
APPENDIX
A Careful Consideration of CLARIFY

Simulation-Induced Bias in Point Estimates of Quantities of Interest

Carlisle Rainey†

December 25, 2022

A Proofs

A.1 Proof of Lemma 1

Proof By definition,

τ̂ avg = E
[
τ
(
β̃
)]
.

Using Jensen’s inequality (Casella and Berger 2002, p. 190, Thm. 4.7.7), E
[
τ
(
β̃
)]

>

τ
[
E
(
β̃
)]

, so that

τ̂ avg > τ
[
E
(
β̃
)]
.

However, because β̃ ∼ MVN
[
β̂mle, V̂

(
β̂mle

)]
, E
(
β̃
)

= β̂mle, so that

τ̂ avg > τ
(
β̂mle

)
.

Of course, τ̂mle = τ
(
β̂mle

)
by definition, so that

τ̂ avg > τ̂mle.

The proof for concave τ follows similarly. �

A.2 Proof of Theorem 1

Proof According to Theorem 1 of Rainey (2017, p. 405), E
(
τ̂mle

)
− τ

[
E
(
β̂mle

)]
> 0.

Lemma 1 shows that for any convex τ , τ̂ avg > τ̂mle. It follows that E (τ̂ avg)− τ
[
E
(
β̂mle

)]
︸ ︷︷ ︸

s.i. and t.i. τ -bias in τ̂avg

>
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E
(
τ̂mle

)
− τ

[
E
(
β̂mle

)]
︸ ︷︷ ︸

t.i. τ -bias in τ̂mle

> 0.

For the concave case, it follows similarly that E (τ̂ avg)− τ
[
E
(
β̂mle

)]
︸ ︷︷ ︸

s.i. and t.i. τ -bias in τ̂avg

< E
(
τ̂mle

)
− τ

[
E
(
β̂mle

)]
︸ ︷︷ ︸

t.i. τ -bias in τ̂mle

<

0. �

B Additional Analysis of the Drastic, Convex Trans-

formation

In the main text, I develop an intuition for the simulation-induced τ -bias in τ̂ avg using

the simple (unrealistic, but heuristically useful) scenario in which yi ∼ N(0, 1), for i ∈
{1, 2, . . . , n = 100}, and the researcher wishes to estimate µ2. Suppose that the researcher

knows that the variance equals one but does not know that the mean µ equals zero. The

researcher uses the unbiased ML estimator µ̂mle =
∑n

i=1 yi
n

of µ, but ultimately cares about the

quantity of interest τ(µ) = µ2. The researcher can use the plug-in estimator τ̂mle =
(
µ̂mle

)2
of

τ(µ). Alternatively, the researcher can use the average-of-simulations estimator, estimating

τ(µ) as τ̂ avg = 1
M

∑M
i=1 τ

(
µ̃(i)
)
, where µ̃(i) ∼ N

(
µ̂mle, 1√

n

)
for i ∈ {1, 2, . . . ,M}.

Below, I calculate the bias of each estimator.1

B.1 The Bias in the ML Estimator

To simplify the notation below, I use µ̂ in place of µ̂mle.

First, note that µ̂ =
∑n

i=1 yi
n

is an unbiased estimator so that E(µ̂) = µ = 0. We then

have the common identity for mean-squared error: E ((µ̂− µ)2) = Var (µ̂) − E(µ̂ − µ)2.

Substituting µ = 0, we have E (µ̂2) = Var (µ̂)− E(µ̂)2. Substituting E(µ̂) = µ = 0, we have

E (µ̂2) = Var (µ̂). Then E (µ̂2) = Var
(∑n

i=1 yi
n

)
= 1

n2 Var (
∑n

i=1 yi). Then, using the identify

that the variance of the sum of independent random variables is the sum of their variances,

we have E (µ̂2) = 1
n2 (n× 1) = 1

n
.

Since τ = µ2 = 0, the bias in τ̂ =
[
µ̂mle

]2
is 1

n
− 0 = 1

n
. Because there is no coefficient-

induced bias, this is also the transformation-induced bias.

B.2 The Bias in the Average-of-Simulations Estimator

To simplify the notation below, I use τ̄ in place of τ̂ avg.

1I thank a reviewer for pointing out these results.
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First, compute E(τ̄ | µ̂) = E
[

1
M

∑M
i=1

(
µ̃(i)
)2]

= 1
M

∑M
i=1 E

[(
µ̃(i)
)2]

. Then we have

E(τ̄ | µ̂) = 1
M

∑M
i=1

[
Var(µ̃(i)) + E

(
µ̃(i)
)2]

. Substituting known values, we have E(τ̄ | µ̂) =

1
M

∑M
i=1

[
1
n

+ µ̂2
]
. Simplifying, we have E(τ̄ | µ̂) = 1

M

[
M
n

+Mµ̂2
]

= 1
n

+ µ̂2.

Next, apply the law of iterated expectations to find E(τ̄) = E(τ̄ | µ̂). Substituting, we

have E(τ̄) = E( 1
n

+ µ̂2). Then, simplifying, we have E(τ̄) = 1
n

+ E(µ̂2) = 1
n

+ 1
n

= 2
n
.

The bias in τ̂ avg is therefore 2
n
. Because simulation-induced bias is defined as E (τ̂ avg)−

E
(
τ̂mle

)
, the simulation-induced bias in this example is 2

n
− 1

n
= 1

n
. Thus, the simulation-

induced and transformation-induced bias are exactly equal and the average-of-simulations

estimator exactly doubles the bias in the ML estimator.
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