Supplemental Materials: A generalized
hypothesis test for community structure in
networks

Technical Proofs

Upper bound on E2D2 parameter

We want to show that {p;,(¢)—pout(c)}/(Kp) < 1. Notice that for any ¢, p = 7Din+(1—7)Pout
for r = my, /() where 0 <r <1 and r = r(K) depends on K, the number of communities.
Thus, we equivalently want to maximize

T —y
f(%y’?”):m (1)

where 0 < r,x,y < 1. First, let’s consider a fixed r. Then f(z,y,r) will clearly be maximized
when y = 0 which yields

£, 0,7) = % @)

Thus, f(x,y,r) is maximized when 7 is minimized, or, equivalently, when m;, is minimized
for a fixed K.

Let my, be the number of nodes in community k € {1,..., K'} where m; +---+mg = n.
Then we want to minimize m;, = %Z]K:l m;(m; — 1) subject to ZJKZI m; = n. We can use
Lagrange multipliers:

E(ml,...,mK,)\):%ij(mj—l)—)\(ij—n> (3)

Take the gradient:
K
Vﬁ(mj,)\):(ml—%—)\,...,mK—%—)\,n—ij) (4)
j=1

Setting equal to 0 means that for all 7, m; = X + % SO

K
n 1
0=n— A+ = A= ——-. 5
n=3 () =3 )
Thus, m;, is minimized at m; = --- = my = & s0
K
7j=1
Thus,
1 (5) n—1
< -< 2 =K . 7
fyr) < r ~ nn—K)/2K n—K (7)

For large n, (n —1)/(n — K) = 1 so we have the desired result.

1



Theorem 2.1

First, note that since we assume K, is known, we can ignore it during the proof and simply
divide the final cutoff by K,. Now, let 7o = & /p. Assume a rejection region of the form

R = {T.(n) > c¢(n)} where ¢(n) = ﬁgg;%ﬁ) and

Ti(n) = (8)

where U,(n) = max.{pin(c) — Pout(c)} with the max taken over all possible community
assignments ¢; for i = 1,..., N, x; S(n) = p(n) and

1@=%Z%M

1>]

From this point, we suppress the dependence on n. Using DeMorgan’s Law, we can show
that
P(T.,>c)<PU.>&+k)+ P(S<p/(1+e). 9)

where 1
p=7x > Py (10)
(2) i<j
Under Hy, we show that each term on the right-hand side goes to 0. Assume the null model

Py and consider a fixed community assignment with K,, communities, ¢;, fori € {1,..., N, ;}
where N, r, < K]’ and let U; = pin(¢;) — Pout(c;). Then

=Y Xy (1)
i<k
-1

where Xj, = my,; if (¢;); = (), and —m,,, ; otherwise. From the proof of the upper bound

on the E2D2 parameter, we have that m;,; = O(n?) and my,; = O(n?). Thus, letting
k! = E(U;) + k and using Hoeffding’s inequality,

n /
Nox P(U; > k) (12)
— P(U, > E(U;) + k) (13)
—2k?
<exp| 7 (14)
((2)(7711“1 + miut)2>

< exp (—n’k?) (15)

B 1/2 1/2
k< <logNn7K2 logn) N (logKn) (16)

n n



Now, under the null hypothesis, E(U;) < &. Then we have

Ny Kk
P{U.>&+ky =P | | J{Ui>&+k}

Ny Ny
n
<P U >k} < P{U; >k} < <n. (17
<P Uw-u Z (U > k) ;Nw_n a7)
We also have
P(S <p/(1 —|—6)) _ P(S <p— 1%_6—) < 6752;52n(n71)/(1+e)2 0 (18)

since n'/?p — oo. Combining these two results we have that
P(T,>c) < PU.,>&+k)+P(S<p/(l+¢€)<n (19)

as we hoped to show.

Under Hy, let v, = & /pand let Tyroee = T(cy, A) = Upraae/ S where ¢, = argmax.{7y(c, P)},
i.e., ¢, is the community assignment which maximizes the E2D2 parameter. This is reason-
able because we assume that the algorithm finds the global maximum T(A) SO Toracte < T(A)
We will use a similar approach to the proof of Hy noting that

{Usracte > (€0 + k)13 N {S < &} € {Toracte > ¢} (20)

SO
P(Toraaie > ¢) > P{Uoracte > (&0 + k)71 N{S < £1}) (21)
> P{Upracie > (0 + k)15 } + P{S < %} — L. (22)

Thus, we want to show that the first two terms on the right-side go to 1. For the first term,
we note that Uyyqee is the sum of O(n?) independent random variables, each of which takes

values between [—m,.,, m;']. Moreover, E(Uypque) = & > &. Let 1. := (14 ¢€)/(1 — ¢).
Then,

P{Uoracle =~ (50 + k)l } P{Uoracle S fl]- - (51 )1 } (23)
— P{Uoracle < gl - (61 - 50 1+e§1 )} (24>
Now, z > 0 since & — &y > 0 and we can choose € small enough such that & — &, — 12—;51 > 0.
Additionally, £ — 0 by A3 so there exists an N such that for all n > N, & — & — 12;51 > k.

Thus, we can use Hoeffding’s inequality to show
P{Uor‘acle < (50 + k)le} = P{Uoracle < 51 - Z} (25)

2 2
<exp| - nf - (26)
Zi:l nt

= exp (—2n°2%) (27)
— 0, (28)



or equivalently,

P{Uomcle > (60 + k)le} — 1. (29)

Next, consider S. First, notice that

_ € _
TRl A s (30)
Then, by Hoeffding’s inequality, we can show
P(S=p/(1—¢))=P(S=p+ D) (31)
< ¢~/ (1P n(n-1) (32)
— 0 (33)
since n'/?p — co. Then
lim P(T(A) > C) > lim P(Tprgue >C)>1+1—-1>1.0 (34)

n—0o0 n—oo

Proposition in Section 2.4

Claim: 4(P) = 0 if and only if P is from an ER model.

Proof. The only if direction of the claim is immediate. To prove the forward direction,
we first show that v(e, P) < 0 for all ¢ implies that (e, P) = 0 for all ¢. Then we show
that if (e, P) = 0 for all ¢, then P is from an ER model which is equivalent to showing
A(P) = 0.

For the first part, this is equivalent to showing that if (e, P) < 0 for some ¢, then there
exists some ¢’ such that (¢, P) > 0. If there exists some ¢ such that v(e, P) < 0, then

1
Zk 1(nk Zéel% 7 m;(l_@hcj)ﬂj,

1<j

But this means that there is some F;; such that P;; > Py for all i # k or j # [ and
is strictly greater for at least one Py. Thus, if we consider the community assignment
¢ where nodes 7 and j are in one community and all other nodes are in the other, then
Pin(€') > Pout(€’) and thus y(c', P) > 0.

We will prove the second part by induction. Let n = 3 and we are given that v(¢, P) =0
for all ¢. We start by writing out the probability matrix.

— P P
P = — Py

There are three possible community assignments: ¢; = {1,1,2},¢; = {1,2,1} and ¢3 =
{2,1,1}. From each of these assignments, we have a corresponding statement relating the



probabilities:

Pin = Pia = Pout = %(Pw + Pa3)

Pin = P13 = Pout = %(PIQ + Pa3)

Pin = Pag = Pout = %(Pm + P13).
Plugging the first equation into the second equation we find:

P13: (%<P13+P23)+P23):>P13:P23,

NO| —

Plugging this into the first equation we have Pjs = P35 = P53 := p which means that this
must be an ER model.

Now assume that the claim holds for n — 1 and show it holds for n. For convenience,
assume n is even but the proof can easily be extended if n is odd. Consider a network with
n nodes such that (e, P) = 0. Remove an arbitrary node such that we have a network
with n — 1 nodes and apply the induction hypothesis, i.e. FP;; = p for all 7,j. We now add
the removed node back to the network such that the node has probability P, of an edge

between itself and node ¢ for © = 1,...,n — 1. Thus, the probability matrix is:
- p p - p Pu
- p p P
P= :
Pn—l,n

Since y(c, P) = 0 for all ¢, then we want to show that P, = p for i = 1,...,n. As-
sume for contradiction that P is not ER and we will show that v(c, P) # 0 for some c.
Without loss of generality, let {Py,, ..., P,/2,} be the smaller values of the last column and
{Pn/gﬂm, ...y Pa_1,} be the larger values and consider the community assignment where
nodes {1,...,n/2} are in one community and nodes {n/2 +1,...,n} are in the other com-
munity. Then

n—1 n/2
= 1 n = 1 n? n
Pin 2n/2 p(§_1)2+ Z f)i,n >pout:n2—/4 P(Z—g)—FZPZ,n
( 2 ) i=n/2+1 i=1
since )
n—1 n/2
2 P> P
i=n/2+1 i=1

Thus (e, P) # 0 for this particular choice of ¢ and we have completed the proof. O



Lemma 3.1

We follow closely the ideas of the proof of Theorem 5 in Levin and Levina (2019). Assume
that p ~ F(-) and A, H|p ~ ER(p), A*[p ~ ER(p) where p = 3", . Ayj/{n(n —1)}. We will
use the well-known property of Bernoulli random variables that if X ~ Bernoulli(p;) and
Y ~ Bernoulli(ps), then d;(X,Y) < |p1 — p2|. Thus,

P(A}; # Hylp, p) < b —pl-
Let v be the coupling such that A and H are independent. Then
WP(A*, H) < / A2 (A% H)dv(A* H).
Using Jensen’s inequality,

. 1/n\ ' . 8 n\ A n\ A
d%M<A*,H>s<§(2> ||A*—H\|1> <(3) Tiy-mr=(5) Sl

1<) 1<)

Thus,

1<)

/dgM(A*,H)dy(A*, < (Z) Z/yA — Hyldv
-1

(5) vt £
< (Z)lgm—m
=[p—p| -

— O ™). O

Lemma 3.2

It’s easy to see that the CL model falls into the Random Dot Product Graph framework
where 6 = (64, ...,0,) correspond to the latent positions and the dimension d = 1. Then by
Theorem 5 of Levin and Levina (2019), we have that

WY(A*, H) = O((n™? +n~YYlogn) = O(n~?logn)

since 0 is estimated using the ASE.

Lemma 3.3

Let t(H,c) = ZK Ci;H;j where C;; = m;, Lif ¢, = c¢; and m,., otherwise and H;; ~
Bernoulli(p). Define E{t(H c)} =¢&(H,c) and

s = ZVar (CyjH;j) =p(1 — Z

1<J 1<J



We want to invoke Lyapunov’s CLT so we must check the follow condition: for some § > 0,

1 n
lim —— Y "E(|X; — E(X;)[**°) — 0.

n—yo0 §2+0 £

Let § = 1 and recall that C;; = O(n~?). Then, ignoring constants,

1
s—ng(|Cinz‘j Cypl®) = 32 E(|Hi; —pl*)

noi<j “n i<j
1 3
== Z C
Ny
n®)> " 0(n™°)
i<j
=0(n v,
Thus, by Lyapunov’s CLT,
1
8_ Z Cl]HZj sz) - S_{t<H7 C) - §(H7 C)} i) N<07 1) (35>

1<j

Finally, note that T'(H,c) = t(H,c)/(Kp) and v(H,¢c) = {(H,c)/(Kp). Since p L p, by
Slutsky’s theorem,

Si{T(H, ) —v(H,e)} 5 N(0, K2p). (36)
The results for T(A*, ¢) are Zhe same noting that:
E(A}) = E(E(A;]p) = E() = p = E(Hy)
so E(t(A*,¢) = E(t(H, ¢)); and
Var(A7;) = Var(E(Aj[p)) + E(Var(A}j|p)) = Var(p) + E(p(1 — p)) = p(1 — p) = Var(Hy)

~

so Var(t(A*,¢) = Var(t(H,c)). O
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