
Under consideration for publication in Theory and Practice of Logic Programming 1

On the generalization of learned constraints
for ASP solving in temporal domains

Supplementary Material

JAVIER ROMERO

TORSTEN SCHAUB

KLAUS STRAUCH
University of Potsdam, Germany

submitted [n/a]; revised [n/a]; accepted [n/a]

1 Additional rules of the Blocksworld Example

The following lines specify the action unstack(X,Y), where ‘B’ is a shorthand for the body
‘block(X), block(Y)’:

action(unstack(X,Y)) :- B.
pre(unstack(X,Y), handempty) :- B.
pre(unstack(X,Y), clear(X)) :- B.
pre(unstack(X,Y), on(X,Y)) :- B.
add(unstack(X,Y), clear(Y)) :- B.
add(unstack(X,Y),holding(X)) :- B.
del(unstack(X,Y), on(X,Y)) :- B.
del(unstack(X,Y), handempty) :- B.
del(unstack(X,Y), clear(X)) :- B.

The following lines specify the actions pick up(X) and out down(X), where ‘B’ is a
shorthand for the body ‘block(X)’:

action(pick_up(X)) :- B.
pre(pick_up(X), handempty) :- B.
pre(pick_up(X), clear(X)) :- B.
pre(pick_up(X),ontable(X)) :- B.
add(pick_up(X),holding(X)) :- B.
del(pick_up(X), handempty) :- B.
del(pick_up(X), clear(X)) :- B.
del(pick_up(X),ontable(X)) :- B.

action(put_down(X)) :- B.
pre(put_down(X),holding(X)) :- B.
add(put_down(X), clear(X)) :- B.
add(put_down(X), handempty) :- B.
add(put_down(X),ontable(X)) :- B.
del(put_down(X),holding(X)) :- B.

2 J. Romero et al.

2 Program translations from our conference paper

We present the program translations from our conference paper (?). We think they can still be
of interest, although the new translation in Section ?? has some advantages, as it is easier to
understand and generalizes the nogoods to the complete interval [0, n] instead of [1, n]. The size
of both translations is linear on the size of the input programs.

Given some temporal logic program Π, we say that the rules r ∈ Π such that At(r) ⊆ A are
static, and otherwise we say that they are dynamic.

We start with a simple translation trλ that works for temporal programs where all dynamic rules
are integrity constraints. Later, we show that all temporal programs can be translated to this form.

We say that a temporal logic program Π over A is in previous normal form (PNF) if At(Π \
Πi)∩A′ = ∅, and that a temporal logic problem (Π, I, F) overA is in PNF if Π is in PNF. Given
a temporal logic program Π over A, let Πdi denote the set {r | r ∈ Πi,At(r) ∩ A′ 6= ∅} of
dynamic integrity constraints of Π. Note that if Π is in PNF, then the dynamic rules of Π belong
to Πdi . The translation trλ(Π) tags the rules in Πdi with a new atom λ, that does not belong to
A or A′, and extends the program with a choice rule for λ. Formally, by trλ(Π) we denote the
temporal logic program:

Π \Πdi ∪
{
{λ} ←

}
∪ {⊥ ← Bd(r) ∪ {λ} | r ∈ Πdi}.

It is easy to see that when λ is chosen to be true, trλ(Π) generates the same transitions as Π.
Then, we can solve temporal programs (Π, I, F) by solving temporal problems (trλ(Π), I, F),
if we consider only solutions that make λ true at all steps after the initial one. For convenience,
we consider only the case where λ is false. This means that, as in Section ??, we focus on the
λ-normal solutions. The next proposition states the relation between these λ-normal solutions and
the original solutions using Π.

Proposition 1
Let T1 = (Π, I, F) and let T2 = (trλ(Π), I, F) be temporal logic problems. There is a one-to-one
correspondence between the solutions to T1 and the λ-normal solutions to T2.

The call CDNL-ASP(gen(trλ(Π), n), I[0] ∪ F [n] ∪ {Fλ0,Tλ1, . . . ,Fλn}) computes λ-
normal solutions to T2, enforcing the correct value for λ at every time point using assumptions.
The solutions to the original problem T1 can be extracted from the λ-normal solutions, after
deleting the atoms in {λ}[1, n].

We turn now our attention to the resolvents δ of the set of nogoods Ψtrλ(Π)[1, n] used by the
procedure CDNL-ASP . As we will see, just by looking at these resolvents δ, we can approximate
the specific interval [i, j] ⊆ [1, n] of the nogoods that were used to prove them.

To this end, we say that the nogoods containing literals of different steps are dynamic nogoods,
and they are static nogoods otherwise. All dynamic nogoods in Ψtrλ(Π)[1, n] come from the
instantiation of some dynamic integrity constraint {⊥ ← Bd(r) ∪ {λ} | r ∈ Πdi} at some
time step i and, therefore, they contain some literal of the form Tλi. On the other hand, in
Ψtrλ(Π)[1, n] there are no literals of the form Fλi. Hence, the literals Tλi occurring in the
dynamic nogoods can never be resolved away. Then, if some dynamic nogood is used to prove a
learned nogood δ, the literal Tλi occurring in that dynamic nogood must belong to δ. This means
that the literals Tλi from a learned nogood δ tell us exactly the steps i of the dynamic nogoods
that have been used to prove δ.

Observe now that two nogoods δ1 ∈ Ψtrλ(Π)[i] and δ2 ∈ Ψtrλ(Π)[i+ 1] can only be resolved

On the generalization of learned constraints for ASP solving in temporal domains 3

if δ2 is a dynamic nogood. Otherwise, the nogoods would have no opposite literals to resolve.
Applying the same reasoning, if two nogoods δ1 ∈ Ψtrλ(Π)[i] and δ2 ∈ Ψtrλ(Π)[j], such that
i < j, are part of the same resolution proof of a learned nogood δ, then the proof must also contain
some dynamic nogoods from each step in the interval [i+ 1, j]. Therefore, the learned nogood δ
must contain the literals {Tλ}[i+ 1, j].

This implies that, given the literals {Tλ}[k, j] occurring in a learned nogood δ, we can infer
the following about the nogoods from Ψtrλ(Π)[1, n] used to prove δ: dynamic nogoods from all
the steps [k, j] were used to prove δ, possibly some static nogoods of the step k − 1 were used
as well, and no nogoods from other steps were used in the proof. It is possible that some static
nogoods at steps [k, j] were also used, but no dynamic nogoods at k − 1 could be used, since
otherwise δ should contain the literal Tλk−1.

We formalize this with the function stepλ(δ), that approximates the specific interval [i, j] of
the nogoods that were used to prove δ: if δ contains some literal of the form Tλi for i ∈ [1, n],
then stepλ(δ) is the set of steps {j − 1, j | Tλj ∈ δ}. For example, if δ is {Ta3,Tλ3} then the
value of stepλ(δ) is {2, 3}. It is clear that δ was derived using some dynamic nogood of step 3,
that added the literal Tλ3. And it could also happen that some static nogood of step 2 was used,
but we are uncertain about it. That is why we say that step is an approximation. To continue,
note that it can also be that δ has no literals of the form Tλi. In this case, δ must be the result of
resolving some static nogoods of a single time step, and we can extract that time step from the
unique time step of the literals occurring in the nogood. Hence, in this case we define stepλ(δ) as
step(δ). For example, stepλ({Tc2,Td2}) = {2}. With this, we can generalize a nogood δ to the
shifted nogoods δ〈t〉 whose step value fits in the interval [1, n]. We state this precisely in the next
theorem.

Observe that it excludes the shifted nogoods δ〈t〉 that contain the literal Tλ1, since in that case
stepλ(δ〈t〉) contains the step 0 /∈ [1, n]. This makes sense because to prove δ〈t〉 we could need
some static nogoods at step 0, and they do not belong to Ψtrλ(Π)[1, n].

Theorem 1
Let Π be a temporal logic program in PNF, and δ be a resolvent of Ψtrλ(Π)[1,m] for some m ≥ 1.
Then, for every n ≥ 1, the set of nogoods Ψtrλ(Π)[1, n] entails the generalization

{δ〈t〉 | stepλ(δ〈t〉) ⊆ [1, n]}.

Example 1
Consider the call CDNL-ASP(gen(trλ(Π1), 4), ∅), similar to the one that we have seen before
using the original program Π1. The nogoods Ψtrλ(Π1)[1, n] are the same as those in ΨΠ1

[1, n],
except that every dynamic nogood contains one instantiation of the literal Tλ. Instead of learning
the nogood {Ta3} the algorithm would learn the nogood δ = {Ta3,Tλ3,Tλ4}. Then, applying
part (i) of Theorem 9 the nogood δ can be generalized to δ〈−1〉 = {Ta2,Tλ2,Tλ3}, but not to
δ〈1〉 = {Ta4,Tλ4,Tλ5} or to δ〈−2〉 = {Ta1,Tλ1, Tλ2} (see Figure 1).

The next step is to show how temporal programs in general can be translated to PNF form. For
this, given a temporal logic program Π over A, let A∗ = {a∗ | a ∈ A}, and assume that this set
is disjoint from A and A′. The translation tr∗(Π) consists of two parts. The first part consists of
the result of replacing in Π every atom a′ ∈ A′ by its corresponding new atom a∗. The second
part consists of the union of the rules

{{a∗} ←;⊥ ← a′,¬a∗;⊥ ← ¬a′, a∗}

4 J. Romero et al.

Fig. 1. Representation of different shifted versions of the nogood δ = {Ta3,Tλ3,Tλ4}. The
surrounding rectangles cover the interval of their step value. For example, the rectangle of
{Ta2,Tλ2,Tλ3} covers the interval [1, 3] because step({Ta2,Tλ2,Tλ3}) = [1, 3].

for every a ∈ A. The idea of the translation is that the atoms a′ ∈ A′ are confined to integrity
constraints by replacing them by new atoms a∗ ∈ A∗, whose truth value is completely determined
by the corresponding a′ ∈ A′ atoms by means of the last set of rules.

Proposition 2
For any temporal logic program Π, the program tr∗(Π) is in PNF.

The solutions to temporal problems with Π are the same as the solutions to the same temporal
problems with tr∗(Π) where the atoms a∗[i] are false at i = 0 and have the truth value of
a[i− 1] at the other time steps i. Just like before, when we use this translation, we have to add to
CDNL-ASP the correct assumptions to fix the value of the a∗ atoms at step 0.

Proposition 3
Let T1 = (Π, I, F) and let T2 = (tr∗(Π), I, F) be temporal logic problems. There is a one-to-one
correspondence between the solutions to T1 and the solutions to T2 that do not contain any atom
p∗ ∈ P∗ at step 0.

This proposition allows us to replace any temporal program Π by a temporal program tr∗(Π)

in PNF. We can then apply the translation trλ and benefit from Theorem 9. In fact, we can go one
step further, and apply the nogoods learned with the program trλ(tr∗(Π)) directly to the original
problem with Π. We make this claim precise in the next theorem. We extend our definition of the
simplification of a nogood δ, simp(δ), to accommodate literals over A ∪A∗. That is, simp(δ) is
the nogood {Vai | Vai ∈ δ,V ∈ {T,F}, a ∈ A}∪{Vai−1 | Va∗i ∈ δ,V ∈ {T,F}, a∗ ∈ A∗}
that results from skipping the λi literals of δ, and replacing the atoms a∗i by their corresponding
atoms ai−1.

Theorem 2
Let Π be a temporal logic program, and δ be a resolvent of Ψtrλ(tr∗(Π))[1,m] for some m ≥ 1.
Then, for every n ≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{simp(δ〈t〉) | stepλ(δ〈t〉) ⊆ [1, n]}.

On the generalization of learned constraints for ASP solving in temporal domains 5

3 Proofs

Lemma 1
For any temporal logic program Π, ΣΠ[n] = ΣΠ[n].

Proof
1. Constraints

For any constraint c of the form ⊥ ← a1, ...am, not bm+1, ..., not bl it holds that

c[n] = ⊥ ← a1[n], ...am[n], not bm+1[n], ..., not bl[n]

Σc[n] = Ta1[n], ...Tam[n],Fbm+1[n], ...,Fbl[n]

Σc = Ta1, ...Tam,Fbm+1, ...,Fbl

Σc[n] = Ta1[n], ...Tam[n],Fbm+1[n], ...,Fbl[n]

Since all constraints have the form of c, we can conclude that Σc[n] = Σc[n] for any
constraint.

2. Body
For any body B of the form {a1, ...am, not bm+1, ..., not bl} it holds that

B[n] = a1[n], ...am[n], not bm+1[n], ..., not bl[n]

ΣB[n] = {{TB[n],Fa1[n]}, ..., {TB[n],Fbl[n]}} ∪ {FB[n],Ta1[n], ...,Fbl[n]}
ΣB = {{TB,Fa1}, ..., {TB,Fbl}} ∪ {FB,Ta1, ...,Fbl}

ΣB [n] = {{TB[n],Fa1[n]}, ..., {TB[n],Fbl[n]}} ∪ {FB[n],Ta1[n], ...,Fbl[n]}

Since all bodies have the form of B, we can then conclude that ΣB[n] = ΣB [n].
3. A set of rules with the same head

For any set of rules with the same head Π of the form {a← B1, ..., a← Bl} where Bi are
bodies and ΣB is the set of all body nogoods it holds that

Π[n] = {a[n]← B1[n], ..., a[n]← Bl[n]}
ΣΠ[n] = {{FB1[n], ...,FBl[n],Ta[n]}, {TB1[n],Fa[n]}, ..., {TBl[n],Fa[n]}} ∪ ΣB

ΣΠ = {{FB1, ...,FBl,Ta}, {TB1,Fa}, ..., {TBl,Fa} ∪ ΣB}
ΣΠ[n] = {{FB1[n], ...,FBl[n],Ta[n]}, {TB1[n],Fa[n]}, ..., {TBl[n],Fa[n]}} ∪ ΣB

Since body nogoods are also equal, we can conclude that ΣΠ[n] = ΣΠ[n].
4. Choice rules

Since choice rule nogoods are a subset of normal rule nogoods, we can conclude that
Σc[n] = Σc[n] for any choice rule c.

5. Loops
For any set of rules Π forming a loop of the form a1 ← a2, B1, ..., an ← a1, Bn with
external Bodies for (some) ai being labeled Ei and ΣR is the set of all rule nogoods it holds
that

6 J. Romero et al.

Π[n] = {a1[n]← a2[n], B1[n], ..., an[n]← a1[n], Bn[n]}
ΣΠ[n] = {{Ta1[n],FEi1 [n], ...,FEim [n]}, ..., {Tan[n],FEi1 [n], ...,FEim [n]}} ∪ ΣR

ΣΠ = {{Ta1,FEi1 , ...,FEim}, ..., {Tan,FEi1 , ...,FEim}} ∪ ΣR

ΣΠ[n] = {{Ta1[n],FEi1 [n], ...,FEim [n]}, ..., {Tan[n],FEi1 [n], ...,FEim [n]}} ∪ ΣR

Since rule nogoods are also equal, we can conclude that ΣΠ[n] = ΣΠ[n].
From items 1, 2, 3, 4, 5 we can say that for any program Π, ΣΠ[n] = ΣΠ[n].

Proposition 1
If Π is a temporal logic program and n ≥ 1 then Σgen(Π,n) = ΨΠ[1, n].

Proof
Let C = {{a′} ← |a ∈ A} where A is the set of atoms ocurring in Π. Since all the rules in C are
choice rules with empty bodies, ΣC[n] is comprised of nogoods of the form {Ta′[n],F∅}. Given
that F∅ is always false the nogoods can be safely removed. Hence, for any program Π it holds
that ΣC[n] ∪ ΣΠ = ΣΠ.

For a given temporal logic program Π we can define trans(Π) = C∪Π. Additionally, gen(Π, n)

can be defined as C[1] ∪Π[1, n], which means that

Σgen(Π,n) = ΣC[1] ∪ ΣΠ[1,n]

= ΣC[1] ∪ ΣΠ[1] ∪ ... ∪ ΣΠ[n]

= ΣΠ[1] ∪ ... ∪ ΣΠ[n] (deleting choice nogoods)

Also,

ΨΠ[1, n] = Σtrans(Π)[1, n]

= Σtrans(Π)[1] ∪ ... ∪ Σtrans(Π)[n]

= ΣC [1] ∪ ΣΠ[1] ∪ ... ∪ ΣC [n] ∪ ΣΠ[n]

= ΣΠ[1] ∪ ... ∪ ΣΠ[n] (deleting choice nogoods)

= ΣΠ[1] ∪ ... ∪ ΣΠ[n] (lemma1)

= Σgen(Π,n)

Theorem 2
Let (Π, I, F) be a temporal logic problem over A. The pair (X,n) is a solution to (Π, I, F) for
n ≥ 1 and X ⊆ A[0, n] iff X = ST ∩ A[0, n] for a (unique) solution S for ΨΠ[1, n] such that
I[0] ∪ F [n] ⊆ S.

Proof
Let A be the set of atoms occurring in Π.

By Proposition 1 a solution for the set of nogoods ΨΠ[1, n] is a solution for Σgen(Π,n). A
solution for Σgen(Π,n) is a stable model for the generator program gen(Π, n). Since a stable

On the generalization of learned constraints for ASP solving in temporal domains 7

model of gen(Π, n) consistent with I and F is a solution of (Π, I, F), then a solution S of
ΨΠ[1, n] consistent with some I and F , the pair (X,n) where X = ST ∩ A[1, n] is a solution
for (Π, I, F).

Let (X,n) be a solution to the temporal logic problem (Π, I, F). By definition, X is a stable
model of gen(Π, n) consistent with I and F . Since a stable model of gen(Π, n) is a solution
of Σgen(Π,n) which is a solution of ΨΠ[1, n] (by Proposition 1), it follows that S = {Ta|a ∈
X} ∪ {Fa|a ∈ A[0, n] \ X} is a solution for the temporal logic program ΨΠ[1, n] such that
I[0] ∪ F [n] ⊆ S.

Lemma 2
For any resolvent δ of Ψ[i, j] it holds that δ〈t〉 is a resolvent of Ψ[i+ t, j + t]

Proof
Recall that if a nogood is a resolvent of Ψ[i, j] then it must have a resolution proof T where
every nogood δi ∈ T is either entailed by Ψ[i, j] or the result of resolving some δj and δk
where j < k < i and both δj and δk are entailed by Ψ[i, j]. Additionally, for a resolution proof
T = δ1, . . . δn the result is δn. Finally, note that if a nogood δ ∈ Ψ[i, j] then δ〈t〉 ∈ Ψ[i+ t, j + t]

We now prove the lemma by induction. Let T be the resolution proof of a nogood δ that is
entailed by Ψ[i, j].

Induction base 1: If T = δ then δ ∈ Ψ[i, j] holds and, trivially, δ〈t〉 ∈ Ψ[i+ t, j + t].

Induction base 2: If T = δ1, δ2 then, since there less than two nogoods before δ1 and δ2 then
both must be in Ψ[i, j]. Consequently, δ1〈t〉 ∈ Ψ[i+ t, j + t] and δ2〈t〉 ∈ Ψ[i+ t, j + t].

Induction step n: Let T = δ1, ..., δn be a resolution proof for nogood δn. If δn ∈ Ψ[i, j]

then, trivially, δn〈t〉 ∈ Ψ[i+ t, j + t]. If δn /∈ Ψ[i, j] then we know by induction that all δi
with 0 ≤ i ≤ n − 1 are entailed by Ψ[i, j]. Since δn /∈ Ψ[i, j] then there are some δk and δl
where k < l < i that resolve to δn. By induction, δk〈t〉 and δl〈t〉 are entailed by Ψ[i+ t, j + t].
Consequently, δn〈t〉 is entailed by Ψ[i+ t, j + t].

Theorem 3
Let Π be a temporal logic program, and δ be a resolvent of ΨΠ[i, j] for some i and j such that
1 ≤ i ≤ j. Then, for any n ≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{δ〈t〉 | [i+ t, j + t] ⊆ [1, n]}.

Proof
Let δ be a resolvent of Ψ[i, j]. Then the shifted nogood δ〈t〉 is entailed by Ψ[i+ t, j + t] (Lemma
2). Let t be a value where [i + t, j + t] ⊆ [1, n] holds, then δ〈t〉 is entailed by Ψ[1, n] since
Ψ[i+ t, j + t] ⊆ Ψ[1, n].

Theorem 4
Let (Π, I, F) be a temporal logic problem over A, n ≥ 1, and X be a set of atoms over A[0, n].
Then, the following statements are equivalent:

• The pair (X,n) is a solution to (Π, I, F).
• X = ST ∩ A[0, n] for a solution S for ΨΠ[1, n] such that I[0] ∪ F [n] ⊆ S.
• There is a path (X0, . . . , Xn) in G(Π) such that X =

⋃
i∈[0,n]Xi[i], the state X0 is

consistent with I , and the state Xn is consistent with F .

8 J. Romero et al.

Proof
The solution to the temporal logic problem (Π, I, F) is a stable model of gen(Π, n) consistent
with I[0] and F [0]. We can split gen(Π, n) as follows: Let C = {{a} ← |a ∈ A}

C[0] ∪Π[1] ∪ ... ∪Π[n]

where A is the set of atoms ocurring in Π.
From the Splitting Set Theorem (?) it follows that we can build every stable model X for

gen(Π, n) as follows:

L0 is a stable model of C[0]

L1 is a stable model of Π[1] ∪ L0

...

Ln is a stable model of Π[n] ∪ Ln−1

where Ln is a stable model of gen(Π, n).
It is easy to see that every Li−1 ⊆ Li where 1 ≤ i ≤ n. Let Zi = Li ∩ A[i] with 0 ≤ i ≤ n,

then program Π[i] ∪ Li−1 can be rewritten as Π[i] ∪ Zi−1 ∪ ... ∪ Z0.
M is a stable model of Π[i] ∪ Zi−1 ∪ ... ∪ Z0 iff M has the form Mi ∪ Zi−2 ∪ ... ∪ Z0 for

some stable model Mi of trans(Π)[i] such that Zi−1 = Mi ∩P [i− 1]. This follows from the fact
that trans(Π)[i] = Π[i] ∪ C[i− 1]. Following the Splitting Set Theorem, we can build a stable
model for trans(Π)[i] by first getting a model S for C[i− 1] and then a model for Π[i]∪S. Since
C is comprised of choice rules for all atoms, then the assignment formed from Zi−1 is a stable
model of C[i− 1]. Thus, a stable model of Π[i] ∪ Zi−1 is a stable model of trans(Π)[i].

This also means that Zi = Mi ∩ P [i] is a state in G(Π) and that (Zi, Zi−1) is an edge.
Consequently, we can say that the states Z0, ..., Zn form a path in the graph G(Π). Finally, for

any stable model of gen(Π, n) consistent with I[0] and F [n], then the states Z0, ..., Zn form a
path in G(Π) and I[0] and F [n] are consistent with Z0 and Zn respectively.

Proposition 2
Let Π be a temporal logic program over A, n ≥ 1, and let δ be a (non-temporal) nogood over
A[0, n]. Then, the following two statements are equivalent:

• The set of nogoods ΨΠ[1, n] entails δ.
• Every path (X0, . . . , Xn) of length n in G(Π) does not violate δ.

Proof
By Theorem 4 when I and F are empty, the solutions to ΨΠ[i, j] correspond to paths of length
j − i+ 1 in G(Π). This means that no path of this length violates a nogood in ΨΠ[i, j].

Since δ is entailed by ΨΠ[i, j], then no path of length j − i+ 1 in G(Π) violates δ.

Proposition 3
Let Π be a internal temporal program. If (X0, . . . , Xn) is a path of length n in G(Π), then for any
i, j ≥ 0 there is a path (Y0, . . . , Yn+i+j) of length n+ i+ j in G(Π) such that (X0, . . . , Xn) =

(Yi, . . . , Yn+i).

On the generalization of learned constraints for ASP solving in temporal domains 9

Proof
Let Yi = X0, . . . , and Yn+i = Xn. We have that (Yi, . . . , Yn+i) is a path in G(Π). Since Π is
internal, there is some edge (Yi−1, Yi) in G(Π), and there is also some edge (Yi−2, Yi−1) in G(Π),
and so on. Hence, there is a path (Y0, . . . , Yn+i) of length n+ i in G(Π). Similarly, since G(Π) is
internal, in G(Π) there are edges (Yn+i, Yn+i+1), (Yn+i+1, Yn+i+2), and so on. Hence, there is
a path (Y0, Yn+i+j) in G(Π) of length n+ i+ j such that (X0, . . . , Xn) = (Yi, . . . , Yn+i).

Theorem 5
Let Π be a temporal logic program, and δ be a resolvent of ΨΠ[i, j] for 1 ≤ i ≤ j. If Π is internal,
for any n ≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{δ〈t〉 | step(δ〈t〉) ⊆ [0, n]}.

Proof
We prove the case where δ consist of normal atoms, the proof for the general case follows the
same lines.

Let Π be defined over some set of atoms A. Given that δ is a resolvent of ΨΠ[i, j], its atoms
must belong to some smallest set A[k, l] such that 0 ≤ i − 1 ≤ k ≤ l ≤ j. Then, the integers
t such that step(δ〈t〉) ⊆ [0, n] are exactly the t’s such that −k ≤ t ≤ n − l. Hence, to prove
this theorem we just have to prove that for every t such that −k ≤ t ≤ n− l the set of nogoods
ΨΠ[1, n] entails δ〈t〉.

Since δ is a resolvent of ΨΠ[i, j], the shifted version δ〈1− i〉 is a resolvent of ΨΠ[1, j + 1− i],
and therefore ΨΠ[1, j + 1− i] entails δ〈1− i〉. By Proposition 2, every path (X0, . . . , Xj+1−i)

in G(Π) does not violate δ〈1− i〉. We consider two cases: k < l and k = l.
Case 1 (k < l). Since Π is internal, we can prove by contradiction that every path (Y0, . . . , Yl−k)

in G(Π) does not violate δ〈−k〉.
Assume that there is such a path (Y0, . . . , Yl−k). By Proposition 3, there is a path (X0, . . . , Xj+1−i)

in G(Π) such that (Y0, . . . , Yl−k) = (Xk+1−i, . . . , Xl+1−i). Given that (Y0, . . . , Yl−k) violates
δ〈−k〉, the path (X0, . . . , Xj+1−i) would violate δ〈−k+(k+1−i)〉 = δ〈1−i〉, which contradicts
one of our previous statements.

If every path (Y0, . . . , Yl−k) in G(Π) does not violate δ〈−k〉, then for every path (X0, . . . , Xn)

in G(Π) and every t such that −k ≤ t ≤ n− l, the shifted nogood δ〈t〉 is not violated. Then, by
Theorem 4, we can conclude that for every t such that −k ≤ t ≤ n− l, the solutions to ΨΠ[1, n]

do not violate δ〈t〉, and therefore ΨΠ[1, n] entails δ〈t〉.
Case 2 (k = l). Note that since all atoms of δ belong to A[k], all atoms of δ〈−k〉 belong to

A[0]. Given that Π is internal, we can prove by contradiction that every path (Y0, Y1) in G(Π)

does not violate δ〈−k〉.
Assume that there is such a path (Y0, Y1). Then, by Proposition 3, there is a path of the form

(X0, . . . , Xj+1−i, Xj+2−i) in G(Π) such that (Y0, Y1) = (Xk+1−i, Xk+2−i). This path violates
δ〈−k + (k + 1 − i)〉 = δ〈1 − i〉. Since the atoms of δ〈1 − i〉 belong to A[k + 1 − i] and
k + 1 − i < j + 2 − i, the subpath (X0, . . . , Xj+1−i) in G(Π) also violates δ〈1 − i〉, which
contradicts one of our previous statements.

Given that every path (Y0, Y1) in G(Π) does not violate δ〈−k〉, it follows that for every path
(X0, . . . , Xn, Xn+1) in G(Π) and every t such that −k ≤ t ≤ n− l, the shifted nogood δ〈t〉 is
not violated. Since the atoms of δ〈t〉 belong to A[k + t] and k + t < n + 1 for all t, then the
previous statement also holds for all paths (X0, . . . , Xn) in G(Π). Finally, we can reason as in

10 J. Romero et al.

the previous case, and by Theorem 4 conclude that for all t such that −k ≤ t ≤ n− l, the set of
nogoods ΨΠ[1, n] entails δ〈t〉.

Proposition 4
Let Π be a temporal logic program and I be a partial assignment such that Π is internal wrt I .
If (X0, . . . , Xn) is a path of length n in G(Π) and X0 is initial or reachable wrt I , then for any
i, j ≥ 0 there is a path (Y0, . . . , Yn+i+j) of length n+ i+ j in G(Π) such that (X0, . . . , Xn) =

(Yi, . . . , Yn+i).

Proof
Let Yi = X0, . . . , and Yn+i = Xn. We have that (Yi, . . . , Yn+i) is a path in G(Π) where Yi is
initial or reachable wrt I . If Yi is initial wrt I , since Π is internal wrt I , Yi is also loop-reachable,
and therefore there is a path (Y0, . . . , Yi) of length i in G(Π), that may go through a loop in G(Π)

as many times as necessary. Similarly, if Yi is reachable wrt I , since Π is internal wrt I , there is
a path (Y0, . . . , Yi) of length i in G(Π) that may go through a loop in G(Π) and through some
initial state wrt I . Both cases imply that there is a path (Y0, . . . , Yn+i) of length n+ i in G(Π).

On the other direction, in G(Π) there are edges (Yn+i, Yn+i+1), (Yn+i+1, Yn+i+2), and so on.
These edges must exist because the states occurring in them are reachable wrt I , and therefore
they must have some outgoing edge. This gives us a path (Y0, . . . , Yn+i+j) in G(Π) of length
n+ i+ j such that (X0, . . . , Xn) = (Yi, . . . , Yn+i).

Proposition 5
A temporal logic program Π is internal iff it is internal wrt the empty assignment.

Proof
From left to right. Assume Π is internal. To prove condition (i) of being internal wrt ∅, take
any initial state X wrt ∅. Since Π is internal, X has some predecessor in G(Π). Similarly, each
predecessor must have another predecessor, and so on. Given that G(Π) is finite, at some point
one of these states must be repeated, which implies that X is loop-reachable and condition (i)
holds. Condition (ii) of being internal wrt ∅ follows directly from the assumption.

From right to left. Assume that Π is internal wrt ∅. The initial states wrt ∅ are the states of G(Π)

that have some outgoing edge. By the assumption, these states are loop-reachable. Hence, they
have some incoming edge, which implies that they are internal. The reachable states wrt ∅ are the
states of G(Π) that have some incoming edge. Again, by the assumption, these states are also
internal. This shows that states with incoming or incoming edges are internal, and therefore Π is
internal.

Theorem 6
Let Π be a temporal logic program, I be a partial assignment, and δ be a resolvent of ΨΠ[i, j] for
1 ≤ i ≤ j. If Π is internal wrt I , then for any n ≥ 1, the set of nogoods ΨΠ[1, n] ∪ nogoods(I)

entails the generalization

{δ〈t〉 | step(δ〈t〉) ⊆ [0, n]}.

On the generalization of learned constraints for ASP solving in temporal domains 11

Proof
The proof is similar to the proof of Theorem 5. We prove the case where δ consist of normal
atoms, the proof for the general case follows the same lines.

Let Π be defined over some set of atoms A. Given that δ is a resolvent of ΨΠ[i, j], its atoms
must belong to some smallest set A[k, l] such that 0 ≤ i − 1 ≤ k ≤ l ≤ j. Then, the integers
t such that step(δ〈t〉) ⊆ [0, n] are exactly the t’s such that −k ≤ t ≤ n − l. Hence, to prove
this theorem we just have to prove that for every t such that −k ≤ t ≤ n− l the set of nogoods
ΨΠ[1, n] ∪ nogoods(I) entails δ〈t〉.

Since δ is a resolvent of ΨΠ[i, j], the shifted version δ〈1− i〉 is a resolvent of ΨΠ[1, j + 1− i],
and therefore ΨΠ[1, j + 1− i] entails δ〈1− i〉. By Proposition 2, every path (X0, . . . , Xj+1−i)

in G(Π) does not violate δ〈1− i〉. We consider two cases: k < l and k = l.
Case 1 (k < l). Since Π is internal wrt I , we can prove by contradiction that every path

(Y0, . . . , Yl−k) in G(Π) where Y0 is initial or reachable wrt I does not violate δ〈−k〉.
Assume that there is such a path (Y0, . . . , Yl−k). By Proposition 4, there is a path of the

form (X0, . . . , Xj+1−i) in G(Π) such that (Y0, . . . , Yl−k) = (Xk+1−i, . . . , Xl+1−i). Given that
(Y0, . . . , Yl−k) violates δ〈−k〉, the path (X0, . . . , Xj+1−i) would violate δ〈−k+ (k+ 1− i)〉 =

δ〈1− i〉, which contradicts one of our previous statements.
If every path (Y0, . . . , Yl−k) in G(Π) where Y0 is initial or reachable wrt I does not violate

δ〈−k〉, then for every path (X0, . . . , Xn) in G(Π) where X0 is initial wrt I and every t such that
−k ≤ t ≤ n− l, the shifted nogood δ〈t〉 is not violated. Theorem 4 gives us a correspondence
between the paths (X0, . . . , Xn) in G(Π) and the solutions to ΨΠ[1, n]. It is easy to see that,
if we add to ΨΠ[1, n] the set nogoods(I), we also have a correspondence between the paths
(X0, . . . , Xn) in G(Π) where X0 is initial wrt I and the solutions to ΨΠ[1, n] ∪ nogoods(I).
Hence, we can conclude that the solutions to ΨΠ[1, n] ∪ nogoods(I) do not violate δ〈t〉, and
therefore ΨΠ[1, n] ∪ nogoods(I) entails δ〈t〉.

Case 2 (k = l). Note that since all atoms of δ belong to A[k], all atoms of δ〈−k〉 belong to
A[0]. Given that Π is internal wrt I , we can prove by contradiction that every path (Y0, Y1) in
G(Π) where Y0 is initial or reachable wrt I does not violate δ〈−k〉.

Assume that there is such a path (Y0, Y1). Then, by Proposition 4, there is a path of the form
(X0, . . . , Xj+1−i, Xj+2−i) in G(Π) such that (Y0, Y1) = (Xk+1−i, Xk+2−i). This path violates
δ〈−k + (k + 1 − i)〉 = δ〈1 − i〉. Since the atoms of δ〈1 − i〉 belong to A[k + 1 − i] and
k + 1 − i < j + 2 − i, the subpath (X0, . . . , Xj+1−i) in G(Π) also violates δ〈1 − i〉, which
contradicts one of our previous statements.

Given that every path (Y0, Y1) in G(Π) where Y0 is initial or reachable wrt I does not violate
δ〈−k〉, it follows that for every path (X0, . . . , Xn, Xn+1) in G(Π) where X0 is initial wrt I and
every t such that −k ≤ t ≤ n − l, the shifted nogood δ〈t〉 is not violated. Since the atoms of
δ〈t〉 belong to A[k + t] and k + t < n+ 1 for all t, then the previous statement also holds for all
paths (X0, . . . , Xn) in G(Π) where X0 is initial wrt I . Finally, we can reason as in the previous
case, and by Theorem 4 conclude that for all t such that −k ≤ t ≤ n − l, the set of nogoods
ΨΠ[1, n] ∪ nogoods(I) entails δ〈t〉.

Proposition 6
Let Π be a temporal logic program, and let E be the set of edges in its transition graph G(Π). The
set of edges in G(λ(Π)) is the union of the following four sets:

• {(X,Y ∪ {λ}) | (X,Y) ∈ E}

12 J. Romero et al.

• {(X ∪ {λ}, Y ∪ {λ}) | (X,Y) ∈ E}
• {(X,Y) | X,Y ⊆ A}
• {(X ∪ {λ}, Y) | X,Y ⊆ A}

Proof
The proof follows the lines of the explanation of the main text, using the Splitting Set Theorem to
split the program into the choice rule over λ and the rest of the program.

Proposition 7
Let (Π, I, F) be a temporal logic problem. There is a one-to-one correspondence between the
solutions to (Π, I, F) and the λ-normal solutions to (λ(Π), I, F).

Proof
For any solution S of (Π, I, F), by Theorem 4, there is a path P = (X0, X1, . . . , Xn) in G(Π) =

(V,E) where I ⊂ X0 and F ⊂ Xn. By Proposition 6, if (X,Y) ∈ E then (X,Y ∪ {λ}) ∈ Eλ
and (X ∪{λ}, Y ∪{λ}) ∈ Eλ where G(λ(Π)) = (V λ, Eλ). So, we can transform P to a unique
Pλ = (X0, X1 ∪ {λ}, . . . , Xn ∪ {λ}) which is a path of G(λ(Π)). By Theorem 4, Pλ is a
solution of (λ(Π), I, F). Additionally, since λ is true on all states but the first one, it is also a
λ-normal solution.

On the other hand, for a λ-normal solution Sλ of (λ(Π), I, F), we have a path Pλ = (Y0, Y1 ∪
{λ}, . . . , Yn ∪ {λ}) (Theorem 4). Since a state W ∪ {λ} ∈ V λ must satisfy the rules of Π then
W ∈ V . Hence, Y1, . . . , Yn ∈ V and (Ym−1, Ym) ∈ E for 2 ≤ m ≤ n. Since the pairs of the
form (X,Y ∪ {λ}) only exist for (X,Y) ∈ E, then (Y0, Y1) ∈ E. Therefore, by Theorem 4
P = (Y0, Y1, . . . , Yn) is a path in G(Π). Since I ∈ Y0 and F ∈ Yn, then there is a solution that
corresponds to this path and is a solution (Π, I, F).

Proposition 8
For any temporal program Π, the program λ(Π) is internal wrt {Fλ0}.

Proof
Recall the condition for a temporal logic problem to be internal: 1) Every initial state wrt I is
loop-reachable, and 2) Every reachable state wrt I is internal.

In this case I = {Fλ0}. The first condition is satisfied since the initial state has no λ. By
Proposition 6, a state without lambda is connected to itself, meaning that it is a loop.

For the second condition we consider that all possible states are connected to some next state
without λ (Proposition 6), hence all reachable states have outgoing edges. Additionally, every
state with or without λ has some previous state connected to it (Proposition 6).

We can then say that the program λ(Π) is internal wrt {Fλ0}.

Theorem 7
Let Π be a temporal logic program, and δ be a resolvent of Ψλ(Π)[i, j] for some i and j such that
1 ≤ i ≤ j. For any n ≥ 1, the set of nogoods Ψλ(Π)[1, n] ∪

{
{Tλ0}

}
entails the generalization

{δ〈t〉 | step(δ〈t〉) ⊆ [0, n]}.

On the generalization of learned constraints for ASP solving in temporal domains 13

Proof
Proposition 8 tells us that λ(Π) is internal. We can also think of {Fλ0} as a partial assignment I .
Hence we can directly apply Theorem 6 to get that Ψλ(Π)[1, n] ∪

{
{Tλ0}

}
|= δ.

Theorem 8
Let Π be a temporal logic program, and let δ be a resolvent of Ψλ(Π)[i, j] for some i and j such
that 1 ≤ i ≤ j. For any n ≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{simp(δ〈t〉) | step(δ〈t〉) ⊆ [0, n],Tλ0 /∈ δ〈t〉}.

Proof
For any δ and t such that step(δ〈t〉) ⊆ [0, n], λ0 /∈ δ〈t〉 it holds that Ψλ(Π)[1, n] ∪ {{Tλ0}} |=
δ〈t〉 (Theorem 7).

This means that every path of length k = j − i in G(λ(Π)) does not violate δ〈t〉 where
λ0 /∈ δ〈t〉. Since every path longer than k has a subpath of length k, then every path longer than k
must also not violate δ〈t〉. Therefore, for n ≥ k, every path (X0, . . . , Xn) in G(λ(Π)) must not
violate δ〈t〉 where λ0 /∈ δ〈t〉.

Now we will prove the theorem by contradiction. Take any path (X0, . . . , Xn) in G(Π) and
assume that it violates simp(δ〈t〉). By Proposition 6 we have a path (X0, X1∪{λ} . . . , Xn∪{λ})
that will violate simp(δ〈t〉) ∪ {λ1, . . . , λn}. Since δ〈t〉 ⊂ simp(δ〈t〉) ∪ {λ1, . . . , λn} the path
also violates δ〈t〉. This is a contradiction. Hence, every path of length n of G(Π) does not violate
simp(δ〈t〉). Therefore ΨΠ[1, n] |= {simp(δ〈t〉) | step(δ〈t〉) ⊆ [0, n],Tλ0 /∈ δ〈t〉}.

Proposition 9
Let T1 = (Π, I, F) and let T2 = (trλ(Π), I, F) be temporal logic problems. There is a one-to-one
correspondence between the solutions to T1 and the λ-normal solutions to T2.

Proof
For any model I of T1 of lengh n there is also a model Iλ = I ∪ {λ1, ..., λn} of T2. Since trλ

only adds a λ to the dynamic constraints the only difference in the nogoods of T1 and T2 is
that trλ(Π)di have an additional λ. Hence, no nogoods of trλ(Π) \ trλ(Π)di is satisfied by Iλ.
Additionally, since in λ-normal solutions all λ are true, the nogoods of Πdi can be simplified by
deleting their λ. The simplified nogoods of trλ(Π)di are the same as the nogoods of Πdi . This
means that Iλ does not satisfy any nogood in trλ(Π)di . We can then conclude that Iλ does not
satisfy any nogood of trλ(Π) and is thus a model of T2.

For any model Iλ of T2 of lengh n there is also a model I = Iλ \ {λ1, ..., λn} of T1. Since
trλ only adds a λ to the dynamic constraints the only difference in the nogoods of T1 and T2 is
that trλ(Π)di have an additional λ. Hence, all nogoods of Π \Πdi are not satisfied by I . Since in
λ-normal solutions all λ are true, the nogoods of trλ(Π)di act the same way as the nogoods of
Πdi . Hence, the nogoods of Πdi are also not satisfied by I . We can then conclude that I does not
satisfy any nogood of Π and is thus a model of T1.

It follows that for every stable model of (Π, I, F) there is a corresponding stable model of
(trλ(Π), I, F) and vice versa.

Lemma 3
An interval [k, l] is an overaproximation of the interval [i, j] if k ≤ i and j ≤ l holds. For some
resolvent δ of Ψλ

tr (Π)[i, j], stepλ(δ) computes an overaproximation of the interval [i, j].

14 J. Romero et al.

Proof
• case 1: δ is a resolvent of Ψλ

tr (Π)[i, i]. By definition, stepλ(δ) = [i, i] since there would
be no λ in δ and the only timestep in the atoms of δ would be i.

• case 2: δ is a resolvent of Ψλ
tr (Π)[i, j] with i < j and λ[i, j] ∈ δ. By definition, stepλ(δ) =

[i− 1, j] since the lowest timepoint in any λ is i.
• case 3: δ is a resolvent of Ψλ

tr (Π)[i, j] with i < j and λ[i + 1, j] ∈ δ. By definition,
stepλ(δ) = [i, j] since the lowest timepoint in any λ is i+ 1.

We can clearly see that for any resolvent δ the function stepλ(δ) computes the exact (cases 1
and 3) or a bigger (case 2) interval. Hence, it is an overapproximation of the interval.

Theorem 9
Let Π be a temporal logic program in PNF, and δ be a resolvent of Ψtrλ(Π)[1,m] for some m ≥ 1.
Then, for every n ≥ 1, the set of nogoods Ψtrλ(Π)[1, n] entails the generalization

{δ〈t〉 | stepλ(δ〈t〉) ⊆ [1, n]}.

Proof
If δ is a resolvent of Ψtrλ(Π)[1,m] and stepλ(δ) = [i, j] where 0 ≤ i ≤ j ≤ m then δ is a
resolvent of Ψtrλ(Π)[i, j] (by Lemma 3). For any t, stepλ(δ〈t〉) = [i + t, j + t] which means
stepλ(δ〈t〉) is a resolvent of Ψtrλ(Π)[i+ t, j + t] (by Lemma 2). Consequently, for any t where
[i+ t, j + t] ⊆ [1, n] then δ〈t〉 is entailed by Ψtrλ(Π)[1, n] due to Theorem 3.

Proposition 10
For any temporal logic program Π, the program tr∗(Π) is in PNF.

Proof
Let A be a set of atoms ocurring in a logic program Π and A′ be the set of atoms that reference
the past. Recall that a logic program Π is in PNF if for any rule r ∈ Πn ∪ Πc it holds that
Bd(r) ∩ A′ = ∅

For any rule r ∈ Πn ∪ Πc where Bd(r) ∩ A′ 6= ∅ it holds that Bd(r∗) ∩ A′ = ∅ since
any occurrence is substituted by the corresponding p∗ atom. For any rule r ∈ Πn ∪ Πc where
Bd(r) ∩ A′ = ∅ it holds that Bd(r∗) ∩ A′ = ∅ since the translation does not change the rule.
Hence, for any rule r ∈ Πn ∪Πc it holds that Bd(r∗) ∩ A′ = ∅. Which means that tr∗(Π) is in
PNF.

Lemma 4
For any program Π the truth value of p∗ and p′ always conincide in the solutions of tr∗(Π) where
a∗ ∈ A∗ are the atoms introduced by the tr∗translation and a′ ∈ A′ are the atoms occuring in Π

referencing the past.

Proof
We label the rules added by the translation tr∗as follows:

{a∗} ← (1)

⊥ ← a′,¬a∗ (2)

⊥ ← ¬a′, a∗ (3)

On the generalization of learned constraints for ASP solving in temporal domains 15

• if a′ is True then a∗ must also be True to not violate rule 2
• if a′ is False then a∗ must also be False to not violate rule 3
• if a∗ is True then a′ must also be True to not violate rule 3
• if a∗ is False then a′ must also be False to not violate rule 2

We can then conclude that the truth value of a∗ and a′ always conincide in the resulting program
tr∗(Π).

Proposition 11
Let T1 = (Π, I, F) and let T2 = (tr∗(Π), I, F) be temporal logic problems. There is a one-to-one
correspondence between the solutions to T1 and the solutions to T2 that do not contain any atom
p∗ ∈ P∗ at step 0.

Proof
We label the rules added by the translation tr∗as follows:

{a∗} ← (4)

⊥ ← a′,¬a∗ (5)

⊥ ← ¬a′, a∗ (6)

Let a∗ ∈ A∗ be the atoms added by the tr∗ translation and a′ ∈ A′ be the set of atom occuring
in Π that reference the past.

Case 1: Let A′ ∩ At(Π) = ∅. Since tr∗(Π) = Π then T1 = T2 and they have the same
solutions.

Case 2: Let A′ ∩ At(Π) 6= ∅. For any solution S1 of T1 there is a solution S2 of T2 where
S2 = S1 ∪ {a∗|a′ ∈ S1}. Since a′ and a∗ always have the same truth value (Lemma 4), the
evaluation of the nogoods induced by tr∗(Π) where a′ was substituted by a∗ will stay the same
regardless of the assignment. Also, none of the nogoods induced by the extra rules (5) and (6)
will be satisfied since a′ and ¬a∗ always have different truth values. We can also ignore rule (4)
since it does not induce any nogoods. Hence, S2 is a stable model of tr∗(Π). Finally, given that
S1 is consistent with I and F then S2 is also consistent with I and F . Consequently, it is also a
solution to T2.

On the other hand, For any solution S2 of T2 there is a solution S1 of T1 where S1 = S2 \
{a∗|a′ ∈ S2}. Since a′ and a∗ always have the same truth value (Lemma 4), the evaluation of
the nogoods induced by Π will stay the same regardless of the assignment. Hence, S2 is a stable
model of Π. Finally, given that S2 is consistent with I and F , then S1 is also consistent with I
and F . Consequently, it is also a solution to T1.

Lemma 5
For a resolvent δ of Ψtrλ(tr∗(Π))[1,m] it holds that simp(δ) is entailed by ΨΠ[1,m] for λ-normal
solutions of Ψtrλ(tr∗(Π))[1,m].

Proof
Let δλ be a resolvent of Ψtrλ(tr∗(Π))[1,m]. In λ-normal solutions the λ atoms in the nogoods
are always true and thus have no effect in their satisfaction. Hence, the nogood δ∗ = δλ \
λ[1,m] is entailed by Ψtr∗(Π)[1,m] since the nogoods in Ψtr∗(Π)[1,m] are the nogoods in
Ψtrλ(tr∗(Π))[1,m] without λs.

16 J. Romero et al.

Let δ∗ be a resolvent of Ψtr∗(Π)[1,m] with its corresponding resolution proof T . Let C be the
constraints added by the tr∗ translation. Observe that a nogood of tr∗(Π) \C can be transformed
into a nogood of Π simply by substituting all a∗[i] ∈ δ∗ by their corresponding atom a[i − 1]

from A where a∗ ∈ A∗ are the atoms introduced by the translation and A is the set of atoms
ocurring in Π.

For any nogood in T containing atoms a∗[i], we can substitute them by the corresponding atom
a[i − 1] without changing the semantics of the nogoods since they always have the same truth
value (by Lemma 4).

Next, recall that the constraints added by the tr∗ translation have the form

⊥ ←a[i− 1],¬a∗[i]
or

⊥ ←¬a[i− 1], a∗[i]

for some integer i. If we substitute a∗ by the corresponding atom we get the constraints

⊥ ←a[i− 1],¬a[i− 1]

or

⊥ ←¬a[i− 1], a[i− 1]

It is easy to see that any nogood that resolves with the nogoods induced by these constraints
would result in the same nogood. Hence, we can remove the nogoods induced by C from T
without affecting its result. Note that the choice rules introduced by the translatation do not induce
nogoods. This means that any nogood left in T is either in or entailed by ΨΠ[1,m]. Hence, the
result δ of the resolution proof T is entailed by ΨΠ[1,m].

It is clear that δ = {Vai|Vai ∈ δλ, a ∈ A} ∪ {Vai−1|Va∗i ∈ δλ, a∗ ∈ A∗}. In words, δ is
the result of substitung any atom in A∗ with the corresponding atom in A and ignoring any λ
atoms. Hence, δ = simp(δλ). Consequently, simp(δλ) is a resolvent of ΨΠ[1,m].

Theorem 10
Let Π be a temporal logic program, and δ be a resolvent of Ψtrλ(tr∗(Π))[1,m] for some m ≥ 1.
Then, for every n ≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{simp(δ〈t〉) | stepλ(δ〈t〉) ⊆ [1, n]}.

Proof
Since δ is entailed by Ψtrλ(tr∗(Π))[1,m] then simp(δ) is also entailed by ΨΠ[1,m] (Lemma 5).
By Theorem 9 simp(δ)〈t〉 is entailed by ΨΠ[1, n] for any t where stepλ(δ〈t〉) ⊆ [1, n].

On the generalization of learned constraints for ASP solving in temporal domains 17

4 Additional results

The following tables show the results of the experiments using the translations from our conference
paper (2). The experiments of our conference paper (?) have a bug in the multi-shot case. Here,
that bug is fixed and the learning approach is no longer worse than the baseline, but it is still not
better.

baseline 500 1000 1500
blocks (300) 0.5 (0) 0.1 (0) 0.1 (0) 0.1 (0)
depots (270) 146.4 (30) 138.2 (29) 126.0 (25) 128.3 (30)
driverlog (135) 14.1 (1) 12.5 (1) 12.3 (1) 10.7 (1)
elevator (300) 3.0 (0) 3.7 (0) 3.8 (0) 4.3 (0)
grid (30) 11.4 (0) 5.2 (0) 5.3 (0) 5.2 (0)
gripper (255) 381.0 (96) 368.5 (91) 359.0 (90) 370.8 (88)
logistics (225) 0.5 (0) 0.9 (0) 0.9 (0) 0.9 (0)
mystery (126) 57.0 (3) 58.5 (3) 50.9 (3) 46.8 (2)

Total (1663) 89.7 (130) 86.4 (124) 82.4 (119) 84.2 (121)

Table 1. Single shot solving of PDDL benchmarks using translations.

baseline 500 1000 1500
HanoiTower (20) 160.6 (2) 97.7 (0) 101.0 (0) 118.2 (1)
Labyrinth (20) 247.3 (3) 355.7 (4) 355.7 (4) 356.1 (4)
Nomistery (20) 585.3 (12) 575.6 (12) 556.2 (12) 502.0 (10)
Ricochet Robots (20) 465.3 (9) 464.7 (9) 464.8 (8) 464.7 (8)
Sokoban (20) 458.8 (9) 441.5 (9) 458.8 (8) 453.0 (8)
Visit-all (20) 559.0 (12) 556.5 (12) 560.8 (12) 556.4 (12)

Total (120) 412.7 (47) 415.3 (46) 416.2 (44) 408.4 (43)

Table 2. Single shot solving of ASP benchmarks using translations.

baseline 500 1000 1500
blocks (20) 1.3 (0) 0.7 (0) 0.7 (0) 0.7 (0)
depots (18) 148.6 (2) 257.0 (3) 189.4 (3) 221.7 (3)
driverlog (9) 108.9 (1) 102.0 (1) 104.9 (1) 108.5 (1)
elevator (20) 280.3 (5) 285.7 (5) 295.0 (5) 305.4 (5)
freecell (16) 900.0 (16) 900.0 (16) 900.0 (16) 900.0 (16)
grid (2) 5.2 (0) 4.1 (0) 4.2 (0) 4.3 (0)
gripper (17) 848.6 (16) 847.5 (16) 849.1 (16) 847.9 (16)
logistics (20) 225.2 (5) 225.3 (5) 225.3 (5) 225.3 (5)
mystery (14) 321.8 (5) 321.8 (5) 321.9 (5) 321.9 (5)

Total (136) 346.6 (50) 361.0 (51) 353.8 (51) 359.7 (51)

Table 3. Multi shot solving of PDDL benchmarks using translations.

18 J. Romero et al.

baseline 500 1000 1500
HanoiTower (20) 554.1 (10) 601.4 (11) 593.7 (10) 646.7 (11)
Labyrinth (20) 647.7 (14) 647.8 (14) 647.8 (14) 647.9 (14)
Nomistery (20) 64.2 (1) 77.0 (1) 81.0 (1) 69.3 (1)
Ricochet Robots (20) 527.3 (11) 518.1 (11) 519.3 (11) 521.3 (11)
Sokoban (20) 721.5 (16) 722.6 (16) 722.3 (16) 722.0 (16)
Visit-all (20) 677.5 (13) 704.0 (13) 774.6 (15) 801.6 (16)

Total (120) 532.1 (65) 545.2 (66) 556.5 (67) 568.1 (69)

Table 4. Multi shot solving of ASP benchmarks using translations.

	Additional rules of the Blocksworld Example
	Program translations from our conference paper
	Proofs
	Additional results

