) =

{
α + x

V
if x ∈ [0, (1− α)V ]

1 if x ≥ (1− α)V
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with round 1 expenditure levels equal to

E[xA1] =
(1− α)V

2

E[xB] =
(1− α)2V

2
.

Since α < 1, E[xA1] > E[xB]. Expected payoffs from the standpoint of round 1 are given
by

U∗
A =

αV

2
(3− α2 − 2× 0) =

αV

2
(3− α2)

U∗
B = 0.

Figure A1: Round 1 equilibrium distribution in the all-pay auction for the Pareto domi-
nant equilbrium ((a) and (b)) and for an inefficient equilibrium ((c) and (d)).
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(a) α = 0.25, no mass point at xB = V
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(b) α = 0.75, no mass point at xB = V
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(c) α = 0.25, mass point of 0.2 at xB = V
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(d) α = 0.75, mass point of 0.2 at xB = V

1.2 Proposition 2 (Lottery contest)

Let xA1 and xB denote player A and player B’s first round expenditure in the simultaneous
moves game and xA2 denote player B’s expenditure if the revision round – round 2 – is
reached. Throughout, we assume xAt ≤ V and xB ≤ V , for t ∈ {1, 2}. If the game
proceeds to round 2, Player A’s expenditure is equal to his best response to xB, which is
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given by the function
x′
A2 =

√
V xB − xB

for every xB ∈ (0, V ]. The best response to xB = 0 is undefined since in this case, it is op-
timal for player A to set xA2 infinitesimally close to xB = 0. However it is straightforward
to rule out xB = 0 in an equilibrium. Indeed, xB = 0 can only be optimal if xA1 = V or
xA2 = V , which does not arise in equilibrium.

In round 1, in equilibrium Player B’s expected payoff is given by

EuB(xB, xA1, x
′
A2) = (1− α)

xBV

xA1 + xB

+ α
xBV

x′
A2 + xB

− xB.

Substituting for x′
A2, the above can be simplified as

EuB(xB, xA1, x
′
A2) = (1− α)

xBV

xA1 + xB

+ α
√
xBV − xB.

Maximizing with respect to xB, the FOC is

∂EuB

∂xB

= (1− α)
xA1V

(xA1 + xB)2
+ α

√
V

2
√
xB

− 1 = 0

and the SOC is satisfied
∂2EuB

∂x2
B

< 0

Now, in round 1, player A’s expected payoff is

EuA(xA1, xB, x
′
A2) = (1− α)

(
xA1

xA1 + xB

V − xA1

)
+ α

(
x′
A2

x′
A2 + xB

V − x′
A2

)
Therefore player A’s round 1 best response function is the same as his round 2 best re-
sponse function:

x′
A1 =

√
xBV − xB.

To solve for the equilibrium expenditure levels, we substitute for x′
A1 into the FOC for

player B and solve for xB:

6



(1− α)
x′
A1V

(x′
A1 + xB)2

+ α

√
V

2
√
xB

− 1 = 0

⇐⇒ (1− α)
(
√
xBV − xB)V

(
√
xBV )2

+ α

√
V

2
√
xB

− 1 = 0

⇐⇒ (1− α)
2(
√
xBV − xB)

2xB

+ α

√
V

2
√
xB

− 1 = 0

⇐⇒ 2(1− α)
√
xBV − 2(1− α)xB + α

√
xBV = 2xB

⇐⇒ (2− α)
√
xBV = 2(2− α)xB

⇐⇒
√
V

2
=

√
xB

⇐⇒ V

4
= x∗

B.

and thus
x∗
A1 = x∗

A2 =
√

x∗
BV − x∗

B =
V

4
.

Expected payoffs are given by

U∗
A = U∗

B = (1− α)
V/4

V/4 + V/4
V + α

V/4

V/A+ V/4
V − V/4 = V/4.

1.3 Revisions constrained to be upward only: xA2 ≥ xA1

Consider the game in which the type A player can only revise expenditure by increasing
it, but not reducing it. In the lottery contest, equilibrium predictions remain the same and
there is still nothing to gain from revising expenditure. More formally, if type A player
can only revise expenditure upwards then it implies that given xB, in round 2, a type A
player chooses xA2 to solve

Maximize EuA2(xA2, xB)
subject to xA2 ∈ [xA1, 100]

This is identical to the game in the paper except for the fact that the constraint in the
paper is xA2 ∈ [0, 100]. For a risk neutral player, the solution to the above problem is
x

′
A2 = max {xA1,RA(xB)}, where in the risk neutral case, RA (xB) = 10

√
xB − xB. In round

1, the type A player’s expected payoff is

EUA = (1− α)

[
xA1

xA1 + xB

100− xA1

]
+ α

[
x

′
A2

x
′
A2 + xB

100− x
′

A2

]
If x

′
A2 = xA1, then xA1 > RA (xB) and EUA can be increased by reducing xA1. If

x
′
A2 = RA(xB), then either xA1 < RA(xB) in which case EUA can be increased by raising
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xA1 (in this case, the term multiplied by α does not depend on xA1), or xA1 = RA(xB), in
which case, raising xA1 results in

dEUA

dxA1

= (1− α)

[
xA1

(xA1 + xB)
2 100− 1

]
+ α

[
xA1

(xA1 + xB)
2100− 1

]
= 0

when evaluated at xA1 = RA(xB). Therefore, in equilibrium, xA1 = xA2 = RA(xB).
Thus, in a lottery contest, the subgame perfect Nash equilibrium in case where revision
can be only made upwards is the same as in the case where xA2 is completely flexible.

In the all-pay auction, on the other hand, the restriction xA2 ∈ [xA1, 100] has significant
implications. In the equilibrium characterized in the paper, whenever xA1 > xB, the type
A player’s round 2 best response is to reduce expenditure. This adjustment is not possible
if xA2 ≥ xA1 is required.

Below we construct equilibrium distributions for the type B player where the support
of this player’s distribution is [0, (1 − α)100]. In this equilibrium, the type B player’s
expected payoff is zero and the type A player’s is maximized within the set of equilibrium
payoffs. In such an equilibrium, the type A player’s expected payoff in round 1 is given
by:

EUA (x, FB) = (1− α) [FB(x)100− x] + α

[
100− FB(x)x−

∫ (1−α)100

x

xBfB (xB) dxB

]

The first term multiplied by 1 − α is the expected payoff if the game ends in round
1. For round 2, the terms multiplied by α include the prize minus (i) player A’s expected
expenditure in the event that player B’s expenditure is such that x > xB and (ii) player
A’s expected expenditure if x ≤ xB, in which case player A can revise upward to xA2 = x.
In case (i), player A’s best response is x, unlike in the game in the paper. In equilibrium,
the type A player earns a constant payoff U∗

A on the support of his equilibrium strategy.
In particular, at x = (1− α)100,

EUA ((1− α)100, FB) = (1− α)α100 + α2100 = α100

Differentiating the type A player’s expected payoff at some x in the interior of the
support, and setting equal to zero:

dEUA

dx
= (1− α)fB(x)100− (1− α)− α FB(x) = 0

The solution to the differential equation is

F̂B(x) = k1 exp

{(
αx

(1− α)100

)
− 1− α

α
+ k2

}
where k1 and k2 are constants. To solve for k1 and k2 we set up

lim
x→0

EUA (x, FB) = U∗
A
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⇔ (1− α)F̂B(0)100 + α

[
100−

∫ (1−α)100

0

xBF̂
′

B(x)dxB

]
= α100

and

F̂B ((1− α)100) = 1

Solving yields the following distributions for the type B player:

FB(x) =

{
−3 + 3.12 exp(0.003x) if α = 0.25

−0.33 + 0.63 exp(0.03x) if α = 0.75

The distributions for the type A player are unchanged compared to the game with
flexible expenditure analyzed in the paper. Qualitatively, the results are the same as for
the game in the paper. Of course, the relative lack of flexibility implies that in this game,
the type A player is worse off than in the comparable equilibrium of the game in the
paper (α100 < α50(3− α2)). In particular, in the game where xA2 ≥ xA1, the type B player
bids much more aggressively than in the game in the paper (otherwise the type A player
would reduce expenditure in order to avoid “overexpending” in round 2 which occurs
whenever xA1 > xB and the type A player is unable to reduce expenditure to just slightly
outspend the type B player), with a much lower mass point at zero.

Figure A2: Type B player’s equilibrium distributions: Compare: Game in paper (red) to
game with xA2 ≥ xA1 (“Upward only”, black)
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As shown on the above graphs, the type B player submits higher expenditure levels
than in the game in the paper. Thus, she wins more often than in the game in the paper,
but she nonetheless nets a payoff of zero in expected terms.

2 Appendix B - Sample instructions

WELCOME
This is an experiment in the economics of strategic decision making. The instructions

for the experiment are simple. If you follow them closely and make appropriate decisions,
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you can earn an appreciable amount of money. It is very important that you remain silent
and do not look at other people’s work. If you have any questions, or need assistance
of any kind, please raise your hand and an experimenter will come to you. If you talk,
laugh, exclaim out loud, etc., you will be asked to leave and you will not be paid. We
expect and appreciate your cooperation.

At the end of the experiment you will be paid privately and in cash. In order to keep
your decisions private, please do not reveal your choices to any other participant. You
may cease participation at any point; if you do, you will receive the $7 participation fee
but will not receive any additional compensation.
THE EXPERIMENT

The experiment will proceed in five parts. Each part contains decision problems that
require you to make a series of economic choices which determine your total earnings.
The currency used in Parts 1 and 2 of the experiment is U.S. Dollars. The currency used
in Parts 3-5 of the experiment is Francs. These Francs will be converted to U.S. Dollars at
a rate of 15 Francs to 1 dollar.
INSTRUCTIONS FOR PARTS 1 - 2

In PARTS 1 and 2 of the experiment, you will be asked to make a series of choices in
decision problems. How much you receive will depend partly on chance and partly on
the choices you make. In each PART, you will see a table with 20 lines. You will state
whether you prefer Option A or Option B in each line. You should think of each line as
a separate decision you need to make. However, in each PART only one line will be the
’line that counts’ and will be paid out. In particular, at the end of the experiment, the
computer will randomly choose a line by throwing a 20-sided die. The number on the die
indicates which line in that part will be paid out. For instance, if the number on the first
roll of the die is 17, you will be paid for your choice in line 17 in PART 1. If the number on
the second roll of the die is 8, you will be paid for your choice in line 8 in PART 2. Because
each line is equally likely to be selected, and because you do not know which line will be
selected when you make your choices, you should pay close attention to the choices you
make in each line. Both PARTS have very different row payouts and probabilities. So you
should think of each part as separate.
PART 1

For each line in the table, please state whether you prefer option A or option B. Notice
that there are a total of 20 lines in the table - you should think of each line as a separate
decision you need to make. Your earnings for the selected line depend on which option
you chose: If you chose option B in that line, you will receive an amount of money spec-
ified by option B - between $0.25 and $5 - depending on the line. If you chose option A
in that line, you will receive either $5 or $0. To determine your earnings in the case you
chose option A the computer will draw a random number. To visualize how this is done,
picture the computer randomly drawing a ball from a bag containing twenty balls. There
are ten pink and ten green balls in the bag. This means that there is a 50% chance that the
drawn ball is pink and a 50% chance that it is green. If the drawn ball is pink, you will
receive $5 which corresponds to the payoffs in the column labelled pink. If the drawn
ball is green, you will receive $0, which corresponds to the payoffs in the column labelled
green. For instance, suppose the chosen line is 6 (see below). If you chose Option B, then
you get $1.50 for sure. If you chose Option A, then there is a 50% chance you get $5 and
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50% chance you get $0. While you have all the information in the table, you should input
all your 20 decisions into the computer. The actual drawing of the ball and the throw of
the 20-sided die by the monitor computer for this part of the experiment will be done at
the end of the experiment. Use the following tables for your reference:

PART 2
For each line in the table, please state whether you prefer option A or option B. Notice

that there are a total of 20 lines in the table - you should think of each line as a separate
decision you need to make. Your earnings for the selected line depend on which option
you chose: If you chose option B in that line, you will receive $0. If you chose option A
in that line, you can receive either a loss between -$0.50 and -$10, depending on the line,
or a gain of $5. To determine your earnings in the case you chose option A the computer
will randomly draw a ball from a bag containing twenty balls. To visualize how this is
done, picture the computer randomly drawing a ball from a bag containing twenty balls.
There are ten pink and ten green balls in the bag. This means that there is a 50% chance
that the drawn ball is pink and a 50% chance that it is green. If the drawn ball is pink,
you will receive -$x (the exact amount depends on the line chosen in the column labelled
pink). If the drawn ball is green, you will receive $5, which corresponds to the payoffs in
the column labelled green.

For instance, suppose the chosen line is 6 (see below). If you chose Option B, then you
get $0 for sure. If you chose Option A, then there is a 50% chance you lose $3 and 50%
chance you get $5. While you have all the information in the table, you should input all
your 20 decisions into the computer. The actual drawing of the ball and the throw of the
20-sided die by the monitor computer for this part of the experiment will be done at the
end of the experiment. Use the following tables for reference:
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INSTRUCTIONS FOR PART 3
YOUR DECISION

This part of the experiment consists of 20 decision-making periods. How much you
receive will depend partly on the choices you make and partly on the choices made by
the other participants in the room.

The 16 participants in today’s experiment will be randomly re-matched every period
into 8 groups with 2 participants in each group. Therefore, the specific person who is
the other participant in your group will change randomly after each period. The group
assignment is anonymous, so you will not be told which of the participants in this room
are assigned to your group.

Each period you and the other participant in your group will simultaneously make
investment decisions. You will be given an initial endowment of 100 francs that you may
use to make an investment. Your investment in each period cannot exceed 100 francs (any
number, including 2 decimal points). The more you invest, the more likely you are to win
a particular period. This will be explained in more detail later. The participant who wins
receives the reward of 100 francs.

Your total earnings depend on whether or not you receive the reward and on how
many francs you spent on investment. An example of your decision screen is shown
below in Figure 1:

12



THE TWO ROUNDS
In every period, there will be two rounds of decision-making. Regardless of your

type, you and the other participant must submit an investment decision in Round 1. If
your type is B, this choice is irreversible and thus cannot be changed. After submitting
your Round 1 investment,

• if your type is A, you will learn the other participant’s Round 1 investment and you
will be asked whether you wish to change your investment. We refer to this as Type
A’s Round 2 investment. You are not required to change your investment in which
case your Round 2 investment is equal to your Round 1 investment.

• if your type is B you will be asked to submit a guess regarding the other participant’s
decision to change his or her investment in Round 2. Please submit your best guess.
Note that your guess has absolutely no impact on how the payoffs are determined.

To determine the payoffs, the computer will first select which investments are used
to determine the winner. If your Type is B, your Round 1 investment will be used for
sure. If your Type is A, then there is a 25% chance that your Round 1 investment will be
used and a 75% chance that your Round 2 investment will be used. In other words, with
a 25% chance, the computer determines the winner using Type A’s Round 1 investment
and Type B’s Round 1 investment; and with a 75% chance, the computer determines the
winner using Type A’s Round 2 investment and Type B’s Round 1 investment.

Note that your player type - Type A or Type B - is randomly determined every period.
Your type in a particular period is not determined by your investment decisions in previ-
ous periods or by your type in previous periods. That is, in each period, you are equally
likely to be the Type A or the Type B participant in your group.

An example of the decision screen for Type A in Round 2 is shown in Figure 2. Figure
3 shows the corresponding decision screen for Type B in Round 2.
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[all-pay SESSIONS]
DETERMINING THE WINNER

If your investment is higher than the other participant’s then you win the reward. So,
if you invest X francs while the other participant invests Y francs, where X > Y then the
computer will choose you as the winner for the period. For instance, if your investment
is 20 francs and the other participant’s investment is 10 francs, then you win. If instead X
= Y, then the computer will randomly determine the winner so that in this case, both you
and the other participant are equally likely to win.

[LOTTERY SESSIONS]
CHANCE OF WINNING

You can never guarantee a win. However, the greater your investment is relative to
the other participant’s investment, the greater is your probability of winning. That is, the
more you invest, the more likely you are to win. The more the other participant in your
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group invests, the less likely you are to win. Specifically, your chance of winning is given
by the following expression.

Your change of winning =
Your investment

Your investment + The Other Participant’s Investment

Think of it in the following way. For each Franc you invest, you receive lottery tickets.
For example, if you invest 10 Francs and the other participant invests 20 Francs, you will
receive 10 lottery tickets and the other participant receives 20 lottery tickets. At the end of
each period the computer randomly draws one ticket among all the tickets purchased by
you and the other participant in your group. The owner of the drawn ticket wins in that
period. In the example above, your chance of winning is 0.33 = 10/(10+20) and the other
participant’s chance of winning is 0.67 = 20/(10 + 20). Note that your chance of winning
is proportional to the amount of lottery tickets you purchased.

YOUR PAYOFF
In every period, your payoff for the period depends on how many Francs you invest

and whether or not you win in that period.

Your Payoff if you win= 100+100 - your investment
Your payoff if you lose= 100+0 - your investment

END OF THE PERIOD
After both participants make their decisions in Round 1 and Round 2, the computer

will make a random draw to select which investments are used to determine the winner.
You will then observe the outcome of the period - your investment, the other participant’s
investment, the round used to determine the winner, whether or not you won as well as
your payoff for this period, as shown in Figure 4.

Importantly, note that you will be randomly re-matched with a different participant at
the start of the next period.
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At the end of the experiment the computer will roll a 20 sided die to randomly select
1 out of 20 periods from Part 3 for actual payment. Your earnings will be converted to a
U.S. dollar payment, as shown on the last page of your personal record sheet.

Are there any questions?
INSTRUCTIONS FOR PART 4

This part of the experiment also consists of 20 decision-making periods where you
will be randomly re-matched with another participant in every period. Your player type
- Type A or Type B - will also be randomly determined at the beginning of each period, as
in Part 3. All other rules for Part 4 are the same as the rules for Part 3.

The only difference in this part of the experiment is that the probability that the com-
puter chooses Round 1 investments to determine the winner is now 75%. To summarize,
with a 75% chance, the computer determines the winner using Type A’s Round 1 invest-
ment and Type B’s Round 1 investment; and with a 25% chance, the computer determines
the winner using Type A’s Round 2 investment and Type B’s Round 1 investment.

At the end of the experiment, the computer will roll a 20 sided die to randomly select
1 out of 20 periods from Part 4 for actual payment. Your earnings will be converted to a
U.S. dollar payment, as shown on the last page of your personal record sheet.

INSTRUCTIONS FOR PART 5
The last part of the experiment consists of only 1 decision-making period. The rules

for PART 5 are the same as the rules for PARTS 3 and 4. At the beginning of the period,
you will be randomly matched with another participant. You will be given an initial
endowment of 100 Francs. You will use this endowment to make an investment in order
to be a winner. For each Franc you investment you will receive one lottery ticket. At the
end of the single period the computer draws randomly one ticket among all the tickets
purchased by you and the other participant in your group. The owner of the drawn ticket
becomes a winner. Thus, your chance of becoming a winner is given by the number of
Francs you invest divided by the total number of Francs in your group investment.

The only difference is that in PART 5 the winner does not receive the reward. There-
fore, the reward is worth 0 Francs to you and the other participant in your group. After
all participants have made their decisions, your earnings in Francs are calculated:

Your Payoff if you win= 100+0 - your investment
Your payoff if you lose= 100+0 - your investment

After all participants have made their decisions, your payoff will be displayed on the
outcome screen. Your earnings will be converted to a U.S. dollar payment, as shown on
the last page of your personal earnings sheet.
END OF THE EXPERIMENT

After Part 5 has ended, we will ask you to answer a short questionnaire. The computer
will make the draws for each part when everyone has finished their questionnaire. The
last screen will contain your earnings from each part of the experiment. Please write these
in the earnings sheet, and the experimenter will come to your station to pay you in cash
privately. We urge you to exit quietly and not discuss the experiment with others.
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3 Appendix C - Expenditure choices near zero

Table C1: Distribution of subjects within frequency categories of expenditure choices be-
tween 0 and 5.

Frequency of expenditure choices between 0 and 5
All-Pay auction 0-25% 25-50% 50-75% 75-100% Total
α = 0.25 37 16 6 5 64
α = 0.75 25 18 12 9 64

Lottery 0-25% 25=50% 50-75% 75-100% Total
α = 0.25 49 4 8 3 64
α = 0.75 46 5 7 6 64
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Table C2: Probit regressions with subject random effects, session dummies and standard
errors clustered at the session level. Average partial effects are reported. The dependent
variable is equal to 1 if the subject’s expenditure was between 0 and 5 in period t and
equal to 0 otherwise.

Dependent variable
= 1 if expenditure is
between 0 and 5; = 0

otherwise

Dependent variable
= 1 if expenditure is
between 0 and 5; = 0

otherwise
1/Period -0.192*** -0.122**

(0.03) (0.04)
Alpha dummy 0.145*** 0.238***

(0.02) (0.03)
Lottery dummy -0.0208 0.0126
(= 1 if lottery) (0.10) (0.10)

Type B dummy 0.0602*** 0.200***
(= 1 if Type B) (0.01) (0.03)

Type B x 1/Period -0.143***
(0.05)

Type B x Alpha -0.178***
(0.04)

Type B x Lottery -0.0621***
(0.02)

Observations 5120 5120
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