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A

Variable Coding

A.1 Control variables:

Political awareness: varies from 1 if the respondent reported that they hardly at all follow any
news about politics to 4 if they follow political news most of the time.

Party ID: is a categorical variable coded 1 for no party affiliate, 2 for Democrat, and 3 for Re-
publican voters. No party affiliate are the baseline category.

Ideology: varies from 1 if the respondent reported to be very liberal to 5 very conservative.
Respondents who provided a “not sure” answer are recoded as moderates, coded as the middle
category in this scale.

Age: is a continuous variable varying from 18 to 95 years old.
Female: is a dummy, coded O for male and 1 for female respondents.

Race: is a categorical variable coded O for white, 1 for Black, 2 for Hispanic, 3 for voters of other
races. White is the baseline category in all estimations.

Education: is adummy variable coded 0 for high school of less education, and 1 for some college
or more education.

Income: is a continuous variable varying from less than $10,000 to $500,000 or more

First time voter: is a dummy variable coded 1 for those respondents who were not of voting age
in 2016 and 0 otherwise. (We control for this variable only in models shown in Table §)

A.2 Healthcare policy scale questions:

To create the healthcare scale variable, first we recode the following questions where a value of 1 means
the respondent has a liberal stance of the issue and 0 a conservative position.

Thinking now about health care policy, would you support or oppose each of the following pro-
posals?

1. Medicare to a single comprehensive public health care coverage program that would cover
all Americans. (1 = support; O = oppose)

2. Allow the government to negotiate with drug companies to get a lower price on prescription
drugs that would apply to both Medicare and private insurance. Maximum negotiated price
could not exceed 120% of the average prices in 6 other countries. (1 = support; O = oppose)

3. Lower the eligibility age for Medicare from 65 to 50. (1 = support; 0 = oppose)
4. Repeal the entire Affordable Care Act. (1 = oppose; 0 = support)

Then we aggregated them into a scale with five categories (0 if the respondent scored O in all four
questions, to 4 if the respondent scored a 1 in all four questions), which we have rescaled to vary from
Otol.

Table 1: Healthcare Scale Distribution

Categories 0 0.25 0.5 0.75 1
Num. obs. 1,862 11,190 9,290 16,596 21,726




A.3 Immigration policy scale questions:

To create the immigration scale variable, first we recode the following questions where a value of 1
means the respondent has a liberal stance of the issue and 0 a conservative position.

* What do you think the U.S. government should do about immigration? Do you support or oppose
each of the following?

1. Grant legal status to all illegal immigrants who have held jobs and paid taxes for at least 3
years, and not been convicted of any felony crimes. (1 = supports; O = oppose)

2. Increase the number of border patrols on the US-Mexican border. (1 = oppose; O = support)

3. Withhold federal funds from any local police department that does not report to the federal
government anyone they identify as an illegal immigrant. (1 = oppose; 0 = support)

4. Reduce legal immigration by 50 percent over the next 10 years by eliminating the visa lottery
and ending family-based migration. (1 = oppose; 0 = support)

5. Increase spending on border security by $25 billion, including building a wall between the
U.S. and Mexico. (1 = oppose; 0 = support)

Then we aggregated them into a scale with six categories (0 if the respondent scored O in all five
questions, to 5 if the respondent scored a 1 in all five questions), which we have rescaled to vary from
Oto 1.

Table 2: Immigration Scale Distribution

Categories 0 0.2 0.4 0.6 0.8 1
Num. obs. 8,568 9,383 6,550 7,092 10,978 18,243




B Descriptive Statistics

Table 3: Summary Statistics

min. mean max. st.dev

Outcome variables

Non voter 2016 — Biden voter 2020 0 0.62 1 0.49
Third party voter 2016 — Trump voter 2020 0 0.50 1 0.50
Third party voter 2016 — Biden voter 2020 0 0.69 1 0.46
Trump voter 2016 — Biden voter 2020 0 0.04 1 0.20
Clinton voter 2016 — Trump voter 2020 0 0.02 1 0.15
Policy issues
Experience with COVID-19 0 0.54 1 0.50
Police 0 0.23 1 0.42
RBG’s replacement 0 0.59 1 0.49
Pocketbook economy 0 0.54 1 0.23
Sociotropic economy 0 0.72 1 0.33
Healthcare policy 0 0.69 1 0.30
Immigration policy 0 0.59 1 0.37
Controls
Political awareness 1 3.29 4 0.93
Party ID 1 1.97 3 0.77
Ideology 1 2.95 5 1.16
Age 18 4839 95 17.66
Female 0 0.58 1 0.49
Race 1 1.52 4 0.94
Education 0 0.70 1 0.46
Income 1 6.39 16 3.52
First time voter 0 0.05 1 0.22




C Full Models

Table 4: Logistic Regression Models for New Voters Voting for Biden
in the 2020 Presidential Election

DV: Non Voter 2016 — Biden Voter 2020

(1 2) 3) 4)
[ Experience with COVID-19 0.571%** 0.546* 0.180 0.269
= (0.148) (0.219) (0.179) (0.257)
8| Police [not safe] 1.801%** 1.091** 0.999*** 0.631
j__E (0.233) (0.333) (0.266) (0.379)
©1|  RBG Replacement [after election] 4.584%* 4.038*** 2.975%** 2.898***
i (0.150) (0.247) (0.181) (0.268)
§ [ Pocketbook Economy [worse] 0.137 0.902
= (0.437)  (0.595)
% Sociotropic Economy [worse] 2.096*** 1.446**
s (0.344) (0.493)
E| Healthcare [gov’t involvement] 3.056%** 1.997%**
2 (0.378) (0.523)
E Immigration [supportive] 3.470%**  3.587***
(0.307) (0.470)
Political awareness 0.164 0.156
(0.126) (0.135)
Democrat 2.561%%* 2267
(0.348) (0.328)
Republican —1.895%** —1.422%**
(0.269) (0.303)
Ideology —0.852%** —0.563**
(0.167) (0.177)
Age 0.013 0.027**
(0.008) (0.010)
First time voter —0.134 —0.096
(0.472) (0.474)
Female 0.365 —0.161
(0.239) (0.272)
Black 1.662%** 2.169***
(0.455) (0.519)
Hispanic 0.222 —0.027
(0.390) (0.429)
Other race 0.112 0.310
(0.418) (0.522)
College degree 0.417 0.362
(0.243) (0.262)
Income 0.028 0.045
(0.034) (0.038)
(Intercept) —2.503***  —1.566  —6.886*** —6.854***
(0.133) (0.838) (0.404) (0.981)
N 2,594 2,165 2,475 2,077

Notes: The dependent variable in models (1)-(4) is coded as one if a voter voted for Biden in 2020
Presidential election and zero for Trump. All models include an intercept. Logistic regression mod-
els (1)-(4) are estimated using maximum likelihood. The reported robust standard errors in parenthe-
ses are clustered by state. *** p <.001, ** p < .01, * p < .05
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D Model Performance

In Figure [1|we show the performance of each of our full policy logistic regressions. We plot the ROC
curves and report the AUC scores. (Robin et al.|2011) This performance measure technique helps to
not choose an arbitrary decision threshold when classifying predicted probabilities. The AUC score
represents the area under the curve and measures the performance of our logistic regression classifier.
As shown in the figure our classifier performs very well in predicting our binary response variables.



Figure 1: Model Fit Assessment

Clinton Voter 2016 ——> Trump Voter 2020 (demographics only) Clinton Voter 2016 ——> Trump Voter 2020 (full model)
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1 — Specificity

Notes: The figure shows the ROC curves for models controlling for demographics only and full policy
and demographics models estimated in Table 4 column (4), Table 5 columns (4, 8), and Table 6 columns
(4,8). The ROC curve captures the relationship of sensitivity (true positive rate) as a function of the (1-
specificity) false positive rate. The AUC score, which represents the area under the curve, for each fitted
model starting from the top left hand corner are: AUC = 0.89 vs. AUC = 0.97, AUC = 0.95,
AUC = 0.99, AUC = 0.7, AUC = 0.7, AUC = 0.8, AUC = 0.89, AUC = 0.86, and
AUC = 0.97 respectively. All AUC scores are very high which shows that the predictive performance
of all our models is high.



	A Variable Coding
	A.1 Control variables:
	A.2 Healthcare policy scale questions:
	A.3 Immigration policy scale questions:

	B Descriptive Statistics
	C Full Models
	D Model Performance

