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A Regeneration-based bounds for expectations

We employed the Nummelin splitting technique in order to exploit the independence between the
blocks By, k € N*, as described in section 2 of the associated paper. We have however taken care
of giving conditions on the moments 74 of the original chain (X;);en rather than on the moments
0, of the split chain (Z;);en.

Define, for any p > 0,

£(p) = sup E;[7}].
€A

We start with a lemma relating moments of 6, to moments of 74.

Lemma *A.1. Let (X;)ien be a Markov chain satisfying (5). Then, for any xo € €, p > 1,

Buo )77 < o € 0)77 + B[] (+1)

A
Ea[eg]l/p < \o L ero/p

0 mf@)w)' (x2)

Proof. We start by showing (+1). Suppose that E,[7h] < 400 and sup,¢c 4 Ez[7}] < 400, if not,
the stated inequality is obviously satisfied. By the Minkowski inequality, we have

Ey, [92]1/]0 < Eg[(0 — TA)p]l/p + Eq [Tfl]l/p
= By [(0a — 74) L5, 5r43] "7 + B [T4] /7.

Let Z#;, denote the o-field of the past before 74 and note that {0, > 74} is .%,,-measurable. By
the strong Markov property, it holds

Ezo[(0a — TA)p1{9a>TA}’ﬂTA] =Ky [(00 — TA)p‘gTA]1{9a>TA} < 1{0a>m} Slelg E,[0%].

Hence, setting v = sup,c 4 E,[05]'/7, and because \g = Py 0y = 74) = Py (Yr, = 1),

Ez, [05]1/10 <1 - AO)l/p + Eq, [Tg]l/p- (*3)



In particular, it follows that

(1— (1= X0)"/P)y < sup E, [75]V/P.
€A

Thus, (*3) becomes

o [07]'7 < (1= X0)V/P(1 = (1 = M) /7)™ sup By [rB]/P + By [74]1/7, (+4)
€A

and we obtain (1) by using 1 — Ay < e~*0. To get (%2), note that for every xo € A,
Eao (081 vo=13] = AoEalbF]-

It follows that E,[0h] < Ay Ey[04] and we get the result from (1), taking the supremum over
A. O

We shall need also the following extension of (10).

Lemma xA.2. Let (X;)ien be a Markov chain satisfying (2), (3) and (5). For any measurable
function h : Up=1R™ — R such that Ex[h(X1,...Xp,)] < +00, (for any n the restriction of h to R"
is measurable), we have

ba
aoE [h(X1, ... Xp,)] = Eq [Z h(X;,...Xo,)|. (5)
i=1
In particular, for any p > 0,
Q0B [62] < Ea[821] < (p + 1o (8. (+6)

Proof. Having (2), (3) and (5) we can use the formula (10). Define g(z) = E;[h(X1,...Xp,)] and
remark that, by the Markov property and the fact that {i < 0,} is .%;-measurable,
Ea(9(Xi)1{ic,}) = Ea(h(Xit1, - Xo,)1{ic0,1)s
g(Xga) = Ea(h(Xl, ...X@a)).
Then using (10) with g, we get
aoEr[h(X1, ... Xo,)] = aom(g)

0,—1

—E,[ Z h(Xit1, ...Xga)] +E, [h(Xl, .-.Xea)}
T =1

b
—E, Zh(Xi,...Xga)]
Ti=1

+1
Concerning the second statement, we use the fact that 1 +2P +...05 > foe“ xPdr = ig—i-l to write
fa
B2 S Bo[ ) %] <Kl [05H).
=1

We conclude by using (x5) with h(z1,...zg) = kP, to show that the middle term is apE,[6}]. O



Lemma *A.3. Let (X;)ieny be a Markov chain satisfying (2), (3) and (5). For any p > 2, there
exists C > 0 (depending on p, Ao, o) such that for any measurable function f,

ba
B[ (30 £(60) ] < € (60 () + EmIERf (X))
=1

Proof. Suppose that f > 0. If not, take |f| instead of f. In what follows, we use the convention
that empty sums equal 0. Applying Lemma *A.2 with

h(xl,...:ck):<zk:f(:rj> (Zf x]) F(@)? + 2f () Zk:f (z),
j=1 Jj=2

we get that

AOHENN =Ea[gh<xi,--x9a>}

= aoBx [ F(X1) (F(X1) +2 GZ fx))]

0a
= ag <7T(f2> +2E, [f(Xl) Zf(XZ-)D :
=2

For any p > 2, the second term is bounded as follows

E, {f(X1 OZ } ZE [ i<04 le)f(X)}

ZE [P0 F(X0) (X0
< Z/E reaye) e roar]
- (z /) B[ roarer] e 100
< (pr) £ [£(x)%8).

where we have used Zi>2 iTP/2 L f1+°° 2 P2y, If §a is the first time k > 2 such Zj, € a, it holds

Br [ £(X1)%08] < Bx [ £(X0)5] = B [ £(X0)2(0% + 1)] < 2B [ £(X0)02]
Applying Lemma *A.1, equation (x1), and using that for every a,b > 0, and p > 1, (a + b)P <
2P~ 1 (aP + bP), we get

Er [f(Xo)Q%} <20t <W}_1)p€(p)77(f2) +Ex [f(X0)? TA])



Bringing everything together, we get

(35 1000 < on (s + 25 (et . ) )

This leads to the stated result. O

Lemma *A.4. Let (X;)ien be a Markov chain satisfying (2), (3) and (5). There exists C > 0
(depending on p, \o, ap) such that, for any measurable function g with w(g) = 0, any n > 1 and
p>2

B[ (2 0(6) | < nC (Pr(e?) + EpBLlg (X))
=1

Proof. Defining the blocks sums as (see equation (9))

O (k+1)

Ge= Y, g(X),

i=0q (k)+1

(in this whole section we set ZZ =01if b < a) Gy, is an i.i.d. sequence and one has

n Oa AN In—1 n
Y gX) =) gX)+ D Grtlocn >, g(Xi)
i—1 i=1 k=1 =00 (In)+1

where [,, is the number of times Z; visits a before n, i.e.,
n
=Y 1l{zea (+7)
i=1

As the chain has been split into independent blocks, the process L — Zé:l G} is a martingale.
The sequence (I,,) is random and is expected to be of order n. Since l,, < n, following Bertail and
Clémengon (2011), page 21, we have

’ n
=1

where f = |g| (considering f instead of g will help later for the treatment of the concerned terms).
By the Minkowski inequality, denoting by || - ||2 the Lo(P;) norm, we have

o, <[ o0l s [l ]3> s,
=1 =1

=0 cL n
Using Doob’s inequality, we have

ZGk‘ < AnEL[|G1 2] = 4nE, [(Zg H

Oa A\

Zf +11§3X’2Gk’+19a<n Z f( i)

=0 (ln)+

(+8)

max
1<L<n

E, max
1<L<n




then, from Lemma *A.3, we get for every p > 2 that there exist C such that
L

> G

k=1

This is also a crude bound for the third term in (x8) since

< 4nC (£(p)*(g%) + £(p)Ex[g(X0)*7h])

E, max

2
1<L<n ‘

n ) Oa (ln+1) . 0a 5
B0 r) <m0 row) ] =E[(Drxa) ]
=04 (In)+1 i=04 (In)+1 i=1

Now we consider the first term in (*8). Using Lemma %A.2 with

kAn

h(zy,...21) = (Z f(flfj))Q,
=1

we get
| b 1)) | = aalEa[i b 1)) ]
=1 =1 =1
’ Ou A\ zaAn 9
= o 1Ea[z (Z f(X])) }
i=1 = j=i
< nag 1Ea[< 3 f(X])ﬂ
i=1
Oq ! 9
<nEa[< f(X])) :|
j=1
We conclude again with Lemma %A.3. O

B Proofs of section 3

B.1 Proof of Lemma 1

We start by proving (11). Define k = |s]. From the Taylor formula with integral remainder applied
to g(t) = ¥ (x — tu), we get

1 ) h (h— )1
Y(z — hu) — () = 2 ﬁg( )(0) + /0 g (t)mdt
Eopio h — )" !
=5 500+ [0 -0 G

The first term is a polynomial in w which vanishes after integration with respect to K as by assump-
tion, K is orthogonal to the first non-constant polynomial of degree j < |s]. Using the chain rule



to compute g(k) and using basic inequalities with some combinatorics, we obtain that there exists a
constant C' (depending only on k& and d) such that for every ¢t € R,

9™ () = gP O < Clulf Y~ 19O (@ — tu) = O ()],

1EPy

where P, = {(I1,...1q) € N* : 3¢ I, = k}. Tt follows that

h k=1 k—1
[0 - 0o S ] < 2 S [0 - ) - w0 @)t

lePy,

Hence
r— nu) — X u)au ﬂ " (l)x—u— (l)CC uk u u
| [ e = )~ vl K >d\<(k_1)!lezm/0 [ 1906~ tw) — 60 @) ulf ] )| du

and by the generalized Minkowski inequality (Folland, 1999, page 194)%,

1/q

k-1
o =il < G 2 / J (1606 = 00 - o0 @ Pl K @ tocrcam(e)is ) dua

h* o 1/q
<Gt 2 / TPl K )7) " Socrendude

S (k-1
" (k- 1)'}226; k + 1)M17Tééq #{Pr} / |ul} K (u)|du.

This implies (11).

To show (12), it suffices to provide an upper-bound proportional to hA* and another one pro-
portional to h". Because |7(¢¥ — ¢p)| < 7(|Yp — ¥p|), applying (11) with ¢ = 1, we obtain the
upper-bound C1 Mi7mooh®. By Fubini’s theorem and using the symmetry about 0 of K, it holds

m(x)n(x)de = [ Y(x)mp(2)de. (x9)
/ /

Hence, introducing the probability density 1/1 ( [ 1 (x |ala:)_1 [U(y)|, y € R, we find

fronsn-ovs] -

‘ / () (x(z) — ()

<(/ |w<x>\dx) [ 56 nte) ~ @) o
= ([ 1otaide) I = mnl

Applying (11) with 15 and 7 in place of m and v respectively, we get the bound C~’1M21,Z)ooh7’, for
some C7 > 0 depending on K and r. Equation (12) is then deduced from these two bounds.

!For any nonegative measurable function g(.,.) on RFE+

(/ (/g(y,m)du(y))qdu(z))l/q </</g(y,x)qdu(x))l/q du(y).

, any o-finite measures p and v, and any g > 1,



B.2 Proof of Proposition 3
For any f and fvin F1 X ... X Fq, we have

M:“

¥ (f) Ci(P)f; — | (10)

J=1

Let us first prove that G is an envelope for G. Applying (x10) with fy in place of f, we get that
2 Z?’:l C;(F)F; is an envelope for the class G — ¥(fp). As a result G is an envelope for the class G.
The envelope property is proved.

Let Q be such that Q(G?) < +oco. Define the following probability measures on X,

dQ; = q; *C;(F)*dQ,  with gj = /Q-(F)Q d

Note that ¢; < +oo is implied by Q(G?) < +oo. Let C;j denote a set of functions forming an
€| F; HLQ(Q )-covering of the metric space (Fj, L2(Q;)). For f = (f1,...fa) € F1 X ... x Fy, there

exists f = ( fi,.. fd) € C1 X ... x Cq such that, using (x10) and the Minkowski inequality,

ISH

1905 = ¥(Dllza@) < D15 = HICF)La@)

<
Il
-

M&

QJHfJ fjHLg(Qj)

<.

-M& )!l

<€) allFjlra@)-

1

J

The number of possible d-uplets (]71, .. fd) is at most Hc-lzl #{C;}, thus

d d
NG 1@ il Fllaay ) < TIN (75, 22@). A Bl

We have

d
[caraaz [lvgpae+ay [ o rra
j=1
d
> Z / F2C;(F)?

d

Z ’F ”L2(QJ

7=1
Combining this with the Schwartz inequality gives
1/2

d d
S il Filliae) <A Y CIF 0| <dIC] L)



Hence
d
N (6. La(Q)ed PGl < 11V (7 L2(@). Byl oy ) -

The VC class assumption on Fj, with characteristics (A;,v;), implies that the right hand side is
smaller than e~ ("1+-+va) AV A% This concludes the proof.
B.3 Proof of Proposition 4

The first statement is proved in van der Vaart and Wellner (1996), Example 2.5.4. The second
statement, under (16a), is given by Lemma 22, (i), in Nolan and Pollard (1987) (the definitions
are different than the ones we use; as stated page 789, their “Euclideanity” implies VC). Under
(16b), invoking Lemma 22, (ii), in Nolan and Pollard (1987), the class of real valued functions
{z+— KOM Yy —21)) : y1 € R, h > 0} is a uniformly bounded VC class of function. Then,
since U(z) = 21 ... zq satisfies (15), Proposition 3 implies the conclusion.

B.4 Proof of Proposition 5

We begin by applying Proposition 3 to F1 = {(t,z) — lLicyy : M € R} and Fo = {(t,z) —
K™Yy —=z)) : y € R4 h > 0} (both classes are VC by Proposition 4), with W(z1, 29) = 2129
which satisfies (15). The resulting class

{(t,2) » Ly K(h ™' (y —2)) : y €RY, h >0, M € R}

is uniformly bounded VC. Then we can consider the product of {(¢,x) — ¢} and F3. As for every
21,21 € [—Al,Al] and zo, 29 € [—AQ, Ag], we have

‘2122—2’122| A2|Zl —Zl|+A1|22—22|
this yields a VC class with envelope (¢,2) — 2((1V Kxo)[t| + (1 V [t]) Kxo)-

B.5 Proof of Theorem 6
We have to study

where
Ki(y) = K, (y — Xi).

As in the proof of Lemma *A.4, we will use the split chain defined in section 2, 8, (k) will stand for
the time of the k-th return to the set a (6,(1) > 0), and [,,, defined in (x7), is the number of such
returns before n.



Recall that oy = E4[f,]. Using the stationarity and equation (10), its expectation under m can
be computed as

Er[ln] = ZEW[leea] = nEﬂ[l{Zoea}]

—.
k=1 0

Let us now evaluate the variance of /,,. From Lemma *A.4 with with g(2) = (1;.eq} — agt)/n, there
exists C' > 0 such that, for any n > 1,

E-[(300x0) ] <nC (x(?) + Eclg(Xor))
i=1
Because
EW[I{ZOEa}TZO} = /EZ[TZO]]-{zEa}dW(Z) = EG[TQO]W(Q) < +-o00,

we conclude that there exists some constant C' > 0 such that

Er[(ln/n —agh)?] < Cn~t. (x11)
Consequently,
I, —1 ln—1
sup (1 — 040(n)> Th,, (y)’ < ’1 _ ol 1) sup |7(y)] — 0, in Pr-probability.
Hence, in place of 7(y) — 7, (y), we can rather study
~ ~ (7)) l -1
Ty = #(w) - 2=V )

which will have a simpler expansion. The idea of the proof is to use the results available for the
independent case. Since terms inside one block are not independent, the trick is to notice that we
can consider the case when only one term in each block is picked at random. More precisely if
A = 0,(k+ 1) — 6,(k) and Iy, is a uniformly chosen point among {6,(k) + 1,...,0,(k + 1)}, the
variables

Ki(y) = Ki(y), k=10, —1,
satisfy

O (k+1)
EKc()|Z) = A0 ) Ki(y),
i=0a (k) +1

where %, denote the o-field generated by the whole chain. We can rewrite

fa (1) bt [ [ Ba(k+1) "
Ty)=n") Ky +n ') > Kiy) | —aom, () |+t > Kiy)
=1 k=1 \ \i=6q (k)+1 =00 (In)+1

04(1) ln—1 n
=0 Y Ki(y) +E {n—l > (Akf(k(y) — gy, (y)) ‘yoo} Y K
=1 k=1 i=0

= a(ln)+1
= T1(y) + E[Zn(y)| Foo] + Ta(y)-



Concerning the boundary terms fl and fg, we have

a

Er| sup [71(y)]] <n'Ex | sup D 1Ko, (y = Xl | < 07 KocEnlf,
y€ERL yeRd ;]

and similarly,
Oa
Eﬂ[ sup yTg(y)@ < n_lEa[ sup 3 |, (y — Xi)y} = n K [6a).
yeRd yGRd i=1

We now consider the term E[Z,,(y)|-Z ). From the definition of I; and using (10), for any measurable
function g with 7(g) < 400, we have

EalA1g(X1)] = Ea|fa - Y 9(X0)| = aom(). (+12)

In particular, agmy, (y) = Eo[A1 K (y)]. It follows that

ln—1
Zaly) =0t 3 (AkKily) — Bal MK (3)])
k=1

We are planning to apply Theorem 2, but the problems for now are that [, is random and Ay is
not bounded. Define
My, = (nhy,?/log(n))Y/ 2ro=1), (x13)

We shall analyse the terms when Ag < m, and A, > m, independently. The reason why such a
value of m,, is considered shall be made clear in the next few lines (below equation (¥22)). We have

ln—1 ln—1
Zay) =Y (Ea) = EalnKa@)]) + 07" Y (mkaly) Bl Ka(y)])  (514)
k=1 k=1

e = Arla, <mn
v = Al >m., -

Choose 1, = +/log(n)/n, and set 10 = Lna&lj, I, = Ln(ozo_1 — )], 1T = Ln(aal +m,)]. By
construction, as n — o0,
nM2 (1 — agt) = +oo, (1> — agt) = —oc.

n

Therefore, from (x11), we obtain that the event I;; <1, —1 < [;} has probability going to 1. Suppose
from now on this event is realized. The number

U= ((l— 1) ALD) VI

is equal to I, — 1. Since I, and 19 both belong to [I,,l.}], for every sequence Ay, k = 1,2,..., it
holds that

I, 1 I
o > < [ A+ 3 bl
k=1 k=1

k=l

10



Taking Ay = jux Ky (y) — Ea[urKi(y)], this gives

I,
n~t Z (ukl?k(y) — Ea[ﬂ'k[?k(y)])
k=1

I
n—l\;(ukmy)— ol K (y)])| +n 1Z|ukz<k Eoli K@)l (+15)

k=l;

We treat the first term of (x15) by applying Theorem 2 with & = (A;, X1,), i = 1,2,..., and the
class of functions {(t,2) — t1y<p, K(hy ' (z —y)) : y € R9}. This class being a subclass of (17)
which is VC with envelope F'(t,x) = 2((1V Koo)|t| + (1 V |t]) K&) and characteristic (A, v) (in virtue
of Proposition 5). Hence we can apply Theorem 2. We have to estimate the various quantities
involved in (13). On the first hand,

sup E[f(£1)°]) = sup Ex[AT1a, <, K (hy (X1, — 1))

feFx yeRd
<my, suﬂglIE ALK (RN (X — )P
O
— my, sup E, [ZK VX — )2 (et (+12))
y€ERd
= MpCp SUp EW[ (hn (Xl - y))2] (Cf (*5))

yeRd

< mnaohzﬂm/K(x)de
= *my,he, ? = a0||7THOO/K(x)2d:U

On the other hand, using (1 V [t|) < 1+ |¢| and then (x2), we find

E[F(£1)%] < 2((1 + Ko)E[A1] + Ko) < C(1+ SugEx[Ti]),

for some C' > 0. We choose

0?2 = Emphd.
With this choice of o, equation (13) will be satisfied if

16vn~1!

Amphd > log (A2 max (1, E[F(fl)Q]/c2mnhz))miKgo.

Since h,, — 0 and m,, — +0o0, this condition will be met for n large enough if, as n — oo,
< _nhy .
log(hn ')

This is equivalent to

nh,,? ( nhd ))2190—1 (+16)

<
log(n) log(hn*

11



which is

dpo/(po—1) 2(po—1) 2p0—1

L (B ) o .
log(n) log(hy™)

This is satisfied indeed since the first term tends to infinity by assumption, and the fact that

nhip o/(Po—1) _, 400 implies that the second one is bounded from below.

Computing the bound given in Theorem 2, multiplying by (nh‘fl)_l, we obtain that

L
E. sup n! ZukKk(y) - Ea[ukKk(y)]) < (nhﬁ)_lCo\/vlgc2mnh% log (A(l v W))
yE]R k=1 n n
But since

n 1/(2po—1)
mpyhd = p2d(po—1)/(2po—1)
" \log(n) " ’

this quantity is larger than some negative power of n (cf. (18)) and using this for bounding the
logarithm, we get

1
Ex sup 07" jeRi(y) — EalinKiW)l| < C'Bln, b ma) (+18)
yER? k=1
for some C’ > 0 and where
mlog(n)
B(n, h =\ —2.
(n7 )m) nhd

The second term of (x15) is smaller than

It
(n‘l > 1Kk (y) = EalunKi ()] — Ealpn K (y) — Ealun Ka ()]
k=l,,

+ n_l(l;t — l;)Ea(\ulfﬁ(y) - Ea[/‘lf?l(y)”)'

Consider the class
{(8,2) = |81 (gem KO0 (@ = ) — Ealin K (b7 (X1 = )] y € BL h> 0}

This class is included in the larger class of functions z — |f(z) — w|, where f describes the VC
class (17), and w € R is ranging over the segment A = [—agK oo, a9K ). This larger class is VC
because, (i) the class {f(z) — w} remains VC and (ii) the transformation x — |z| being Lipschitz,
we can apply Proposition 3. This is basically the same as before, with the only difference that now
7 — 1, < 3nun, we obtain that there exists a constant C' > 0 such that

E, sup

Ly
Rd n! Z i K (y) — Ew[ulfﬁ(y)”’ s¢ (ﬁnB(m By i) + n”E”"“lf(l(y)’) - (+19)

k=l,

12



From (x12), we know that
Byl Fa(y)] < B [M1lFs ()] = a0 [ 1K, (v - o)lm(o)de < aome [ 1K(w)]du

Then, bringing together (x15), (*18) and (*19) gives that, for some C' > 0,

!
n

Ex sup [0~ > (uiKi(y) — EalpuKr(v)]) | < OB, haym) (+20)
=1

y€ERd

because 7, < B(n, hy,, m,) and 7, < 1. Concerning the second term in (x14), since I}, < n and by
Lemma *A.1, we have

, n
EW[ sup ‘n_l Z v K (y )” < Kooh;dEW [n_l Z Vk}
y€eR? k=1 k=1
= Koohy, B (610,

< Kooh;dm;(p()il)Ew {gapo}
Ao

—d, o —(po—1)y—po___ &7 Po
< Koohy, “m,, Ao (ol — 1y 216113‘]&[@1 ]. (x21)

Bringing together (x14), (%20), (%21), we finally get, for some C' > 0,

Eﬂ[ sup ‘n_IZAkIN(k(y)H < C( (n, hp, mn) + b %m. —(po— 1)) (%22)

The value of m,, that balances these terms together is given by (x13) and we obtain that there exists
C > 0 such that

log(n)
E, [sup In~ 1ZAkKk )!] \C(WLWM

y€ERY

)(Pol)/(onl)

By assumption, this term goes to 0 as n — +o00. Let € > 0, we have that
Pr( sup [E[Za(y) Focl| > €) < Pr(Elsup |Zu(y)] | Foc] > )
yeRd y€ERA

< Pﬂ@z[ SUp | Zn()| | Foo] = €, In — 1 = z;) Y Pl — 1 £
y€ERd

< B [Elsup |20 ()] [ Focl Lty -12ig) | + Prlln =1 £11)
- yeRd

= 'Ex | sup | Za(0) 10, 1migy | + Palln = 141,

-yeRd

<e 'E, _ sup |n_1 ZAkIN(k( )H +Pr(ly, —1#1).

Then we finish the proof by recalling that I, — 1 = I/, whenever I, < [, — 1 < [}, which has
probability going to 1.

13



B.6 Proof of Corollary 7

Without loss of generality, because h,, — 0, we can assume that K(u) = 0 for every |u| > 1.
Theorem 6 implies that

inf 7(y) > inf 7 — €n,
Jnf (v) Jnf ha(Y) — €n

where €, = supycga |7(y) — 74, (y)| — 0, in Pr-probability. Define, for any z € Q and h > 0,

b(x,h) = inf m(y),

( ) yeQ, ly—z|<h )

M(z,h) = sup  7(y)
yeQ, ly—z|<h

Let K = K+ K_ be the decomposition of K with respect to the non-negative part and the negative
part. Let z € @, for every h > 0, we have

mh(x) = /7‘(’(56 — hu)K (u)du
> b(a.h) [ Lomueoy K (du+ M) [ 1 ue)K-(u)du
—b(ah) [ L nacayK (@ + (4, ) = b 1) [ Lo ey K- ()

>b/kxmmﬂﬂww—ﬂmMﬂ%m—M%MM
zEQ

By virtue of Heine’s theorem, 7 is uniformly continuous on @, hence sup,¢q |[M (z, h) —b(z, h)[ — 0
as h — 0. Consequently, as h,, — 0, we have for every e > 0, that inf,ecq 73, () > bc — e. Choosing
€ small enough and using that ¢, — 0, in P,-probability, gives the statement.

C Changing the initial measure

Appendix A focuses on Markov chains that either starts from their atom a, e.g., Lemma *A.3, or
from their invariant measure 7, e.g., Lemma %A.4. Some link between the underlying probabilities
P, and P, is provided in Lemma *A.2. The following lemma turns out to be a useful ingredient
to extend convergences in P, -probability to convergences in P,, v being any measure absolutely
continuous with respect to .

Lemma *C.5. Let (X;);en be a Markov chain and let v be a probability measure absolutely contin-
uous with respect to w. Suppose that f : Up>1R™ — R is a bounded measurable function such that
E;f(X1,...Xn) — 0 as n — +oo, then

E, f(X1,...X,) — 0.

Proof. Denote by g the Radon—Nikodym derivative of v with respect to m. Let

gn(x) = Eo[f(Xq,... X0)],
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and M > 0 be such that sup,,~; f(x1,...2,) < M for every sequence (z,)nen+. We have
E (X1, X,) = /gn(x)du(:v)
~ [ an(@)ata)ar(a)

< A/gn(x)dﬂ(x) + /gn<$)Q(x)1q(x)>Adﬂ—(x)
= AEWf(Xl, e Xn) + Eu[gn(XO)lq(X0)>A]
< AE. f(X1,...X,) + MP,(q(Xo) > A),

for any A > 0. In the previous display, the term on the right-hand side can be made arbitrarily small
by taking A large and for any such A, the term on the left-hand side goes to 0 by assumption. [

For application purposes, this simple lemma is fine. Notice however that by Corollary 6.9 of
Nummelin (1984), under an additional aperiodicity assumption, the distribution of our Harris chain
converges in total variation to 7 as soon as E;[74] < oo (see also Definition 5.5 and Proposition 5.15).
In view of the equations (x1) and (x6), this means that sup,c4 E;[75] < oco. The control of the
bound in Lemma *A.4 already requires this. Given this, it is not difficult to check that the conclusion
of Lemma *C.5 holds true even if v is a Dirac measure d,, under the additional assumption that for
all k€ {1,...n}

sup |f(z1,...xn) — f(21,. . Tk—1, Yy Tkt 1y - - Tn)| = €n — O.
(z1,...xn,y)ER?TL

This is obviously satisfied when f is an empirical mean over uniformly bounded terms. We have
indeed for any fixed xg

Exf(Xl, e Xn) = Ex[f(l‘o, e Ty Xkg1y - - - Xn)] + k‘O(&n)
_ /Ey[f(xo,...xo,Xl,...Xnk)]Pk(x,dy) + kO(en)

X0y Ty Xgt1, -+ - Xn)] +O(|7m — Pk(az, I fo + kO(er)
X1,... X))+ O(|m — P*(x, )|)) foo + 2kO(ey,).

This remark is of course not new, and is related to the coupling properties of the Harris chains, e.g.,
Proposition 29 in Roberts and Rosenthal (2004).
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