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A  Proofs

A.1 Proof of Lemma 1
Proof By definition,

=l ()]

Using Jensen’s inequality (Casella and Berger 2002, p. 190, Thm. 4.7.7), E [T (B)] >

T [E <B>} . so that ~
s B ()]

However, because B ~ MVN [Bmle, 1 (Bmleﬂ, E <B> = Bmle, so that
fave < - <Bmle) )
Of course, 7™ = 1 (Bmle> by definition, so that

favg > 7A_m1e )

The proof for concave 7 follows similarly. B

A.2 Proof of Theorem 1
Proof According to Theorem 1 of Rainey (2017, p. 405), E (f'mle) -7 [E (Bmleﬂ > 0.

Lemma 1 shows that for any convex 7, 728 > 7™ Tt follows that E (7%8) — 7 [E (Bmleﬂ >

vV
s.i. and t.i. 7-bias in 72v8
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For the concave case, it follows similarly that E (7%8) — [E (Bmle)} <E (f'mle) -7 [E (Bmleﬂ <
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B Additional Analysis of the Drastic, Convex Trans-
formation

In the main text, I develop an intuition for the simulation-induced 7-bias in 7%'% using
the simple (unrealistic, but heuristically useful) scenario in which y; ~ N(0,1), for ¢ €
{1,2,...,n =100}, and the researcher wishes to estimate p?. Suppose that the researcher
knows that the variance equals one but does not know that the mean p equals zero. The

n .
researcher uses the unbiased ML estimator ™ = %

of i, but ultimately cares about the

quantity of interest 7(u) = 2. The researcher can use the plug-in estimator 7™¢ = (ﬂmle)z of

T(1). Alternatively, the researcher can use the average-of-simulations estimator, estimating
7(w) as 7€ = LM 7 (3), where i ~ N (ﬂmle, \}) for i € {1,2,..., M}.

Below, I calculate the bias of each estimator.'

B.1 The Bias in the ML Estimator

To simplify the notation below, I use fi in place of ™,

First, note that g = %

is an unbiased estimator so that E() = u = 0. We then
have the common identity for mean-squared error: E ((i — p)?) = Var (i) — E(i — u)?.
Substituting u = 0, we have E (%) = Var (i) — E(2)%. Substituting E(t) = u = 0, we have
E (41?) = Var (ft). Then E (4i%) = Var <EZ 1yl> = L Var (3", y;). Then, using the identify
that the variance of the sum of independent random variables is the sum of their variances,
we have E (%) = S5(n x 1) = L.

Since 7 = p? = 0, the bias in 7 = [ﬂmle}z is % —-0= % Because there is no coefficient-

induced bias, this is also the transformation-induced bias.

B.2 The Bias in the Average-of-Simulations Estimator

To simplify the notation below, I use 7 in place of 72v8

'T thank a reviewer for pointing out these results.



First, compute E(7 | i) = E [% M (ﬁ(i))z] =LYV E [(ﬂ(i))z}. Then we have
E(7 |0 =+&3Y [Var(ﬂ(")) +E (ﬁ(i))Q]. Substituting known values, we have E(7 | i) =
= Zf\il [+ 4%]. Simplifying, we have E(7 | 4) = &[22 + M%) = L + 42

Next, apply the law of iterated expectations to find E(7) = E(7 | ). Substituting, we
have E(7) = E(£ + /i?). Then, simplifying, we have E(7) = 1 + E(4%) =1 + 1 = 2,
The bias in 728 is therefore 2. Because simulation-induced bias is defined as E (77%8) —

2 1

E (f'mle), the simulation-induced bias in this example is £ — = = % Thus, the simulation-

induced and transformation-induced bias are exactly equal and the average-of-simulations

estimator exactly doubles the bias in the ML estimator.
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