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In the absence of ordering, let the inventory dynamics be described Feller’s branching
diffusion given by the following stochastic differential equation

dX0(t) = −1
2
X0(t) dt+

√
X0(t) dW (t), X0(0) = x0 ∈ I := (0,∞). (1)

Suppose without loss of generality that x0 = 1 in this note. The scale and speed densities
of (1) are given by s(x) = ex−1 and m(x) = x−1e−x+1, respectively. Consequently it is
straightforward to verify that 0 is an attracting point and ∞ is a non-attracting point. In
fact, one can show that 0 is an absorbing point, see, for instance, Theorem 13.1 of Klebaner
(2005); and∞ is a natural point. Moreover, for any y ∈ I, we haveM [y,∞) =

∫∞
y

1
z
e1−zdz ≤

e
y

∫∞
y

e−z dz < ∞.This verifies Condition 2.1 of Helmes et al. (2018).
Suppose the holding and ordering costs functions are given by

c0(x) = xγ1 + xγ2 , x ∈ I, c1(y, z) := k1 + ĉ(y, z), (y, z) ∈ R, (2)

in which γ1 > 0, γ2 < 0, k1 > 0, and ĉ : R 7→ R+ is a nonnegative and continuous function.
It is immediate to show that for any y ∈ I,

∫∞
y

c0(v) dM(v) < ∞; establishing Condition 2.2

of Helmes et al. (2018). Moreover, Condition 2.3 of Helmes et al. (2018) is trivially satisfied.
Therefore, by Theorem 2.1 of Helmes et al. (2018), there exists a pair (y∗0, z

∗
0) ∈ R such that

F0(y
∗
0, z

∗
0) = F ∗

0 = inf{F0(y, z) : (y, z) ∈ R}.

Theorem 1. If γ2 ≤ −2, then there exists an optimal (y∗0, z
∗
0) ordering policy in the class A

for the Branching diffusion model (1) having nonlinear cost structure given by (2).
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Proof. The assertion follows from Theorem 5.1 directly if we can verify Condition 5.1 of
Helmes et al. (2018) holds. Using the definitions of ζ, g0 and G0 in Helmes et al. (2018), we
have

G0(x) = 2

∫ x

1

∫ ∞

u

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dv du, x ∈ I.

Let us first study the asymptotic behaviors of c0(x)
(1+|G0(x)|)2 and

(σ(x)G′
0(x))

2

(1+|G0(x)|)(1+c0(x))
when

x → ∞. Since limx→∞
∫∞
x
(vγ1−1 + vγ2−1 − F ∗

0 v
−1)e−v dv = 0, we can use L’Hospital’s Rule

to compute

lim
x→∞

∫∞
x
(vγ1−1 + vγ2−1 − F ∗

0 v
−1)e−v dv

xγ1−1e−x
= lim

x→∞

−(xγ1−1 + xγ2−1 − F ∗
0 x

−1)e−x

(γ1 − 1)xγ1−2e−x − xγ1−1e−x
= 1.

Hence there exists some δ > 1 such that

1
2
xγ1−1e−x ≤

∫ ∞

x

(vγ1−1 + vγ2−1 − F ∗
0 v

−1)e−v dv ≤ 3
2
xγ1−1e−x, for all x ≥ δ.

On the other hand, the integral 2
∫ δ

1

∫∞
u

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dvdu is uniformly

bounded by a constant K = K(δ, γ1, γ2, F
∗
0 ). In the rest of the proof, we shall denote by

K a generic positive constant whose exact value may be different from line to line. Thus it
follows that for x ≥ δ, we have

|G0(x)| ≥ 2

∫ x

δ

∫ ∞

u

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dv du−K

≥ 2

∫ x

δ

1
2
uγ1−1e−ueu du−K =

xγ1 − δγ1

γ1
−K.

Likewise, for all x ≥ δ, we have

G′
0(x) = 2

∫ ∞

x

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−vex dv ≤ 2 · 3

2
xγ1−1e−xex = 3xγ1−1.

Hence it follows that

c0(x)

(1 + |G0(x)|)2
≤ xγ1 + xγ2(

1 + |xγ1−δγ1
γ1

−K|
)2 → 0, as x → ∞, (3)

(σ(x)G′
0(x))

2

(1 + |G0(x)|)(1 + c0(x))
≤ (x

1
23xγ1−1)2(

1 + |xγ1−δγ1
γ1

−K|
)
(1 + xγ1 + xγ2)

→ 0, as x → ∞. (4)

Next we consider the asymptotic behaviors of c0(x)
(1+|G0(x)|)2 and

(σ(x)G′
0(x))

2

(1+|G0(x)|)3 when x ↓ 0.
When 0 < x ≪ 1, we can write

G0(x) =− 2

∫ κ

x

∫ κ

u

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dv du

− 2

∫ κ

x

∫ 1

κ

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dv du

− 2

∫ 1

κ

∫ 1

u

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dv du

+ 2

∫ x

1

∫ ∞

1

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−veu dv du,

(5)
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where κ = κ(F ∗
0 , γ2) ∈ (0, 1) is chosen so that F ∗

0 < 1
2
vγ2 (and hence vγ1−1+ vγ2−1−F ∗

0 v
−1 >

1
2
vγ2−1 > 0) for all v ∈ (0, κ]. It is easy to see that the second, third, and fourth integrals of

(5) are uniformly bounded. Thus we have

|G0(x)| ≥ 2

∫ κ

x

∫ κ

u

1
2
vγ2−1e−veu dv du−K ≥ e−κex

∫ κ

x

1
γ2
(κγ2 − uγ2) du−K

= e−κex 1
γ2

(
κγ2(κ− x)− κγ2+1 − xγ2+1

γ2 + 1

)
−K ≥ e−κxγ2+1

γ2(γ2 + 1)
−K. (6)

Then it follows that limx↓0G0(x) = −∞ and for all 0 < x ≪ 1,

c0(x)

(1 + |G0(x)|)2
≤ xγ1 + xγ2(

1 + | e−κxγ2+1

γ2(γ2+1)
−K|

)2 ≤ xγ1 + xγ2

Kx2γ2+2
≤ K. (7)

Next using the κ ∈ (0, 1) chosen before, we write

σ(x)G′
0(x) = 2x

1
2 ex

∫ κ

x

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−v dv

+ 2x
1
2 ex

∫ ∞

κ

(
vγ1−1 + vγ2−1 − F ∗

0 v
−1
)
e−v dv.

Observe that the second term above is uniformly bounded for all x ∈ (0, 1). Since γ2 ≤ −2,
γ1 > 0 and F ∗

0 > 0, we have

|σ(x)G′
0(x)| ≤ 2e1x

1
2

∫ κ

x

2vγ2−1 dv +K = 4ex
1
2
κγ2 − xγ2

γ2
+K ≤ 4e

−γ2
xγ2+

1
2 +K.

This, together with (6), implies that for 0 < x ≪ 1,

(σ(x)G′
0(x))

2

(1 + |G0(x)|)3
≤

(
4e
−γ2

xγ2+
1
2 +K

)2(
e−κxγ2+1

γ2(γ2+1)
−K

)3 ≤ K
x2γ2+1

x3γ2+3
= Kx−γ2−2 ≤ K. (8)

Equations (3), (4), (7), and (8) establish Condition 5.1 of Helmes et al. (2018). The proof is
therefore complete.

Remark 2. For γ2 ∈ (−2, 0), similar computations show that limx→0
c0(x)

(1+|G0(x)|)2 = ∞. Thus

Condition Condition 5.1 (a) of Helmes et al. (2018) fails. Observe that the speed measure
is very large in any neighborhood of 0 indicating that the inventory moves slowly while
γ2 determines the penalty rate that the holding cost imposes near 0. It is therefore the
delicate interplay between the dynamics of the model and the cost structure which determines
whether or not Condition 5.1 holds.
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