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Appendix A. Experimental Instructions 

Throughout this appendix, comments and clarifications are made in brackets. In 

Section B.1.1, note that basic game rules differed across treatment only with 

respect to the third bullet point on payoffs. In Sections B.1.2 and B.1.3, for 

brevity we present examples and control questions only for summation under 

certainty (T1) and weakest link under uncertainty (T5). The corresponding 

materials used in other treatments are highly similar. 

 
A.1 Introduction and game rules 
 
Welcome to our experiment! 
 
General information 
In our experiment you can earn money. How much you earn depends on the 
decisions you and your fellow participants make. For a successful run of this 
experiment, it is essential that you do not talk to other participants. Now, read 
the following rules of the game carefully. If you have any questions, please raise 
your hand. Once everyone has read the instructions, we will give a brief oral 
presentation before continuing.  
 
The experiment will consist of two parts. One of the two parts will be randomly 
picked and your final payouts will be based on the decisions you and other 
participants make in this part. It is therefore important that you pay close 
attention to the instructions. After the two parts, we have some background and 
attitude questions to ask you as well. 
 
You will receive an initial endowment of €15 for your participation. Any loss 
during the experiment will be deducted from that amount, and gains will be 
added.  
 
Rules for part 1 
You are in a group of ten participants, meaning you and nine other persons. Each 
group member faces the same decision problem. All decisions in the experiment 
are anonymous. For the purpose of anonymity, you will be identified by a letter 
(between A and J), which you will see in the lower left corner of the screen. 
 
At the beginning of the game, you will receive 20 tokens, which are credited to 
two personal accounts, Account A and Account B. You will have 10 tokens in 
each account. In the experiment, you can use the tokens to contribute to a joint 
project or you can leave them in the two accounts.  
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Tokens from Account A are worth €0.10 each. Tokens from Account B are 
worth €0.50 each. You can contribute any integer amount of tokens between 0 
and 20 to the joint project – at most 10 tokens from Account A and at most 10 
tokens from Account B. 
 
The payment at the end of the game will consist of the following parts: 
 

• The amount of tokens you have left in Accounts A and B will be paid to you in 
cash: €0.10 for each token left in Account A and €0.50 for each token left in 
Account B.  

• You and all other participants in the group will get €0.05 for every token 
contributed to the joint project, irrespective of who contributed the token and 
whether it was a token from Account A or B. 

• [Weakest link, certainty:] If any group member contributes fewer than 15 tokens 
to the joint project, every player will lose €15. If each member of the group 
contributes 15 or more tokens to the joint project, no player will lose any money. 

• [Weakest link, uncertainty:] If any group member contributes less than a certain 
minimum amount of tokens to the joint project, every player will lose €15. If 
each member of the group contributes the minimum amount or more to the joint 
project, no player will lose any money. The minimum amount of tokens is not 
known beforehand. What you know is that it is between 10 and 20 [T3: 14 and 
16], that each integer value from 10 to 20 has the same probability of being 
selected, and that the minimum amount will be randomly drawn after the 
decisions have been made.  

• [Summation, certainty:] If the group as a whole contributes fewer than 150 
tokens to the joint project, every member of the group will lose €15. If the group 
contributes 150 or more tokens to the joint project, no participant will lose any 
money. 

• [Summation, uncertainty:] If the group as a whole contributes less than a certain 
minimum amount of tokens to the joint project, every player will lose €15. If 
the group contributes the minimum amount or more to the joint project, no 
player will lose any money. The minimum amount of tokens is not known 
beforehand. What you know is that it is between 100 and 200 [T6: between 140 
and 160], that each integer value from 100 to 200 has the same probability of 
being selected, and that the minimum amount will be randomly drawn after the 
decisions have been made. 
 
Note that you can contribute any number of tokens between 0 and 20. These 
contributions will automatically first be deducted from your Account A (up to 
ten tokens), before tokens are taken out of Account B (up to another ten tokens). 
 
This game will be played only once. You should think carefully about how to 
decide in the game. Before playing, we will go through two examples. The 
examples are presented on the next two pages, but will also be shown on the 
screen. Therefore, please click on the screen to move to the examples on the 
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screen. Please note that these examples are for illustration only, so you will not 
be able to choose contribution levels. 
 
[Examples and control questions, followed by play in part 1. Immediately before 
part 2, the following instructions were given.] 
 
A change in the rules 
We will now ask you to make decisions in a similar setting as before. However, 
there is a change in how the game proceeds and again it is important for you to 
pay close attention to the instructions.  
 
In addition, we will reshuffle the groups so you will play with a different group 
of people than in Part 1 of the experiment.  
 
[Weakest link treatments:] The difference is that before you and the other 
participants decide how many tokens to contribute, everyone will be given an 
opportunity to make two non-binding announcements. First, each participant 
will make a proposal (between zero and 20) about how many tokens each group 
member should contribute to the joint project. Second, each participant will 
make a pledge (between zero and 20) for how many tokens he or she intends to 
contribute to the joint project. All proposals and pledges made by the players 
will be displayed before you and the other participants decide how much to 
contribute.  
 
[Summation treatments:] The difference is that before you and the other 
participants decide how many tokens to contribute, everyone will be given an 
opportunity to make two non-binding announcements. First, each participant 
will make a proposal (between zero and 200) about how many tokens the group 
as a whole should contribute to the joint project. Second, each participant will 
make a pledge (between zero and 20) for how many tokens he or she intends to 
contribute to the joint project. All proposals and pledges made by the players 
will be displayed before you and the other participants decide how much to 
contribute.  
 
 
In all other respects, the game is the same as before, but we will still repeat these 
other rules here. […] 
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A.2 Examples 
 
Example 1 [Weakest link, uncertainty] 
Here, you can see a hypothetical example of the decisions made by ten 
participants. 
 

Participant Contribution Payoff in Part 1 
A 0 -4.4 
B 0 -4.4 
C 10 -5.4 
D 0 -4.4 
E 12 -6.4 
F 10 -5.4 
G 8 -5.2 
H 15 -7.9 
I 17 -8.9 
J 20 -10.4 
Total 92  

 
 
The contribution column displays each participant’s actual contribution to the 
joint project. The final column shows the total payoff for each group member. 
The payoff depends on the number of tokens left in Accounts A and B, payoff 
from total contributions to the joint project, and whether there is a loss or not. 
 
The total contribution of 92 tokens to the joint project means that each member 
receives €0.05 times 92 = €4.60 from the joint project. The required minimum 
amount of tokens for no loss is between 10 and 20, and since at least one member 
contributed less than 10 tokens, every player will incur a loss of €15. [T1: … 
from the joint project. In addition, since at least one member contributed less 
than 15 tokens, every player will incur a loss of €15.] 
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A did not contribute anything so he/she will receive 10 times €0.10 
from Account A and 10 times €0.50 from Account B, totaling €6. If we add 
everything together, player A will get 6 + 4.6 – 15 = -€4.4. This loss will be 
deducted from the endowment of €15. 
 
Participant H contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which equals €2.50. If 
we add everything together, player C will get 2.5 + 4.6 – 15 = -€7.9. 
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Example 2 [Weakest link, uncertainty] 
Here is another hypothetical example of the decisions made by the ten group 
members. 
 

Participant Contribution Payoff with no 
loss in Part 1 

Payoff with 
loss in Part 1 

A 15 10.3 -4.7 
B 15 10.3 -4.7 
C 15 10.3 -4.7 
D 15 10.3 -4.7 
E 15 10.3 -4.7 
F 15 10.3 -4.7 
G 16 9.8 -5.2 
H 20 7.8 -7.2 
I 15 10.3 -4.7 
J 15 10.3 -4.7 
Total 156   

 
The total contribution of 156 tokens to the joint project means that each 
participant receives €0.05 times 156 = €7.80 from the joint project. Since all 
players contributed between 10 and 20, we do not know for sure whether there 
will be a loss of €15. The lowest contribution is 15 (players A, C, E, F). If the 
random draw of the required minimum amount of tokens is 15 or lower, then 
there is no loss. If the random draw of the required minimum amount of tokens 
is larger than 15, then there is a loss. We therefore have two columns with 
payoffs in the table. 
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which equals €2.50. If 
we add everything together, participant A will get 2.5 + 7.8 = €10.3 if there is 
no loss. If there is a loss, the payoff will be 2.5 + 7.8 -15 = -€4.7. 
 
Participant H contributed 20 tokens (10 from Account A and 10 from Account 
B). This means that if there is no loss the player will only get a payment from 
the joint project: €7.80. If there is a loss, the payoff will be 7.8 – 15 = -€7.2. 
 
 
 
 
 
 
 
Example 1 [Summation, certainty] 



7 
 

Here, you can see a hypothetical example of the decisions made by ten 
participants. 
 

Participant Contribution Payoff in Part 1 
A 0 -4.4 
B 0 -4.4 
C 10 -5.4 
D 0 -4.4 
E 12 -6.4 
F 10 -5.4 
G 8 -5.2 
H 15 -7.9 
I 17 -8.9 
J 20 -10.4 

Total 92  
 
 
The contribution column displays each participant’s actual contribution to the 
joint project. The final column shows the total payoff for each group member. 
The payoff depends on the number of tokens left in Accounts A and B, payoff 
from total contributions to the joint project, and whether there is a loss. 
 
The total contribution of 92 tokens to the joint project means that each member 
receives €0.05 times 92 = €4.60 from the joint project. In addition, since total 
contributions are less than 150, every player will incur a loss of €15.  
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A did not contribute anything so he/she will receive 10 times €0.10 
from Account A and 10 times €0.50 from Account B, totaling €6. If we add 
everything together, we have that player A will get 6 + 4.6 – 15 = -€4.4. This 
loss will be deducted from the endowment of €15. 
 
Participant H contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which is equal to 
€2.50. If we add everything together, we get that player C will get 2.5 + 4.6 – 
15 = -€7.9. 
  
 
 
 
 
 
 
Example 2 [Summation, certainty] 
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Here is another hypothetical example of the decisions made by the ten group 
members. 
 

Participant Contribution Payoff in Part 1 
A 15 10.3 
B 15 10.3 
C 15 10.3 
D 15 10.3 
E 15 10.3 
F 15 10.3 
G 16 9.8 
H 20 7.8 
I 15 10.3 
J 15 10.3 

Total 156  
 
The total contribution of 156 tokens to the joint project means that each 
participant receives €0.05 times 156 = €7.80 from the joint project. In 
addition, since total contributions are higher than 150, there will be no loss of 
€15.  
 
Let us look at two participants to see how total payoff is determined. 
 
Participant A contributed 15 tokens (10 from Account A and 5 from Account 
B), so he/she will receive 5 times €0.50 from Account B, which equals €2.50. 
If we add everything together, participant A will get 2.5 + 7.8 = €10.3. This 
gain will be added to the endowment of €15. 
 
Participant H contributed 20 tokens (10 from Account A and 10 from Account 
B). This means that the player will only get a payment from the joint project: 
€7.80. 
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A.3 Control questions 
 

(a) Take a look at the hypothetical example below (same as the first example 
we looked at before). Are the contributions [Summation treatments: “collective 
contributions”] within the group sufficient to avoid the loss? 

○ Yes ○ No 
[Summation, uncertainty treatments: ○ It depends on the random draw] 

  
Participant Contribution 
A 0 
B 0 
C 10 
D 0 
E 12 
F 10 
G 8 
H 15 
I 17 
J 20 
Total 92 

 
(b) Assume that the group as a whole (including you) has contributed 0 tokens 
to the joint account so that there is a loss of €15. What would be your total 
payoff from the game (excluding the initial endowment of €15)? 
 

○ -15  ○ -9  ○ 0  ○ 6  ○ 15
  
(c) Assume that the group as a whole (including you) has contributed 150 tokens 
to the joint project. How much would each participant receive in payment from 
the joint project only? 
 

○ 0  ○ 5 ○ 7.5  ○ 10  ○ 15
  
[Weakest link, certainty] (d) What is the lowest number of tokens each 
participant must contribute to the joint account in order to avoid the loss? 
 

○ 0  ○ 5  ○10  ○ 15  ○ 20 
 

[Weakest link, uncertainty (T2, T3)] (d) What is the lowest number of tokens 
each participant must contribute to the joint account to have some possibility to 
avoid the loss? 
 

○ 10  ○ 14  ○15  ○ 16  ○ 20 
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[Weakest link, uncertainty (T2, T3)] (e) How many tokens must each participant 
contribute to the joint account to be sure to avoid the loss? 
 

○ 10  ○ 14  ○15  ○ 16  ○ 20 
 
[Summation, certainty] (d) What is the lowest number of tokens the group 
must reach to avoid the loss?  
 

○ 0  ○ 50  ○100  ○ 150  ○ 200 
 
[Summation, uncertainty (T5, T6)] (d) What is the lowest number of tokens the 
group must reach to have some possibility to avoid the loss? 
 

○ 100  ○ 140  ○150  ○ 160  ○ 200 
 
[Summation, uncertainty (T5, T6)] (e) How many tokens must the group reach 
to be sure to avoid the loss? 
 

○ 100  ○ 140  ○150  ○ 160  ○ 200 
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A.4 Survey questions 
 
1. Did you trust the other players to make the contributions they pledged? 

□ Very much 
□ Somewhat   
□ Not much 
□ Not at all 

 
2. Can you can describe the main reasons you did or did not trust the pledges 
made by the other participants. 

……………………………………………………. 
 
3. What was the most important reason for your pledge?  

□ To signal my intended contribution 
□ To get others to contribute 
□ Other reason: ……… 

 
4. Did other group members’ pledges affect your own contribution? 

□ No 
□ Yes, it made me increase my contribution relative to what I initially 
intended to contribute. 
□ Yes, it made me decrease my contribution relative to what I initially 
intended to contribute. 

 
5. Did other group members’ proposals for the group contribution affect your 
own contribution? 

□ No 
□ Yes, it made me increase my contribution relative to what I initially 
intended to contribute. 
□ Yes, it made me decrease my contribution relative to what I initially 
intended to contribute. 

 
6. Please tell me, in general, how willing or unwilling you are to take risks. 
Please use a scale from 0 to 10, where 0 means you are” completely unwilling 
to take risks” and a 10 means you are “very willing to take risks.”  
 
7. We now ask for your willingness to act in a certain way in four different areas. 
Please again indicate your answer on a scale from 0 to 10, where 0 means you 
are ”completely unwilling to do so” and a 10 means you are ”very willing to do 
so”.  
 

a. How willing are you to give up something that is beneficial for you 
today, in order to benefit more from it in the future? 

b. How willing are you to punish someone who treats you unfairly, even if 
there may be costs for you? 
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c. How willing are you to punish someone who treats others unfairly, even 
if there may be costs for you? 

d. How willing are you to give to good causes without expecting anything 
in return? 

8. How well do the following statements describe you as a person? Please 
indicate your answer on a scale from 0 to 10. A 0 means “does not describe me 
at all” and a 10 means “describes me perfectly.”  
 

a. When someone does me a favor, I’m willing to return it 
b. If I am treated very unjustly, I will take revenge at the first occasion, 

even if there is a cost to do so. 
c. I assume that people have only the best intentions. 

 
9. Please imagine the following situation: You can choose between a sure 
payment of a particular amount of money, or a draw, where you would have an 
equal chance of getting 300 euro and getting nothing. We will present to you 
five different situations. [Followed by five lottery choices, where later lotteries 
condition on earlier choices] 
 
10. Please think about what you would do in the following situation. You are in 
an area you are unfamiliar with and realize that you are lost. You ask a stranger 
for directions. The stranger offers to take you to your destination. Helping you 
costs the stranger about 20 euro in total. However, the stranger says he or she 
does not want any money from you. You have six presents with you. The 
cheapest present costs 5 euro, the most expensive one costs 30 euro. Do you 
give one of the presents to the stranger as a “thank you” gift? If so, which present 
do you give to the stranger? 

□ no present 
□ the present worth 5 euro 
□ the present worth 10 euro 
□ the present worth 15 euro 
□ the present worth 20 euro 
□ the present worth 25 euro 
□ the present worth 30 euro 

 
11. Imagine the following situation: Today you unexpectedly received 1,000 
euro. How much of this amount would you donate to a good cause? (Values 
between 0 and 1,000 are allowed) 
 

……………………….. euro 
 
 
12. What is your gender? 

□ Male 
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□ Female 
 
13. What is your year of birth? 

……. 
 
14. In what academic domain does your major belong? 

□ Natural sciences 
□ Social sciences 
□ Humanities 
□ Business 
□ Economics 
□ Law 
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Appendix B. Theoretical guidance 

Here we derive best responses and characterize associated Nash equilibria for 

each treatment in the experiment. We limit attention to symmetric equilibria. 

Since endowments have no impact on best responses, we disregard them 

throughout the analysis. We also do not consider proposals and pledges of the 

kind offered in the second round of the game. Players are assumed to be risk 

neutral throughout. 

Recall that each player 𝑖𝑖 ∈ {1, … ,10} chooses how many tokens 𝑞𝑞𝑖𝑖 ∈

{0,1, … ,20} to contribute. For fixed player 𝑖𝑖, define 𝑞𝑞−𝑖𝑖 = ∑ 𝑞𝑞𝑗𝑗𝑗𝑗≠𝑖𝑖  as the sum of 

other group members’ contributions and 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = min𝑖𝑖(𝑞𝑞𝑖𝑖) as the smallest 

contribution by any player. The threshold 𝑄𝑄� is uniformly distributed on integers 

{𝑎𝑎,𝑎𝑎 + 1, … , 𝑏𝑏 − 1, 𝑏𝑏}, with 𝑏𝑏 ≥ 𝑎𝑎 > 0. 

Each player's opportunity cost of contributing is piecewise linear and convex, 

𝐶𝐶(𝑞𝑞𝑖𝑖) = � 0.1𝑞𝑞𝑖𝑖, for 0 ≤ 𝑞𝑞𝑖𝑖 ≤ 10
1 + 0.5(𝑞𝑞𝑖𝑖 − 10), for 11 ≤ 𝑞𝑞𝑖𝑖 ≤ 20 

while total returns from contributing (after resolving the uncertainty in 𝑄𝑄�) are 

0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 15𝑓𝑓(𝑞𝑞1, … , 𝑞𝑞𝑛𝑛,𝑄𝑄�) 

where 𝑓𝑓 is a discontinuous function of the contributions and the threshold level. 

Under a summation technology, 𝑓𝑓 = 𝐼𝐼(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖 < 𝑄𝑄�), where 𝐼𝐼 is the binary 

indicator function. Under a weakest-link technology, 𝑓𝑓 = 𝐼𝐼�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑄𝑄��. 

 

B.1 Weakest-link technology 

B.1.1 Certain threshold (T1) 

When the weakest-link threshold is certain and equal to 𝑄𝑄� = 15, payoffs to 

player 𝑖𝑖 are 

𝑈𝑈�𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖, 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝐼𝐼�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 15�. 



15 
 

We will now analyze 𝑖𝑖’s best response 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�, being a function of 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 =

min𝑗𝑗≠𝑖𝑖�𝑞𝑞𝑗𝑗�, the lowest contribution of any player other than 𝑖𝑖. There are two 

cases, each of which will support a symmetric Nash equilibrium whenever 

𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. 

First, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 15, then regardless of 𝑞𝑞𝑖𝑖, the threshold will not be met; 

therefore, since the marginal utility of contributing is negative, 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0, 

supporting a noncooperative equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 15, then payoffs for player 𝑖𝑖 are given by 

𝑈𝑈�𝑞𝑞𝑖𝑖 , 𝑞𝑞−𝑖𝑖, 𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝐼𝐼(𝑞𝑞𝑖𝑖 < 15) 

and 𝑖𝑖’s best response is either zero or 15. In fact, since 0.05 × 15 − 1 −

0.5 × 5 = −2.75 > −15, it is 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 15. This supports an equilibrium 

where 𝑞𝑞𝑖𝑖 = 15 for all 𝑖𝑖. 

In summary, there are two symmetric Nash equilibria: a non-cooperative one at 

𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖, and a coordination/cooperation equilibrium at 𝑞𝑞𝑖𝑖 = 15.  

 

B.1.2 Uncertain threshold (T2, T3) 

When the location of the threshold is uncertain, expected payoffs for risk neutral 

agents are 

𝐸𝐸�𝑈𝑈�𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖, 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�� = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝑃𝑃�𝑞𝑞𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑄𝑄�� 

Again, the best response of player 𝑖𝑖 is a function of 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, and symmetric 

equilibria have 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. There are again two cases. Note that 𝑏𝑏 − 𝑎𝑎 =

10 under large uncertainty (T2) and 𝑏𝑏 − 𝑎𝑎 = 2 under small uncertainty (T3). 

First, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑎𝑎, then 𝑃𝑃 = 1, so 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0 in this case, supporting a non-

cooperative equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 
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Second, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑎𝑎, player 𝑖𝑖 is pivotal for threshold attainment up to the point 

where 𝑞𝑞𝑖𝑖 = 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 or, if 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑏𝑏, the point where 𝑞𝑞𝑖𝑖 = 𝑏𝑏 and thus 𝑃𝑃 = 0. As a 

result, payoffs to player 𝑖𝑖 are 

𝐸𝐸�𝑈𝑈�𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖, 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚��

= 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖)

− 15 × min�1, max�
𝑏𝑏 − 𝑞𝑞𝑖𝑖

𝑏𝑏 − 𝑎𝑎 + 1
, max�0,

𝑏𝑏 − 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏 − 𝑎𝑎 + 1
���. 

Because of the weakest-link structure of the game, it will never be optimal for 

player 𝑖𝑖 to contribute more than min(𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏) tokens. Furthermore, the first nine 

units contributed by player 𝑖𝑖 can never affect the probability of threshold 

attainment. Under large uncertainty, the tenth unit contributed will marginally 

impact 𝑃𝑃: this unit yields marginal payoff −0.05 + 15/11 > 0. Under small 

uncertainty, player 𝑖𝑖 is able to affect 𝑃𝑃 only by contributing more than 10 units. 

This implies facing higher marginal contribution costs; nevertheless, marginal 

payoffs of contributing more than 10 units while affecting 𝑃𝑃 is −0.45 +

15/(𝑏𝑏 − 𝑎𝑎 + 1), which is positive under both large and small uncertainty. It 

follows that, under both large and small uncertainty, either 𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = 0 or 

𝑞𝑞𝑖𝑖�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� = min�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑏𝑏�. 

In fact, for our parameter values, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = min�𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑏𝑏� in both treatments 

and any 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑎𝑎. For instance, under large uncertainty and 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 10, 

contributing 10 tokens is preferable to contributing nothing since −0.05 × 10 +

15/11 > 0. These best-response patterns thus support symmetric Nash 

equilibria at all 𝑏𝑏 − 𝑎𝑎 + 1 integers 𝑞𝑞𝑖𝑖 ∈ {𝑎𝑎,𝑎𝑎 + 1, … , 𝑏𝑏 − 1, 𝑏𝑏}. 

In summary, under large uncertainty, there exists a symmetric non-cooperative 

equilibrium at 𝑞𝑞𝑖𝑖 = 0 and 11 symmetric coordination/cooperation equilibria at 

𝑞𝑞𝑖𝑖 ∈ {10, … ,20}. Under small uncertainty, there is again a symmetric 
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equilibrium at 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖, and also three coordination/cooperation 

equilibria at 𝑞𝑞𝑖𝑖 ∈ {14,15,16}. 

 

B.2 Summation technology 

B.2.1 Certain threshold (T4) 

When the threshold level is certain, 𝑄𝑄� = 150, payoffs to agent 𝑖𝑖 are 

𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖) = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝐼𝐼(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖 < 150). 

We will now analyze 𝑖𝑖’s best response 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖), being a function of 𝑞𝑞−𝑖𝑖, the 

summed contributions of other players. There are three cases, and we will check 

whether best responses in each case support some symmetric equilibrium where 

𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 𝑞𝑞−𝑖𝑖/9. 

First, if 𝑞𝑞−𝑖𝑖 < 130, the last term in the utility function equals 15 regardless of 

𝑞𝑞𝑖𝑖, so utility is everywhere decreasing in own contributions since marginal costs 

of contributing are always at least 0.1. Thus, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0 is optimal in this 

range, supporting a non-cooperative Nash equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 130 ≤ 𝑞𝑞−𝑖𝑖 < 150, player 𝑖𝑖 is pivotal in reaching the threshold. 

Clearly, contributing either zero or 150 − 𝑞𝑞−𝑖𝑖 will be optimal; the latter is the 

case when 

0.05 × 150 − 𝐶𝐶(150 − 𝑞𝑞−𝑖𝑖) > 0.05𝑞𝑞−𝑖𝑖 − 15 

which is always true given our parameter values. Thus, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 150 − 𝑞𝑞−𝑖𝑖 in 

this range. This supports a symmetric coordination/cooperation equilibrium at 

𝑞𝑞𝑖𝑖 = 15 for all 𝑖𝑖, where all players have 𝑞𝑞−𝑖𝑖 = 135. 

Finally, if 𝑞𝑞−𝑖𝑖 ≥ 150, the threshold is certain to be reached regardless of 𝑞𝑞𝑖𝑖, and 

it follows that 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0, similarly to the first case. Thus, no symmetric 

equilibrium is supported. 
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In summary, there are two symmetric Nash equilibria: a noncooperative one at 

𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖 and a coordination/cooperation equilibrium at 𝑞𝑞𝑖𝑖 = 15.  

 

B.2.2 Uncertain threshold (T5, T6) 

When the location of threshold 𝑄𝑄� is uncertain, expected payoffs for risk-neutral 

players are given by 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15𝑃𝑃(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖 < 𝑄𝑄�) 

where 𝑃𝑃(⋅) is the probability of failing to reach the uniformly distributed 

threshold. Again, the best response of player 𝑖𝑖 is a function of 𝑞𝑞−𝑖𝑖, and 

symmetric equilibria have 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 𝑞𝑞−𝑖𝑖/9. The main difference is that there 

are now five cases, which we will discuss in turn. Note that 𝑏𝑏 − 𝑎𝑎 = 100 under 

large uncertainty (T5) and 𝑏𝑏 − 𝑎𝑎 = 20 under small uncertainty (T6). 

First, if 𝑞𝑞−𝑖𝑖 < 𝑎𝑎 − 20, then 𝑃𝑃 = 1 regardless of 𝑞𝑞𝑖𝑖, so then 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0, again 

because marginal payoffs from contributing are everywhere negative. These 

best responses clearly support a Nash equilibrium where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. 

Second, if 𝑎𝑎 − 20 ≤ 𝑞𝑞−𝑖𝑖 < 𝑎𝑎 − 1, then player 𝑖𝑖 is able to marginally impact the 

probability of threshold attainment, but only after having contributed the first 

(𝑎𝑎 − 1) − 𝑞𝑞−𝑖𝑖 units. This implies that expected payoffs become 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15 × min�1,
𝑏𝑏 − (𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖)
𝑏𝑏 − 𝑎𝑎 + 1

� 

where the final term reflects the discrete uniform distribution of 𝑄𝑄�; recall that 𝑄𝑄� 

may take 𝑏𝑏 − 𝑎𝑎 + 1 values. Thus, the marginal utility of the initial unit(s) 

contributed by 𝑖𝑖 is negative, but if 𝑞𝑞𝑖𝑖 enters the range where 𝑃𝑃 < 1 while 𝑞𝑞𝑖𝑖 ≤

10, then the marginal utility becomes −0.05 + 15/(𝑏𝑏 − 𝑎𝑎 + 1), which is 

positive under both large and small uncertainty. Furthermore, 𝑖𝑖’s marginal 

utility of contributing more than 10 units while impacting 𝑃𝑃 is −0.45 +



19 
 

15/(1 + 𝑏𝑏 − 𝑎𝑎), which is negative under large uncertainty but positive under 

small uncertainty. It follows that, under large uncertainty, either 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0 or 

𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 10. Under small uncertainty, either 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0 or 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 20. 

For our particular parameter values, we find the following. Under large 

uncertainty, where 𝑎𝑎 = 100, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 10 for 93 ≤ 𝑞𝑞−𝑖𝑖 ≤ 98, and is zero 

otherwise. Under small uncertainty, where 𝑎𝑎 = 140, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 20 for 126 ≤

𝑞𝑞−𝑖𝑖 ≤ 138, and is zero otherwise. No Nash equilibria are supported by these 

best responses. 

Third, when 𝑎𝑎 − 1 ≤ 𝑞𝑞−𝑖𝑖 ≤ 𝑏𝑏 − 20, the choice of player 𝑖𝑖 always affects 𝑃𝑃, so 

expected payoffs are 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15 ×
𝑏𝑏 − (𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖)
𝑏𝑏 − 𝑎𝑎 + 1

 

which, by similar reasoning as above, implies 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 10 under large 

uncertainty, and 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 20 under small uncertainty. Again, no Nash 

equilibria are supported in this range. 

Fourth, when 𝑏𝑏 − 20 < 𝑞𝑞−𝑖𝑖 < 𝑏𝑏, player 𝑖𝑖 starts out being pivotal; but the 

threshold is met with certainty for high enough 𝑞𝑞𝑖𝑖, and 𝑃𝑃 = 0 for any 

contribution beyond that point. It follows that payoffs are 

𝐸𝐸[𝑈𝑈(𝑞𝑞𝑖𝑖, 𝑞𝑞−𝑖𝑖)] = 0.05(𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖) − 𝐶𝐶(𝑞𝑞𝑖𝑖) − 15 × max�0,
𝑏𝑏 − (𝑞𝑞𝑖𝑖 + 𝑞𝑞−𝑖𝑖)
𝑏𝑏 − 𝑎𝑎 + 1

� 

implying that under large uncertainty, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = min(10, 𝑏𝑏 − 𝑞𝑞−𝑖𝑖), while under 

small uncertainty, 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 𝑏𝑏 − 𝑞𝑞−𝑖𝑖. For large uncertainty, no Nash 

equilibrium is supported by these patterns; but for small uncertainty, a 

coordination/cooperation equilibrium is supported at 𝑞𝑞𝑖𝑖 = 16 for all 𝑖𝑖, where all 

players have 𝑞𝑞−𝑖𝑖 = 𝑏𝑏 − 16 = 144. 

Finally, if 𝑞𝑞−𝑖𝑖 ≥ 𝑏𝑏, 𝑃𝑃 = 1 regardless of 𝑞𝑞𝑖𝑖, so then 𝑞𝑞𝑖𝑖(𝑞𝑞−𝑖𝑖) = 0. Thus, no Nash 

equilibrium is supported in this range. 
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In summary, for large uncertainty, the only symmetric equilibrium is the non-

cooperative one where 𝑞𝑞𝑖𝑖 = 0 for all 𝑖𝑖. For small uncertainty, there is 

additionally an equilibrium at 𝑞𝑞𝑖𝑖 = 16 for all 𝑖𝑖. 

 

 

B.3 Strategic uncertainty 

In this section, we analyze how the strategic uncertainty facing players 

influences optimal choice. The arguments developed here are summarized in 

Section 3.1 of the main paper.  

Deriving clear-cut predictions on risk-based equilibrium selection requires a full 

treatment of multi-player, multi-action risk dominance in the context of our 

game, which is beyond the scope of this paper. Instead, as a starting point, we 

perform a set of pairwise risk-dominance comparisons across all symmetric 

equilibria in a given treatment (as in Riedl et al., 2016). To this effect, we 

consider a set of two-player games, where each player chooses between two 

strategies that each form symmetric equilibria in Table 2. For simplicity, these 

games abstract from players’ endowment as well as the continuous public-good 

contribution made by the other player, neither of which affect players’ risk 

calculus. In the summation treatments, we also need to make some assumption 

on what 2-player game can be viewed as analogous to the 10-player game. We 

consistently assume that the support of 𝑄𝑄� scales with the number of players; 

thus, for example, 𝑄𝑄� ∈ {28, … ,32} in the two-player game corresponding to 

Summation, small uncertainty. In all the games where we undertake pairwise 

risk-dominance comparisons (recall that there is only one symmetric 

equilibrium in the Summation, uncertainty treatment), the set of symmetric 

equilibria is then the same as with 10 players. 



21 
 

Consider, as one example, two players choosing between 𝑞𝑞𝑖𝑖 = 0 and 𝑞𝑞𝑖𝑖 = 15 in 

the Summation, certainty treatment (T4). Since the game is symmetric, we show 

only payoffs to player 𝑖𝑖:1 

  𝑞𝑞𝑗𝑗 

  0 15 

𝑞𝑞𝑖𝑖 
0 −15 −15 

15 −17.75 −2.75 

 

In this game, player 𝑖𝑖 is willing to play 𝑞𝑞𝑖𝑖 = 15 so long as the probability 𝜋𝜋 that 

player 𝑗𝑗 will do so as well is such that −17.75(1 − 𝜋𝜋) − 2.75𝜋𝜋 ≥ −15, or 𝜋𝜋 ≥

11/60. Since this probability cutoff is less than 1/2 (and the probability of 𝑗𝑗 

playing 𝑞𝑞𝑗𝑗 = 0 required for 𝑖𝑖 to be willing to also not contribute is 1 − 𝜋𝜋), the 

risk dominant equilibrium in this game is (15,15).2 

For the general case, let the comparison be between some pair of strategies 𝑞𝑞𝑙𝑙 

and 𝑞𝑞ℎ, with 𝑞𝑞𝑙𝑙 < 𝑞𝑞ℎ. To provide a simple unified notation for summation and 

weakest link, define 𝑝𝑝�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗� = 𝑃𝑃(𝑓𝑓�𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗 ,𝑄𝑄�� = 1), with 𝑓𝑓 as in Appendix B, 

i.e., as an indicator function for either a summation or a weakest-link threshold. 

Then, for any treatment, the matrix of payoffs to player 𝑖𝑖 is 

  𝑞𝑞𝑗𝑗 

  𝑞𝑞𝑙𝑙 𝑞𝑞ℎ 

𝑞𝑞𝑖𝑖 
𝑞𝑞𝑙𝑙 0.05𝑞𝑞𝑙𝑙 − 𝐶𝐶�𝑞𝑞𝑙𝑙� − 15𝑝𝑝(𝑞𝑞𝑙𝑙 ,𝑞𝑞𝑙𝑙) 0.05𝑞𝑞𝑙𝑙 − 𝐶𝐶�𝑞𝑞𝑙𝑙� − 15𝑝𝑝(𝑞𝑞𝑙𝑙 ,𝑞𝑞ℎ) 

𝑞𝑞ℎ 0.05𝑞𝑞ℎ − 𝐶𝐶�𝑞𝑞ℎ� − 15𝑝𝑝(𝑞𝑞ℎ,𝑞𝑞𝑙𝑙) 0.05𝑞𝑞ℎ − 𝐶𝐶�𝑞𝑞ℎ� − 15𝑝𝑝(𝑞𝑞ℎ,𝑞𝑞ℎ) 

 

 
1 The general payoff formula in the matrix can be written as 𝑈𝑈𝑖𝑖�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗� = 0.05𝑞𝑞𝑖𝑖 − 𝐶𝐶(𝑞𝑞𝑖𝑖) −
15(1 − 𝐼𝐼(𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑗𝑗 = 30), with 𝐼𝐼 the binary indicator function. 
2 As is simple to verify, the cutoff is less than 1/2 if and only if deviation losses are larger for 
the (15,15) equilibrium than the (0,0) one. 
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and, noting that 𝑝𝑝(𝑞𝑞ℎ,𝑞𝑞𝑙𝑙) = 𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞ℎ), player 𝑖𝑖 will want to play 𝑞𝑞ℎ rather than 

𝑞𝑞𝑙𝑙 if and only if3 

𝜋𝜋 ≥
𝐶𝐶(𝑞𝑞ℎ) − 𝐶𝐶(𝑞𝑞𝑙𝑙) − 0.05(𝑞𝑞ℎ − 𝑞𝑞𝑙𝑙) − 15[𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞𝑙𝑙) − 𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞ℎ)]

15[2𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞ℎ) − 𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞𝑙𝑙) − 𝑝𝑝(𝑞𝑞ℎ,𝑞𝑞ℎ)] ≡ 𝜋𝜋� 

We will now confirm that 𝜋𝜋� < 1/2 for all pairwise comparisons of this kind: 

thus, risk and payoff dominance fully coincide. 

In the Summation, certainty treatment (T4) already covered above, 𝑝𝑝(0,15) =

𝑝𝑝(0,0) = 1 while 𝑝𝑝(15,15) = 0, so 𝜋𝜋� = 11/60. Also, in the Summation, small 

uncertainty treatment (T6), due to the fact that slightly larger average 

contributions are required to fully eliminate threshold risk, 𝜋𝜋� = 16/75 >

11/60. Thus, the cooperative equilibrium entails slightly greater risk under 

(small) threshold uncertainty. 

Next, under a weakest-link technology, we have  𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞ℎ) = 𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞𝑙𝑙), so 

𝜋𝜋� =
𝐶𝐶(𝑞𝑞ℎ) − 𝐶𝐶(𝑞𝑞𝑙𝑙) − 0.05(𝑞𝑞ℎ − 𝑞𝑞𝑙𝑙)

15[𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞𝑙𝑙) − 𝑝𝑝(𝑞𝑞ℎ,𝑞𝑞ℎ)]  

and we again have 𝜋𝜋� = 11/60 for the comparison between the two symmetric 

equilibria under certainty (T1). For the uncertainty treatments (T2 & T3), 

consider first the set of comparisons between 𝑞𝑞𝑙𝑙 = 0 and some cooperative-

equilibrium strategy 𝑞𝑞ℎ ≥ 𝑎𝑎. If 𝑠𝑠 = {3,11} is the number of discrete mass points 

of the threshold distribution, we may rewrite 𝜋𝜋� yet again as 

𝜋𝜋� =
𝐶𝐶(𝑞𝑞ℎ) − 0.05𝑞𝑞ℎ

(15/𝑠𝑠) × (1 + 𝑞𝑞ℎ − 𝑎𝑎)
=
𝑠𝑠(0.5 + 0.45(𝑞𝑞ℎ − 10))

15(1 + 𝑞𝑞ℎ − 𝑎𝑎)
 

which is decreasing in 𝑞𝑞ℎ for all 𝑎𝑎 used in our design. For example, in T2, 𝜋𝜋� =

1/3 when 𝑞𝑞ℎ = 20 but 𝜋𝜋� = 11/30 when 𝑞𝑞ℎ = 10. Similarly, in T3, 𝜋𝜋� = 16/75 

when 𝑞𝑞ℎ = 16 (same cutoff probability as for the corresponding summation 

 
3 The inequality holds iff 2𝑝𝑝(𝑞𝑞𝑙𝑙, 𝑞𝑞ℎ) − 𝑝𝑝(𝑞𝑞𝑙𝑙 , 𝑞𝑞𝑙𝑙) − 𝑝𝑝(𝑞𝑞ℎ, 𝑞𝑞ℎ) > 0, which is true in all 
treatments. 
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game) but 𝜋𝜋� = 0.46 when 𝑞𝑞ℎ = 14. As with the summation games, we note that 

all of these cutoffs lie above 11/60, with the implication that cooperation is 

riskier under threshold uncertainty. More precisely, any cooperative equilibrium 

strategy in an uncertainty treatment is more risky relative to 𝑞𝑞𝑖𝑖 = 0 than is 𝑞𝑞𝑖𝑖 =

15 in the corresponding certainty treatment. (However, 𝑞𝑞𝑖𝑖 = 0 is still the riskier 

strategy in all cases, since 𝜋𝜋� < 1/2.) 

Finally, in any comparison between two equilibrium strategies that satisfy 𝑞𝑞ℎ >

𝑞𝑞𝑙𝑙 ≥ 𝑎𝑎, we have 

𝜋𝜋� =
0.5(𝑞𝑞ℎ − 𝑞𝑞𝑙𝑙) − 0.05(𝑞𝑞ℎ − 𝑞𝑞𝑙𝑙)

(15/𝑠𝑠) × (𝑞𝑞ℎ − 𝑞𝑞𝑙𝑙)
=

3𝑠𝑠
100

 

which confirms that 𝜋𝜋� < 1/2 in all cases, and thus that risk and payoff 

dominance coincide in these games. 

However, our actual design involves ten players, not two. While we expect that 

threshold uncertainty entails greater cooperation risk than certainty in ten-player 

games as well, other aspects of a player’s risk calculus are likely to change as 

the number of players grows. Again, fully exploring this issue would require a 

complete analysis of risk dominance in our game; yet, as a simple tool for 

thinking about this issue under summation as well as weakest link, consider the 

following game matrix, corresponding to the two certainty treatments: 

  𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑞𝑞�−𝑖𝑖  

  0 15 

𝑞𝑞𝑖𝑖 
0 −15 −15 

15 −17.75 −2.75 

 

Note that this matrix replaces 𝑞𝑞𝑗𝑗 by either 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, the minimum contribution 

among all other players (in the weakest-link game), or 𝑞𝑞�−𝑖𝑖, the average 

contribution by all other players (in the summation game). Then, with 𝑄𝑄� certain, 
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payoffs are as given in the matrix under both weakest link and summation, for 

any number of players.4  

With these payoffs, player 𝑖𝑖 will again be willing to play 𝑞𝑞𝑖𝑖 = 15 if and only if 

𝜋𝜋 ≥ 11/60. However, 𝜋𝜋 now represents the probability that 𝑞𝑞�−𝑖𝑖 or 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 equals 

15 rather than the probability that some single 𝑞𝑞𝑗𝑗 = 15. Moving back to the full 

game, it seems clear that 𝑖𝑖 is less likely to prefer 𝑞𝑞𝑖𝑖 = 15 over 𝑞𝑞𝑖𝑖 = 0 as the 

number of players rises, since this raises the bar for successful coordination at 

the threshold. It also seems clear that the 𝜋𝜋-analogue is generally larger under 

weakest link than summation because, as the number of players increases, there 

are more strategy profiles where player 𝑖𝑖 will want to choose 𝑞𝑞𝑖𝑖 = 15 over 𝑞𝑞𝑖𝑖 =

0 under the latter technology. The reason is that, under summation, players are 

able to compensate for low-contribution behavior by others. As a simple 

illustration, note that under summation there are many asymmetric strategy 

profiles that yield (approximately) 𝑞𝑞�−𝑖𝑖 = 15 when only some proportion 𝜃𝜃 < 1 

of players other than 𝑖𝑖 bid 15 or more. By contrast, under weakest link, 𝑞𝑞−𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 =

15 applies only to strategy profiles where 𝜃𝜃 = 1, i.e., where all such players bid 

at least 15; thus 𝜋𝜋 becomes analogous to the product of the probability that each 

other player does so.  

In summary, the risk calculus of player 𝑖𝑖 may be expected to eventually favor 

low contributions, especially with many players (as in our experiment) and 

under weakest link and/or threshold uncertainty.  

 

  

 
4 When comparing across pairs of different high-contribution equilibria in the weakest-link 
uncertainty treatments, all cells of the corresponding payoff matrix involve paying strictly less 
than the entire cost 𝑋𝑋 = 15 in expectation; nevertheless, qualitative conclusions are similar to 
those presented here. 
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Appendix C. Additional tables 

Table C1. Probability of reaching threshold 

 Weakest link Summation 
 Certainty Uncertainty Small 

uncert.  
Certainty Uncertainty Small 

uncert. 
𝑃𝑃 = 1 (certain 
avoidance) 

90% 0% 37.5% 60% 0% 50% 

0.5 ≤ 𝑃𝑃 < 1 0% 10% 0% 0% 70% 30% 
0 < 𝑃𝑃 < 0.5 0% 50% 25% 0% 30% 10% 
𝑃𝑃 = 0 (certain loss) 10% 40% 37.5% 40% 0% 10% 
Mean  0.9 0.15 0.46 0.6 0.5 0.74 
       

 

Table C2. Descriptive statistics: contributions in both rounds, pledges, and 
proposals for group contribution (per person) 

  Contribution 
Round 1 

Contribution 
Round 2 

Pledge 
Round 2 

Proposal for 
group behavior 

(per person) 

 

  Mean 
(s.d.) 
Mode 

Mean 
(s.d.) 
Mode 

Mean 
(s.d.) 
Mode 

Mean 
(s.d.) 
Mode 

 

Weakest 
link: 

Certainty 14.51 
(3.82) 

15 

15.73 
(1.71) 

15 

15.80 
(1.80) 

15 

15.76 
(2.06) 

15 

 

 Uncertainty 15.02 
(4.81) 

15 

15.48 
(4.54) 

15 

16.06 
(4.16) 

20 

15.99 
(4.25) 

20 

 

 Small 
uncertainty 

14.63 
(4.62) 

16 

15.55 
(3.34) 

16 

16.11 
(2.23) 

16 

16.14 
(1.97) 

16 

 

Summation: Certainty 13.74 
(4.74) 

15 

14.84 
(3.97) 

15 

14.50 
(4.12) 

15 

14.05 
(4.69) 

15 

 

 Uncertainty 13.68 
(5.56) 

20 

14.95 
(4.97) 

20 

15.70 
(4.76) 

20 

14.85 
(6.08) 

20 

 

 Small 
uncertainty 

14.32 
(4.55) 

16 

15.52 
(3.86) 

16 

14.93 
(4.37) 

16 

14.68 
(4.79) 

16 
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Table C3. Tobit regression model, individual contributions to the public good. 
Marginal effects evaluated at sample mean, standard errors clustered at group 
level 

 Weakest link Summation 
Uncertainty 0.013 

(0.819) 
0.538 
(0.983) 

Small uncertainty -0.298 
(0584) 

0.892 
(0.669) 

Constant 15.91*** 

(0.271) 
15.07*** 
(0.314) 

N 280 300 
 

Table C4. Probability of reaching threshold, observed and simulated, 
experiment without pledges 

 Weakest link Summation 
 Certainty Uncertainty Small 

uncertainty 
Certainty Uncertainty Small 

uncertainty 
 Observed 
𝑃𝑃 = 1 (certain avoidance) 30% 0% 12.5% 30% 0% 0% 
0.5 ≤ 𝑃𝑃 < 1 0% 0% 12.5% 0% 10% 40% 
0 < 𝑃𝑃 < 0.5 0% 20% 0% 0% 90% 30% 
𝑃𝑃 = 0 (certain loss) 70% 80% 75% 70% 0% 20% 
Mean  0.30 0.02 0.21 0.30 0.37 0.40 
 Simulated 
𝑃𝑃 = 1 (certain avoidance) 32% 0% 6% 20% 0% 10% 
0.5 ≤ 𝑃𝑃 < 1 0% 6% 20% 0% 25% 23% 
0 < 𝑃𝑃 < 0.5 0% 29% 9% 0% 73% 28% 
𝑃𝑃 = 0 (certain loss) 68% 65% 66% 80% 2% 39% 
Mean  0.32 0.10 0.22 0.20 0.37 0.34 
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Table C5. Relation between contributions in round 1 and pledges in round 2, 
comparison at the individual level (p-values based on Wilcoxon sign rank) 

  Contribution 
round 1 

Pledge 
round 2 

p-value 

Weakest link Certainty 14.51 
(3.82) 

15.8 
(1.8) 

0.002 

 Uncertainty 15.02 
(4.81) 

16.06 
(4.2) 

0.015 

 Small 
uncertainty 

14.63 
(2.9) 

16.1 
(2.2) 

0.001 

Summation Certainty 13.74 
(4.7) 

14.5 
(4.1) 

0.064 

 Uncertainty 13.68 
(5.56) 

15.7 
(4.8) 

0.000 

 Small 
uncertainty 

14.32 
(4.55) 

14.93 
(4.4) 

0.029 

 

 

Table C6. Relation between pledges and contributions in round 2. Mean, 
minimum, and standard deviation at group level (p-values based on Wilcoxon 
sign rank) 

   Pledge Contribution p-value 
Weakest link Certainty Mean 15.80 15.73 0.385 
  Min 14.5 14.5 1.000 
  Std 1.66 1.55 0.414 
 Uncertainty Mean 16.06 15.48 0.575 
  Min 7.8 7 0.678 
  Std 4.05 3.89 0.721 
 Small Uncertainty Mean 16.11 15.55 0.360 
  Min 13.25 10.75 0.722 
  Std 1.80 2.38 0.674 
Summation Certainty Mean 14.50 14.84 0.838 
  Min 8.70 6.8 0.304 
  Std 3.52 3.60 0.879 
 Uncertainty  Mean 15.70 14.95 0.201 
  Min 6 4.5 0.474 
  Std 4.80 4.62 0.575 
 Small Uncertainty Mean 14.93 15.52 0.333 
  Min 6.1 7.9 0.719 
  Std 4.14 3.43 0.241 
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Table C7. Individual characteristics across treatments, standard deviations in parentheses 

 Weakest link, 
certainty 

Weakest link, 
uncertainty 

Weakest link, 
small uncertainty 

Summation, 
certainty 

Summation, 
uncertainty 

Summation, small 
uncertainty 

Risk measure 5.52 5.51 5.90 5.55 5.80 5.36 
 (2.05) (2.28) (1.81) (2.12) (2.13) (2.08) 
Time preference 7.35 7.30 7.20 7.36 7.54 7.45 
 (1.90) (2.34) (2.14) (2.00) (2.12) (2.01) 
Generosity 7.45 6.82 7.13 7.44 7.46 7.27 
 (2.14) (2.40) (2.18) (2.04) (2.11) (1.98) 
Punish you 4.95 5.32 5.46 5.37 5.35 4.96 
 (2.56) (2.77) (2.70) (2.70) (2.55) (2.56) 
Punish others 5.85 5.65 5.55 5.57 5.71 5.57 
 (2.37) (2.42) (2.27) (2.38) (2.52) (2.39) 
Trust 2.19 1.78 1.98 1.74 1.57 1.76 
 (0.68) (0.84) (0.80) (0.77) (0.81) (0.64) 
Female 0.58 0.55 0.56 0.55 0.64 0.60 
 (0.50) (0.50) (0.50) (0.50) (0.48) (0.49) 
Age 27.79 27.11 26.80 28.51 27.85 27.50 
 (6.65) (5.23) (4.73) (9.07) (5.57) (4.91) 
Econ 0.20 0.26 0.33 0.28 0.22 0.27 
 (0.40) (0.44) (0.47) (0.45) (0.42) (0.45) 
Observations 100 100 80 100 100 100 

Note: Risk measures: Response to the question “Please tell me, in general, how willing or unwilling you are to take risks. Please use a scale from 0 to 10, 
where 0 means you are completely unwilling to take risks and 10 means you are very willing to take risks. Time preference: Response to question “How 
willing are you to give up something that is beneficial for you today, in order to benefit more from it in the future?” Generosity: Response to question “How 
willing are you to give to good causes without expecting anything in return?” Punish you: Response to question “How willing are you to punish someone 
who treats you unfairly, even if there may be costs for you? Punish others: Response to question “How willing are you to punish someone who treats others 
unfairly, even if there may be costs for you?” For these four questions, 0 means completely unwilling to do so and 10 means very willing to do so. Trust: 
Response to the question “Did you trust the other players to make the contributions they pledged?”, where 0 means very much and 3 means not at all. Female: 
Dummy variable equal to one if female subject. Age in years. Econ: Dummy variable equal to one if majoring in economics or business. 
 


