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B. Additional proofs

Proof of Theorem 1: Suppose that the unique weak solution to (2.1) and (2.2)

for ρ =∞ is given by (X1, B1). Let

φt = t+
1

2ρ
Llt
(
X1
)
,

Tt = φ−1t ,

Xt = X1
Tt ,

Bt = B1
Tt +

∫ t

0
I (Xs = l) dB0

s ,

where B0 is a Brownian motion, defined on an extended probability space if

needed, that is independent of B1. The local time process is continuous and

non-decreasing; hence φt is strictly increasing and continuous (see [1, Chapter

II.13]). This implies that Tt is also strictly increasing and continuous. Then Bt
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is a continuous local martingale and

〈B〉t = 〈B1〉Tt +

∫ t

0
I (Xs = l) ds = Tt +

∫ t

0
I (Xs = l) ds.

It also holds that

Tt =

∫ Tt

0
ds−

∫ Tt

0
I
(
X1
s = 0

)
ds =

∫ Tt

0
I
(
X1
s > l

)
ds

=

∫ Tt

0
I
(
X1
s > l

)(
ds+

1

2ρ
dLls

(
X1
))

=

∫ t

0
I
(
X1
Ts > l

)
dφTs =

∫ t

0
I (Xs > l) ds,

where we use that dLls(X) only increases for Xs = l, and we apply the change-

of-variable formula. Therefore, 〈B〉t = t, and by Lévy’s characterization, B is

a standard Brownian motion. Moreover,

Xt = X1
Tt

=

∫ Tt

0
µ
(
X1
s

)
I
(
X1
s > l

)
ds+

∫ Tt

0
σ
(
X1
s

)
I
(
X1
s > l

)
dB1

s +
1

2

∫ Tt

0
dLls

(
X1
)

=

∫ Tt

0
µ
(
X1
s

)
I
(
X1
s > l

)(
ds+

1

2ρ
dLls

(
X1
))

+

∫ t

0
σ
(
X1
Ts

)
I
(
X1
Ts > l

)
dB1

Ts +
1

2
LlTt

(
X1
)

=

∫ t

0
µ
(
X1
Ts

)
I
(
X1
Ts > l

)
dφTs +

∫ t

0
σ (Xs) I (Xs > l) dBs +

1

2
LlTt

(
X1
)

=

∫ t

0
µ (Xs) I (Xs > l) ds+

∫ t

0
σ (Xs) I (Xs > l) dBs +

1

2
Llt (X) ,

because Xs = X1
Ts
,

dφTs = ds+
1

2ρ
dLls

(
X1
)

= ds

as X1 is the unique weak solution of the reflecting case, and LlTt(X
1) = Llt(X).

This shows that (X,B) solves (2.1). Furthermore,∫ t

0
I (Xs = l) ds =

∫ t

0
I
(
X1
Ts = l

)
dφTs =

∫ Tt

0
I
(
X1
s = l

)
dφs

=

∫ Tt

0
I
(
X1
s = l

)(
ds+

1

2ρ
dLls

(
X1
))

=
1

2ρ
Llt (X) ,
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where the first term vanishes because for X1 it holds that I(X1
s = l)ds = 0.

The continuity of X follows from the continuity of X1 and T . Hence, (X,B)

also solves (2.2).

The next step is to show the uniqueness in law of the solution X. We reset

the notation and suppose that (X,B) solves (2.1) and (2.2). Define

Tt =

∫ t

0
I (Xs > l) ds

for t ≥ 0. Then Tt is continuous and strictly increasing almost surely. This

can be shown by contradiction. Assume Tt is not strictly increasing; then there

exists a set

Γ = {ω ∈ Ω : Tt1 = Tt2 for some 0 < t1 < t2} ,

with P(Γ) > 0 and t1, t2 depending on ω. Now Tt1 = Tt2 implies that the process

stays at the boundary for all s ∈ [t1, t2], and so

Γ ⊂
{
ω :

∫ t2

t1

dLls (X) = Llt2 (X)− Llt1 (X) > 0 for some 0 < t1 < t2

}
;

i.e., the local time increases between t1 and t2. On this set, I(Xs > l) = 0 for

all s ∈ [t1, t2], and hence

Γ ⊂
{
ω : Xt2 = Xt1 + Llt2 (X)− Llt1 (X) > Xt1 for some 0 < t1 < t2

}
,

as the drift and volatility vanish. This is a contradiction to I(Xs > l) = 0, and

so, in summary, Tt is strictly increasing almost surely. The inverse of Tt, given

by

φt = inf {s ≥ 0 : Ts > t} ,

is therefore also continuous and almost surely finite. AsX and φ are continuous,

it follows that X is constant on every interval [φt−, φt], and so φ is in synchro-

nization with X (see [4, Definition 10.13], which refers to this as adaptedness

of X to the time change φ).

Now set X1
t = Xφt . Then X1 is a continuous semimartingale (see Corollary
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10.12 and Lemma 10.15 in [4]), and by (2.2),

t = Tφt =

∫ φt

0
I (Xs > l) ds = φt −

∫ φt

0
I (Xs = l) ds

= φt −
1

2ρ
Llφt (X) = φt −

1

2ρ
Llt
(
X1
)
,

so

φt = t+
1

2ρ
Llt
(
X1
)
,

which shows that φ is also strictly increasing. Let B1
t =

∫ φt
0 I(Xs > l)dBs.

Then B1
t is a continuous local martingale with

〈B1〉t =

∫ φt

0
I (Xs > l) ds = Tφt = t,

and hence B1 is a Brownian motion by Lévy’s criterion. Furthermore, by (2.1)

it follows that

X1
t = X0 +

∫ φt

0
µ (Xs) I (Xs > l) ds+

∫ φt

0
σ (Xs) I (Xs > l) dBs +

1

2
Llφt (X)

= X0 +

∫ t

0
µ
(
X1
s

)
I
(
X1
s > l

)
dφs +

∫ t

0
σ
(
X1
s

)
I
(
X1
s > l

)
dB1

s +
1

2
Llt
(
X1
)
,

by the change of variables formula, and

dX1
t = µ

(
X1
t

)
I
(
X1
t > l

)
dφt + σ

(
X1
t

)
I
(
X1
t > l

)
dB1

t +
1

2
dLlt

(
X1
)

= µ
(
X1
t

)
I
(
X1
t > l

)(
dt+

1

2ρ
dLlt

(
X1
))

+ σ
(
X1
t

)
I
(
X1
t > l

)
dB1

t +
1

2
dLlt

(
X1
)

= µ
(
X1
t

)
I
(
X1
t > l

)
dt+ σ

(
X1
t

)
I
(
X1
t > l

)
dB1

t +
1

2
dLlt

(
X1
)
.

Moreover, we have∫ t

0
I
(
X1
s = l

)
ds =

∫ t

0
I (Xφs = l) dTφs =

∫ φt

0
I (Xs = l) dTs = 0.

The last two equations show that (X1, B1) is a unique weak solution to the

system of SDEs (2.1) and (2.2) for ρ = ∞. Since X1 is the unique solution to

the reflecting SDE and Xt = XφTt
= X1

Tt
, the law of X is also unique. Theorem

3.1 in [2] states that uniqueness in law for X implies joint uniqueness in law for

(X,B). �
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We will restate some results from [8] and [9] without proof but with adjust-

ments to incorporate the sticky boundary behavior at the left boundary.

Lemma 1. For any f, g : Sn → R with g(xn+1) = 0, we have∑
x∈S◦n

g (x) δ−x∇−f (x) = −
∑
x∈S−n

f (x) δ+x∇+g (x)− g (x0) f (x0) . (B.1)

Under Assumption 2, it can be seen that

sup
x,y∈(l,r)

∣∣∣∣ ∂i∂xi ∂j∂yj p (t, x, y)

∣∣∣∣ <∞ (B.2)

for i, j = 0, 1, 2 still holds, because of results from Sturm–Liouville theory and

the proof of [8, Lemma 2]. The use of (B.2) is to prove claims of the form

|g(x)| ≤ Chβn for β = 0, 1, 2 such that the constant C > 0 is independent of x

and n. The application of this result will not be mentioned explicitly below.

Corollary 1. Under Assumption 2, for n sufficiently large, there exist constants

C1, C2 > 0, independent of n and x ∈ Sn, y ∈ S◦n, such that

C1 ≤ sn (x) ≤ C2, C1 ≤ mn (y) ≤ C2, C1 ≤Mn (x0) ≤ C2.

Lemma 2. Under Assumptions 2 and 3, there exists a constant C > 0, inde-

pendent of k and n, such that for hn ∈ (0, δ), where δ is small enough, the

following holds:

λnk ≤ Ck2. (B.3)

Proof. Let the matrix Mn again be a diagonal matrix with entries Mn,i,i =

Mn(xi) for i = 0, . . . , n. Calculation of MnGn and the choice ofMn(x) as stated

in Section 3.3 implies that

ρ

δ+x0
βMn (x0) =

−µ (x1) δ
+x1 + σ2 (x1)

2δ−x1δx1
Mn (x1) ,

µ (x) δ−x+ σ2 (x)

2δ+xδx
Mn (x) =

−µ (x+) δ+x+ + σ2 (x+)

2δ−x+δx+
Mn

(
x+
)
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for x = x1, . . . , xn−1. Hence MnGn is symmetric, and therefore M1/2
n GnM

−1/2
n

is also symmetric. Furthermore, it can be seen that M1/2
n GnM

−1/2
n is similar to

Gn, and so both matrices have the same eigenvalues. The min-max principle

derived in [9, Section 3] shows that

λnk = min
Uk

max
f∈Uk

−fTM1/2
n GnM

−1/2
n f

fT f
= min

Uk
max
f∈Uk

(f,−Gnf)n
(f, f)n

, (B.4)

where Uk denotes a k-dimensional subspace of functions defined on Sn with

boundary condition f(xn+1) = 0.

The upper boundary for λnk can be derived in the following way. First,

(f,−Gnf)n = −
∑
x∈S−n

f (x) (Gnf (x))Mn (x)

= −
∑
x∈S◦n

f (x)
1

mn (x)

δ−x

δx
∇−

(
1

sn (x)
∇+f (x)

)
mn (x) δx

+
∑
x∈S−n

k (x) f (x)2Mn (x)− ρβf (x0)∇+f (x0)Mn (x0)

= −
∑
x∈S◦n

f (x) δ−x∇−
(

1

sn (x)
∇+f (x)

)
+
∑
x∈S−n

k (x) f (x)2Mn (x)

− ρβf (x0)∇+f (x0)Mn (x0)

=
∑
x∈S−n

δ+x

sn (x)

(
∇+f (x)

)2
+
∑
x∈S−n

k (x) f (x)2Mn (x) +
1− β
sn (x0)

f (x0)∇+f (x0) ,

using Lemma 1 and 1/sn(x0) = ρMn(x0). Furthermore, by noting that for
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Scheme 1, 1− β = 0, and for Scheme 2, 1− β = O(hn), we derive∑
x∈S−n

δ+x

sn (x)

(
∇+f (x)

)2
+

1− β
sn (x0)

f (x0)∇+f (x0)

≤ C1

hn

∑
x∈S−n

(
f
(
x+
)
− f (x)

)2
+
C2

hn
|1− β| |f (x0)| |f (x1)− f (x0)|

≤ C1

hn

∑
x∈S−n

(
f
(
x+
)
− f (x)

)2
+ C3 |f (x0)| |f (x1)− f (x0)|

≤ C1

hn

∑
x∈S−n

(
f
(
x+
)
− f (x)

)2
+ C4

(
f (x0)

2 hn +
(f (x0)− f (x1))

2

hn

)

≤ C5

hn

∑
x∈S−n

(
f
(
x+
)
− f (x)

)2
+ C4f (x0)

2 hn,

where the constants C1, . . . , C5 > 0 are independent of n and f . Note that with

f(xn+1) = 0, the following holds:∑
x∈S−n

(
f
(
x+
)
− f (x)

)2
=
∑
x∈S−n

f
(
x+
)2 − 2

∑
x∈S−n

f
(
x+
)
f (x) +

∑
x∈S−n

f (x)2

= 2
∑
x∈S◦n

f (x)2 −
∑
x∈S◦n

f (x) f
(
x−
)
−
∑
x∈S◦n

f (x) f
(
x+
)

+ f (x0)
2 − f (x0) f (x1)

=
∑
x∈S◦n

f (x)
(
−f
(
x−
)

+ 2f (x)− f
(
x+
))

+ f (x0)
2 − f (x0) f (x1) .

Then∑
x∈S−n

δ+x

sn (x)

(
∇+f (x)

)2
+

1− β
sn (x0)

f (x0)∇+f (x0)

≤ C5

hn

∑
x∈S◦n

f (x)
(
−f
(
x−
)

+ 2f (x)− f
(
x+
))

+
C5

hn
f (x0) (f (x0)− f (x1))

+ C4f (x0)
2 hn

= C5
1

hn
fTn Afn + C4f (x0)

2 hn,

where fn = (f(x0), f(x1), . . . , f(xn))T ∈ Rn+1, and A is an (n + 1) × (n + 1)

tridiagonal matrix with diagonal elements 2 (the first diagonal entry is equal to
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1) and off-diagonal elements -1. It can easily be seen that

0 ≤
∑

x∈S−n k (x) f (x)2Mn (x)

(f, f)n
≤ C6

∑
x∈S−n f (x)2Mn (x)∑
x∈S−n f (x)2Mn (x)

≤ C6

for some constant C6 > 0 independent of n and f , as all terms are positive and

k(x) is bounded. Lastly,

(f, f)n =
∑
x∈S−n

f (x)2Mn (x)

≥
∑
x∈S◦n

f (x)2mn (x) δx+ f (x0)
2Mn (x0)hn

≥ C7hnf
T
n fn

for a constant C7 > 0 independent of n and f , as hn ∈ (0, δ) with δ small

enough. Hence,

(f,−Gnf)n
(f, f)n

≤
C5

1
hn
fTn Afn

C7hnfTn fn
+
C4hnf (x0)

2

C7hnfTn fn
+ C6.

Putting these results into (B.4), one obtains

λnk ≤
C5

C7h2n
min
Uk

max
f∈Uk

fTn Afn
fTn fn

+ C8.

As

min
Uk

max
f∈Uk

fTn Afn
fTn fn

is the kth eigenvalue of the matrix A, one can use the results of [6, Table 2] or

alternatively [7, Theorem 2] to obtain that

λk(A) = 4 sin2 (2k − 1)π

4n+ 6
≤ 4k2π2

(n+ 1)2
, k = 1, 2, . . . , n+ 1.

This now shows that

λnk ≤
C5

C7h2n

4k2π2

(n+ 1)2
+ C8 ≤

4π2C5

C7C2
9

k2 + C8 ≤ C10k
2,

as by Assumption 3, we have C9 ≤ hn(n+ 1). �
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Lemma 3. Consider a grid such that hn ∈ (0, δ) with δ small enough; then

there exists a constant C > 0 such that for any 1 ≤ k ≤ h−1/4n ,

λnk − λk ≥ −Ch1/4n ,

where C is independent of k and n.

Proof. It should first be noted that as G is a self-adjoint operator, the min-

max principle holds (see [3, Theorem 2.1]). In particular,

λk = min
L⊂D,dimL=k

max
ψ∈L,ψ 6=0

(ψ,−Gψ)

(ψ,ψ)
,

where L is a linear subspace of the domain of G.

For i = 1, . . . , k define ψi : S→ R as a linear interpolation of the approximate

eigenfunction ϕni over the interval S, which is given by

ψi (x) = ϕni
(
y−
)

+∇−ϕni (y)
(
x− y−

)
for x ∈ [y−, y] and y ∈ S+n . Then {ψ1, . . . , ψk} form a k-dimensional linear

space. Furthermore, set ψa(x) =
∑k

i=1 aiψi(x) where the ai are normalized,

i.e.
∑k

i=1 a
2
i = 1. Using the min-max principle and integration by parts, we

obtain

λk ≤ max
a1,...,ak:

∑k
i=1 a

2
i=1

(ψa,−Gψa)
(ψa, ψa)

= max∑k
i=1 a

2
i=1

∫ r
l
ψ′a(x)

2

s(x) dx+
∫ r
l k (x)ψa (x)2M (dx)∫ r

l ψa (x)2M (dx)
. (B.5)

We will now estimate the different terms appearing in this equation. First,

note that as 1−β = 0 for Scheme 1 and |1−β| ≤ Cδ+x0 for Scheme 2, it holds

that

|1− β|
∣∣ψa (x0)∇+ψa (x0)

∣∣ ≤ C1ψa (x0)
2
√
δ+x0 + C1

(
∇+ψa (x0)

)2 (
δ+x0

)3/2
≤ C2

√
hn + C2

√
δ
∑
x∈S−n

(
∇+ψa (x)

)2
δ+x, (B.6)
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with constants C1, C2 > 0 independent of a and n, because

ψa (x0)
2 ≤

∑
x∈S−n

ψa (x0)
Mn (x)

Mn (x)
≤ C3

k∑
i1=1

k∑
i2=1

ai1ai2
∑
x∈S−n

ϕni1 (x)ϕni2 (x)Mn (x) = C3,

as

∑
x∈S−n

ϕni1(x)ϕni2(x)Mn(x) = (ϕni1 , ϕ
n
i2)n = δi1,i2 ,

and C3 > 0 is independent of a and n. Using this result and the fact that ψa is

a piecewise linear function, we obtain

∫ r

l

1

s (x)
ψ′a (x)2 dx−

∑
x∈S−n

1

sn (x)

(
∇+ψa (x)

)2
δ+x− 1− β

sn (x0)
ψa (x0)∇+ψa (x0)

≤
∑
x∈S−n

(
∇+ψa (x)

)2 ∫ x+

x

∣∣∣∣ 1

s (y)
− 1

sn (x)

∣∣∣∣ dy − 1− β
sn (x0)

ψa (x0)∇+ψa (x0)

≤ C4hn
∑
x∈S−n

(
∇+ψa (x)

)2
δ+x+ C5

√hn +
√
δ
∑
x∈S−n

(
∇+ψa (x)

)2
δ+x


≤ C6hn

∑
x∈S−n

(
∇+ψa (x)

)2
δ+x+ C5

√
hn, (B.7)

where C4, C5, C6 > 0 are independent of a and n. The term appearing in (B.7)
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can be handled as follows:∑
x∈S−n

(
∇+ψa (x)

)2
δ+x

≤ −C7
β

sn (x0)
ψa (x0)∇+ψa (x0) + C7

β

sn (x0)
ψa (x0)∇+ψa (x0)

+ C7

∑
x∈S−n

1

sn (x)

(
∇+ψa (x)

)2
δ+x+ C7

∑
x∈S−n

k (x)Mn (x)ψa (x)2

= −C7βρMn (x0)ψa (x0)∇+ψa (x0) +
C7β

sn (x0)
ψa (x0)∇+ψa (x0)

− C7

∑
x∈S◦n

ψa (x) δ−x∇−
(

1

sn (x)
∇+ψa (x)

)
− C7

sn (x0)
ψa (x0)∇+ψa (x0)

+ C7

∑
x∈S−n

k (x)Mn (x)ψa (x)2

= −C7

∑
x∈S−n

ψa (x)Mn (x)Gnψa (x) +
C7 (β − 1)

sn (x0)
ψa (x0)∇+ψa (x0)

≤ C7

k∑
i1=1

k∑
i2=1

ai1ai2λ
n
i2

∑
x∈S−n

ϕni1 (x)ϕni2 (x)Mn (x)

+ C8

√hn +
√
δ
∑
x∈S−n

(
∇+ψa (x)

)2
δ+x


≤ C9λ

n
k + C7

√
δ
∑
x∈S−n

(
∇+ψa (x)

)2
δ+x, (B.8)

where the last inequality follows from the fact that 0 ≤ λn1 < λn2 < · · · < λnk .

The constants C7, C8, C9 > 0 are independent of a and n. We can now choose

δ small enough so that 1− C7

√
δ > 0; then∑

x∈S−n

(
∇+ψa (x)

)2
δ+x ≤ C9

1− C7

√
δ
λnk ≤ C10λ

n
k .

Combining (B.7) and the previous results yields∫ r

l

1

s (x)
ψ′a (x) dx ≤ 1− β

sn (x0)
ψa (x0)∇+ψa (x0) +

∑
x∈S−n

1

sn (x)

(
∇+ψa (x)

)2
δ+x

+ C11λ
n
khn + C5h

1/2
n .
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The second term in (B.5) can be handled as follows:∣∣∣∣∣∣
∫ r

l
k (x)ψa (x)2M (dx)−

∑
x∈S−n

k (x)ψa (x)2Mn (x)

∣∣∣∣∣∣
≤
∣∣∣k (x0)ψa (x0)

2M (x0)− k (x0)ψa (x0)
2Mn (x0)

∣∣∣
+

∣∣∣∣∣∣
∫ r

l
k (x)ψa (x)2m (x) dx−

∑
x∈S◦n

k (x)ψa (x)2mn (x) δx

∣∣∣∣∣∣
≤ C12hnψa (x0)

2 +
1

2

∑
x∈S−n

∫ x+

x

∣∣∣k (y)ψa (y)2m (y)− k (x)ψa (x)2mn (x)
∣∣∣ dy

+
1

2

∑
x∈S−n

∫ x+

x

∣∣∣k (y)ψa (y)2m (y)− k
(
x+
)
ψa
(
x+
)2
mn

(
x+
)∣∣∣ dy

≤ C13

(√
λnkhn + λnkh

2
n

)
,

where the last inequality follows in the same way as in the proof of [9, Lemma

4]. Using this result to bound the numerator, one obtains∫ r

l

1

s (x)
ψ′a (x)2 dx+

∫ r

l
k (x)ψa (x)2M (dx)

≤ −
∑
x∈S−n

ψa (x)Mn (x)Gnψa (x) + C14

((√
λnk + λnk

)
hn + λnkh

2
n + h1/2n

)
≤ λnk + C14

((√
λnk + λnk

)
hn + λnkh

2
n + h1/2n

)
for some constant C14 > 0 independent of a, k, and n. The denominator can

be estimated similarly as before by setting k(x) = 1:∣∣∣∣∫ r

l
ψa (x)2M (dx)− 1

∣∣∣∣ ≤ C15

(√
λnkhn + λnkh

2
n

)
,

where C15 > 0 is a constant independent of a, k and n. As all of the constants

are independent of a, it follows that

λk ≤
λnk + C14

((√
λnk + λnk

)
hn + λnkh

2
n + h

1/2
n

)
1− C15

(√
λnkhn + λnkh

2
n

) .

Using Lemma 2, i.e., λnk ≤ C16k
2 ≤ C16h

−1/2
n for some C16 > 0 independent of
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k and n, we have

λk − λnk ≤
C14

((√
λnk + λnk

)
hn + λnkh

2
n + h

1/2
n

)
+ C15λ

n
k

(√
λnkhn + λnkh

2
n

)
1− C15

(√
λnkhn + λnkh

2
n

)
≤
C17

(
h
3/4
n + h

1/2
n + h

3/2
n + h

1/4
n + h

1/2
n

)
1− C15

(
δ3/4 + δ3/2

) ≤ C18h
1/4
n

for constants C17, C18 > 0 independent of k and n, as long as δ is small enough

so that 1− C15(δ
3/4 + δ3/2) > 0. �

Lemma 4. If hn ∈ (0, δ) for δ small enough, there exists a constant C > 0

such that for any 1 ≤ k ≤ n,

‖ϕnk‖n,∞ ≤ Ck,

where C is independent of k and n.

Proof. Note that for every y ∈ S−n ,

ϕnk (y) =
∑

y≤x<xn+1

ϕnk (x)− ϕnk
(
x+
)

= −
∑

y≤x<xn+1

∇+ϕnk (x) δ+x,

as ϕnk(xn+1) = 0. Then

|ϕnk (y)| =

∣∣∣∣∣∣−
∑

y≤x<xn+1

∇+ϕnk (x) δ+x

∣∣∣∣∣∣ ≤
∑
x∈S−n

∣∣∇+ϕnk (x)
∣∣ δ+x

≤
√∑
x∈S−n

(
∇+ϕnk (x)

)2
δ+x

∑
x∈S−n

δ+x ≤ C1

√
λnk

for a constant C1 > 0 independent of k, n, and y, because of the same steps

as shown in (B.8) with ψa replaced by ϕnk . Furthermore, by Lemma 2, i.e.,

λnk ≤ C2k
2, it follows that

‖ϕnk‖n,∞ ≤ C1

√
λnk ≤ C3k

for constants C2, C3 > 0 independent of k and n. �

Lemma 5. It holds that∣∣∣∣∣∣
∑
x∈S−n

f (x)Mn (x)−
∫ xn+1

x0

f (x)M (dx)

∣∣∣∣∣∣ ≤ C max{‖f‖∞ ,
∥∥f ′′∥∥∞}hγn
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for some constant C > 0 independent of n and f .

Proof. We can prove the following by using Proposition 2 and the trapezoidal

rule: ∑
x∈S−n

f (x)Mn (x)−
∫ xn+1

x0

f (x)M (dx)

= f (x0)Mn (x0)− f (x0)M (x0) +
∑
x∈S◦n

f (x)mn (x) δx

−
∫ xn+1

x0

f (x)m (x) dx

= f (x0)
δ+x0
σ2 (x0)

(M (x0)α− 1) +O
(
h2n
)

+
∑
x∈S◦n

f (x)mn (x) δx

−
∫ xn+1

x0

f (x)m (x) dx

≤ C1 |M (x0)α− 1| ‖f‖∞ hn + C2

∥∥f ′′∥∥∞ h2n
≤

C3 ‖f‖∞ hn for α = µ (x0) ,

C2 ‖f ′′‖∞ h2n for α = ρ (as M (x0)α = 1
ρ × ρ = 1)

≤ C4 max{‖f‖∞ ,
∥∥f ′′∥∥∞}hγn,

where C1, . . . , C4 > 0 are independent of n and f . �

Corollary 2. For hn ∈ (0, δ), the following lower bound holds for every 1 ≤

k ≤ h−1/4n :

λnk ≥ Ck2,

if δ is sufficiently small and C > 0 is a constant independent of k and n.

Proof. The proof is the same as the proof of [5, Corollary 3.7], using Propo-

sition 3 and Lemma 2. �

C. Pseudocode

We provide pseudocode for our CTMC approximation algorithm for pricing

of some payoff f under a diffusion model with sticky lower boundary. Symbols
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in bold are vectors or matrices. Round brackets show the index or range of

indices (indices start at 0), and square brackets create a vector.
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Algorithm 1: Pricing of some payoff f under a diffusion model with sticky

lower boundary

1 def CTMCPricing(l, r, µ, σ, ρ, k, x, f, T, n, scheme):
Data: Parameters of underlying diffusion and product to be priced;

scheme indicates the scheme to be used.

Result: Price of the product with payoff f .

2 if r ==∞:

3 r ← r <∞

4 x = (x0, . . . , xn+1) = Linspace(l,r,n+2)

5 δ+ ← x(2 : n)− x(1 : n− 1), δ− ← x(1 : n− 1)− x(0 : n− 2), δ ←
1
2

(
δ+ + δ−

)
6 vl ← −µ(x(1:n−1))∗δ+

2δ−∗δ + σ2(x(1:n−1))
2δ−∗δ , vu ← µ(x(1:n−1))∗δ+

2δ−∗δ + σ2(x(1:n−1))
2δ−∗δ

7 vd ← [0,−vl − vu − k (x(1 : n− 1)) , 0], vu ← [0,vu(0 :

n− 2), 0], vl ← [vl, 0]

8 if scheme == 1:

9 vu(0)← ρ/ (x(1)− x(0)) , vd(0)← −vu(0)− k (x(0))

10 else:

11 vu(0)← ρ

x(1)−x(0)+ ρ−µ(x(0))

σ2(x(0))
(x(1)−x(0))2 , vd(0)← −vu(0)− k (x(0))

12 G←


. . . . . . . . .

vl vd vu
. . . . . . . . .


13 f ← f(x)

14 P = MatrixExponential(TG)f

15 if x ∈ x:

16 i = FindIndex(x,x)

17 return P (i)

18 else:

19 P (·) = CubicSplineInterpolation(x,P )

20 return P (x)
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In line 4, a uniform grid is generated by the function Linspace, but this can

be replaced by a non-uniform grid. The operations in line 6 are understood

to be componentwise. Line 12 generates the tridiagonal matrix based on the

transition rates in vl,vd, and vu, and f is the vector of payoffs at each grid

point. In line 14 the matrix exponential is calculated for TG and multiplied by

the vector f . This is a matrix–vector multiplication, and the result is again an

(n+1)-dimensional vector P . The calculation of the matrix exponential can be

done using any one of the algorithms described in Section 3.2. The final step is

to return the price corresponding to the starting point x. If the starting point

is in the grid x, then line 16 returns the index in the vector corresponding to

x. In case x is not on the grid, we apply cubic spline interpolation to the price

vector and obtain the price at x from the cubic spline function.
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