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7. Supplementary material to Section 3.2 on the critical case

We give a proof to Theorem 3.2. We keep notations from Section 5 on the

sub-critical case, and adapt very closely the arguments of this section. We recall

that ck(f) = sup{‖fn ‖Lk(µ), n ∈ N} for all k ∈ N. We recall that C denotes any

unimportant finite constant which may vary from line to line, which does not

depend on n or f. In this case, the condition (32) is strengthened as follows:

for all λ > 0,

pn < n, lim
n→∞

pn/n = 1 and lim
n→∞

n− pn − λ log(n) = +∞.

Lemma 7.1. Under the assumptions of Theorem 3.2, we have that limn→∞ E[n−1Rk00 (n)2] =

0.

Proof. Mimicking the proof of Lemma 5.2, we get:

lim
n→∞

E[Rk00 (n)2]1/2 ≤ lim
n→∞

Cc2(f)
√
n2−p/2 = 0.

This trivially implies the result. �
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Lemma 7.2. Under the assumptions of Theorem 3.2, we have that limn→∞ E[n−1R1(n)2] =

0.

Proof. Mimicking the proof of Lemma 5.3, we get E[R1(n)2]1/2 ≤ Cc2(f)
√
n− p.

As limn→∞ p/n = 1, this implies that limn→∞ E[n−1R1(n)2] = 0. �

Similarly to Lemma 5.4, we get the following result on R2(n).

Lemma 7.3. Under the assumptions of Theorem 3.2, we have that limn→∞ E[n−1/2R2(n)] =

0.

We now consider the asymptotics of V2(n).

Lemma 7.4. Under the assumptions of Theorem 3.2, we have that limn→∞ n
−1V2(n) =

Σcrit
2 (f) in probability, where Σcrit

2 (f), defined in (29), is well defined and finite.

In the proof, we shall use the analogue of (8) with f replaced by f̂ in the

left hand-side, whereas f ∈ L4(µ) does imply that f̃ ∈ L4(µ) but does not

imply that f̂ ∈ L4(µ). Thanks to (8), we get for f ∈ L4(µ) and g ∈ L2(µ), as

Rjf = α−1
j QRjf and |αj | = α, that:

‖P
(
f̂ ⊗sym Qg

)
‖
L2(µ)

≤ ‖P
(
f̃ ⊗sym Qg

)
‖
L2(µ)

+α−1
∑
j∈J
‖P (Q(Rjf)⊗sym Qg)‖L2(µ)

≤ C
(
‖f ‖L4(µ) + ‖f ‖L2(µ)

)
‖g‖L2(µ)

≤ C ‖f ‖L4(µ) ‖g‖L2(µ) . (1)

Proof. We keep the decomposition (45) of V2(n) = V5(n) + V6(n) given in

the proof of Lemma 5.5. We recall V6(n) = |Gn−p|−1MGn−p
(H6,n) with H6,n

defined in (46). We set

H̄6,n =
∑

0≤`<k≤p; r≥0

h̄
(n)
k,`,r 1{r+k<p} and V̄6(n) = |Gn−p|−1MGn−p

(H̄6,n),

where for 0 ≤ ` < k ≤ p and 0 ≤ r < p− k:

h̄
(n)
k,`,r = 2r−` αk−`+2r Qp−1−(r+k)(Pfk,`,r) = 2−(k+`)/2 Qp−1−(r+k)(Pfk,`,r),
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where we used that 2α2 = 1. For f ∈ L2(µ), we recall f̂ defined in (26). We

set:

h
(n,1)
k,`,r = 2r−`Qp−1−(r+k)(P(Qr(f̂k)⊗sym Qk−`+r(f̂`))),

h
(n,2)
k,`,r = 2r−`Qp−1−(r+k)(P(Qr(f̂k)⊗sym Qk−`+r(

∑
j∈J

Rj(f`)))),

h
(n,3)
k,`,r = 2r−`Qp−1−(r+k)(P(Qr(

∑
j∈J

Rj(fk))⊗sym Qk−`+r(f̂`))),

so that h
(n)
k,`,r = h̄

(n)
k,`,r+

∑3
i=1 h

(n,i)
k,`,r. Thanks to (6) for r ≥ 1 and (1) for r = 0, we

have using Jensen’s inequality, (16) and the fact that the sequence (βr, r ∈ N)

is nonincreasing:

‖h(n,1)
k,`,r ‖L2(µ)

≤ C2−(k+`)/2βr ‖f` ‖L2(µ)

‖fk ‖L2(µ) for r ≥ 1,

‖fk ‖L4(µ) for r = 0.

Using the same arguments, that 〈µ,Rj(g)〉 = 0 for g ∈ L2(µ) (as Rj(g) is an

eigen-vector of Q associated to αj) and that ‖
∑

j∈J Rj(f`)‖L2(µ)
≤ C ‖f` ‖L2(µ)

(as Rj are bounded operators on L2(µ)), we get:

‖h(n,2)
k,`,r ‖L2(µ)

+ ‖h(n,3)
k,`,r ‖L2(µ)

≤ C2−(k+`)/2βr ‖f` ‖L2(µ)

‖fk ‖L2(µ) for r ≥ 1,

‖fk ‖L4(µ) for r = 0.

We deduce that

3∑
i=1

‖h(n,i)
k,`,r ‖L2(µ)

≤ Cc2(f)c4(f)2−(k+`)/2βr. (2)

Using (36) for the first inequality, Jensen’s inequality for the second in-

equality, the triangular inequality for the third inequality and (2) for the last



4 S. V. BITSEKI PENDA AND J-F. DELMAS

inequality, we get:

E
[(
V6(n)− V̄6(n)

)2]
= |Gn−p|−2E[MGn−p

(H6(n)− H̄6(n))2]

≤ C|Gn−p|−1
n−p∑
m=0

2m ‖Qm(H6(n)− H̄6(n))‖2L2(µ)

≤ C ‖H6(n)− H̄6(n)‖2L2(µ)

≤ C
( ∑

0≤`<k<p

p−k−1∑
r=0

3∑
i=1

‖h(n,i)
n,k,`,r ‖L2(µ)

)2

≤ Cc2(f)2c4(f)2
( p∑
r=0

βr

)2
.

We deduce that

E[(V6(n)− V̄6(n))2] ≤ Cc2(f)2c4(f)2
( p∑
r=0

βr

)2
,

and then that

lim
n→∞

E[n−2(V6(n)− V̄6(n))2] = 0. (3)

We set H
[n]
6 =

∑
0≤`<k≤p; r≥0 hk,`,r 1{r+k<p} with for 0 ≤ ` < k ≤ p and 0 ≤

r < p− k:

hk,`,r = 2−(k+`)/2〈µ,Pfk,`,r〉 = 〈µ, h̄(n)
k,`,r〉.

We have that

H
[n]
6 =

∑
0≤`<k<p

p−k−1∑
r=0

hk,`,r = 〈µ, H̄6,n〉.
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We have:

E[(V̄6(n)−H [n]
6 )2] ≤ C|Gn−p|−1

n−p∑
m=0

2m ‖Qm(H̄6,n −H [n]
6 )‖

2

L2(µ)

≤ C|Gn−p|−1
n−p∑
m=0

2m

 ∑
0≤`<k≤p

p−k−1∑
r=0

αm+p−r−k2−(k+`)/2 ‖Pfk,`,r ‖L2(µ)

2

≤ C(n− p)|Gn−p|−1

 ∑
0≤`<k≤p

p−k−1∑
r=0

2−(p+`−r)/2 ‖P(fk,`,r)‖L2(µ)

2

≤ C(n− p)|Gn−p|−1

 ∑
0≤`<k<p

2−(`+k)/2‖
∑
j∈J

Rj(fk)‖L2(µ)‖
∑
j∈J

Rj(f`)‖L2(µ)

2

≤ C(n− p)|Gn−p|−1 c4
2(f),

where we used (36) for the first inequality, (15) for the second, α = 1/
√

2 for the

third, (6) and the fact that Q(
∑

j∈J Rjf) =
∑

j∈J αjRj(f), with |αj | = 1/
√

2,

for the fourth, ‖
∑

j∈J Rj(f)‖L2(µ) ≤ ‖f ‖L2(µ) for the last. From the latter

inequality we conclude that:

lim
n→∞

E[n−2(V̄6(n)−H [n]
6 )2] = 0. (4)

We set for k, ` ∈ N: h∗k,` = 2−(k+`)/2〈µ,P(f∗k,`)〉 and we consider the sums

H∗0 =
∑

0≤`<k
(k + 1)|h∗k,`| and H∗6 (f) =

∑
0≤`<k

h∗k,` = Σcrit
2 (f).

Using (5), we have:

|h∗k,`| ≤ C2−(k+`)/2
∑
j∈J
‖Rj(fk)‖L2(µ) ‖Rj(f`)‖L2(µ) ≤ C2−(k+`)/2c2

2(f).

This implies that H∗0 ≤ Cc22(f), H∗6 (f) ≤ Cc22(f) and then that H∗0 and H∗6 (f)

are well defined. We write:

hk,`,r = h∗k,` + h◦k,`,r, with h◦k,`,r = 2−(k+`)/2〈µ,Pf◦k,`,r〉,

where we recall that f◦k,`,r = fk,`,r − f∗k,`, and

H
[n]
6 = H

[n],∗
6 +H

[n],◦
6 (5)
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with

H
[n],∗
6 =

∑
0≤`<k≤p

(p− k)h∗k,` and H
[n],◦
6 =

∑
0≤`<k≤p; r≥0

h◦k,`,r 1{r+k<p}.

Recall limn→∞ p/n = 1. We have:

|n−1H
[n],∗
6 −H∗6 (f)| ≤ |n−1p− 1||H∗6 (f)|+ n−1H∗0 +

∑
0≤`<k
k>p

|h∗k,`|,

so that limn→∞ |n−1H
[n],∗
6 −H∗6 (f)| = 0 and thus:

lim
n→∞

n−1H
[n],∗
6 = H∗6 (f). (6)

We now prove that n−1H
[n],◦
6 converges towards 0. We have:

f◦k,`,r =
∑

j,j′∈J, θjθj′ 6=1

(θj′θj)
rθk−`j′ Rjfk ⊗sym Rj′f`. (7)

This gives:

|H [n],◦
6 | =

∣∣∣ ∑
0≤`<k≤p, r≥0

2−(k+`)/2〈µ,Pf◦k,`,r〉1{r+k<p}
∣∣∣

≤
∑

0≤`<k≤p
2−(k+`)/2

∑
j,j′∈J, θjθj′ 6=1

∣∣∣〈µ,P(Rjfk ⊗sym Rj′f`)〉
∣∣∣ ∣∣∣ p−k−1∑

r=0

(θj′θj)
r
∣∣∣,

(8)

where we used (7) for the inequality. Using (5) in the upper bound (8), we get∣∣∣〈µ,P(Rj′fk⊗symRjf`)〉
∣∣∣ ≤ 2 ‖Rj′(fk)‖L2(µ) ‖Rj(f`)‖L2(µ) ≤ C ‖fk ‖L2(µ) ‖f` ‖L2(µ) .

This implies that |H [n],◦
6 | ≤ c, with

c = C c2(f)2
∑

0≤`<k≤p
2−(k+`)/2

∑
j,j′∈J, θjθj′ 6=1

|1− θj′θj |−1.

Since J is finite, we deduce that c is finite. This gives that limn→∞ n
−1H

[n],◦
6 =

0. Recall that H
[n]
6 and H∗6 (f) are complex numbers (i.e. constant functions).

Use (5) and (6) to get that:

lim
n→∞

n−1H
[n]
6 = H∗6 (f) (9)
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It follows from (3), (4) and (9) that:

lim
n→∞

E[(n−1V6(n)−H∗6 (f))2] = 0. (10)

We recall H
[n]
5 (f) defined in (53). From (55), we have:

E[n−2V5(n)2] ≤ 2n−2|Gn−p|−2 E
[
MGn−p

(A5,n(f))2
]

+ 2n−2H
[n]
5 (f)2.

Using (51) with α = 1/
√

2, we get |H [n]
5 (f)| ≤ C c2

2(f) and thus:

lim
n→∞

n−2H
[n]
5 (f)2 = 0.

Next, as (56) holds for α = 1/
√

2, we get (57) with the right hand-side replaced

by C c4
4(f) (n− p)2−(n−p), and thus:

lim
n→∞

n−2|Gn−p|−2 E
[
MGn−p

(A5,n(f))2
]

= 0.

It then follows that:

lim
n→∞

E[n−2V5(n)2] = 0.

Finally, since V2(n) = V5(n) + V6(n), we get thanks to (7) that in probability

limn→∞ n
−1V2(n) = H∗6 (f) = Σcrit

2 (f). �

Lemma 7.5. Under the assumptions of Theorem 3.2, we have that in proba-

bility limn→∞ V1(n) = Σcrit
1 (f), where Σcrit

1 (f), defined in (28), is well defined

and finite.

Proof. We recall the decomposition (58): V1(n) = V3(n) + V4(n). First,

following the proof of (10) in the spirit of the proof of (62), we get:

lim
n→∞

E[(n−1V4(n)−H∗4 (f))2] = 0 with H∗4 (f) =
∑
`≥0

2−`〈µ,P(
∑
j∈J

Rj(f`)⊗symRj(f`))〉 = Σcrit
1 (f).

Let us stress that the proof requires to use (4). Since
∑

`≥0 2−`|〈µ,P(
∑

j∈J Rj(f`)⊗sym

Rj(f`))〉| ≤
∑

`≥0 2−`c2
2(f), we deduce that Σcrit

1 (f) is well defined and finite.

Next, from (64) we have

E[n−2V3(n)2] ≤ 2n−2|Gn−p|−2 E
[
MGn−p

(A3,n(f))2
]

+ 2n−2H
[n]
3 (f)2.
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It follows from (65) (with an extra term n − p as 2α2 = 1 in the right hand

side) and (63) that limn→∞ E[n−2V3(n)2] = 0. Finally the result of the lemma

follows as V1 = V3 + V4. �

We now check the Lindeberg condition using a fourth moment condition.

Recall R3(n) =
∑

i∈Gn−pn
E
[
∆n,i(f)

4
]

defined in (66).

Lemma 7.6. Under the assumptions of Theorem 3.2, we have that limn→∞ n
−2R3(n) =

0.

Proof. Following line by line the proof of Lemma 5.8 with the same notations

and taking α = 1/
√

2, we get that concerning |〈µ, ψi,p−`〉| or 〈µ, |ψi,p−`|〉, the

bounds for i ∈ {1, 2, 3, 4} are the same; the bounds for i ∈ {5, 6, 7} have an

extra (p− `) term, the bounds for i ∈ {8, 9} have an extra (p− `)2 term. This

leads to (compare with (73)):

R3(n) ≤ C n5 2−(n−p) c4
4(f)

which implies that limn→∞ n
−2R3(n) = 0. �

The proof of Theorem 3.2 then follows the proof of Theorem 3.1.

8. Supplementary material to Section 3.3 on the supercritical case

8.1. Complementary results and proof of Corollary 3.1

Now, we state the main result of this section, whose proof is given in Section

8.3. Recall that θj = αj/α and |θj | = 1 and M∞,j is defined in Lemma 3.1.

Theorem 8.1. Let X be a BMC with kernel P and initial distribution ν such

that Assumptions 2.2 (ii) and 2.4 are in force with α ∈ (1/
√

2, 1) in (16).

We have the following convergence for all sequence f = (f`, ` ∈ N) uniformly

bounded in L2(µ) (that is sup`∈N ‖f` ‖L2(µ) < +∞):

(2α2)−n/2Nn,∅(f)−
∑
`∈N

(2α)−`
∑
j∈J

θn−`j M∞,j(f`)
P−−−→

n→∞
0.
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Remark 8.1. We stress that if for all ` ∈ N, the orthogonal projection of f`

on the eigen-spaces corresponding to the eigenvalues 1 and αj , j ∈ J , equal 0,

then M∞,j(f`) = 0 for all j ∈ J and in this case, we have

(2α2)−n/2Nn,∅(f)
P−−−→

n→∞
0.

As a direct consequence of Theorem 8.1 and Remark 2.5, we deduce the

following results. Recall that f̃ = f − 〈µ, f〉.

Corollary 8.1. Under the assumptions of Theorem 8.1, we have for all f ∈

L2(µ):

(2α)−nMTn
(f̃)−

∑
j∈J

θnj (1− (2αθj)
−1)−1M∞,j(f)

P
−−−→
n→∞

0

(2α)−nMGn
(f̃)−

∑
j∈J

θnjM∞,j(f)
P

−−−→
n→∞

0.

Proof. We first take f = (f, f, . . .) and next f = (f, 0, . . .) in Theorem 8.1,

and then use (20). �

We directly deduce the following Corollary.

Corollary 8.2. Under the hypothesis of Theorem 8.1, if α is the only eigen-

value of Q with modulus equal to α (and thus J is reduced to a singleton), then

we have:

(2α2)−n/2Nn,∅(f)
P−−−→

n→∞

∑
`∈N

(2α)−`M∞(f`),

where, for f ∈ F , M∞(f) = limn→∞(2α)−nMGn
(R(f)), and R is the projection

on the eigen-space associated to the eigen-value α.

The Corollary 3.1 is then a direct consequence of Corollary 8.2.
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8.2. Proof of Lemma 3.1

Let f ∈ L2(µ) and j ∈ J . Use that Rj(L
2(µ)) ⊂ CL2(µ) to deduce that

E
[
|Mn,j(f)|2

]
is finite. We have for n ∈ N∗:

E[Mn,j(f)|Hn−1] = (2αj)
−n

∑
i∈Gn−1

E[Rjf(Xi0) + Rjf(Xi1)|Hn−1]

= (2αj)
−n

∑
i∈Gn−1

2QRjf(Xi)

= (2αj)
−(n−1)

∑
i∈Gn−1

Rjf(Xi)

= Mn−1,j(f),

where the second equality follows from branching Markov property and the

third follows from the fact that Rj is the projection on the eigen-space associ-

ated to the eigen-value αj of Q. This gives that Mj(f) is a H-martingale. We

also have, writing fj for Rj(f):

E
[
|Mn,j(f)|2

]
= (2α)−2n E

[
MGn

(fj)MGn
(f j)

]
= (2α2)−n 〈ν,Qn(|fj |2)〉+ (2α)−2n

n−1∑
k=0

2n+k〈ν,Qn−k−1P
(
Qkfj ⊗sym Qkf j

)
〉

≤ C (2α2)−n 〈µ,Qn−k0(|fj |2)〉+ (2α)−2n
n−1∑
k=0

2n+k〈ν,Qn−k−1P
(
|Qkfj |⊗2

)
〉

≤ C(2α2)−n‖fj‖2L2(µ) + C (2α2)−n
n−k0∑
k=0

2k ‖Qkfj‖2L2(µ) (11)

where we used the definition of Mn,j for the first equality, (76) with m =

n for the second equality, Assumption 2.2 (ii) for the first term of the first

inequality, the fact that Qkfj ⊗sym Qkf j ≤ |Qkfj |⊗2 for the second term of

the first inequality and for the last inequality, we followed the lines of the

proof of Lemma 5.1. Finally, using that |Qkfj | = αk|fj |, this implies that

supn∈N E
[
|Mn,j(f)|2

]
< +∞. Thus the martingale Mj(f) converges a.s. and in

L2 towards a limit.
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8.3. Proof of Theorem 8.1

Recall the sequence (βn, n ∈ N) defined in Assumption 2.4 and the σ-field

Hn = σ{Xu, u ∈ Tn}. Let (p̂n, n ∈ N) be a sequence of integers such that p̂n is

even and (for n ≥ 3):

5n

6
< p̂n < n, lim

n→∞
(n− p̂n) =∞ and lim

n→∞
α−(n−p̂n)βp̂n/2 = 0. (12)

Notice such sequences exist. When there is no ambiguity, we shall write p̂ for

p̂n. Using Remark 5.2, it suffices to do the proof with N
[k0]
n,∅ (f) instead of Nn,∅(f).

We deduce from (21) that:

N
[k0]
n,∅ (f) = Rk00 (n) +R4(n) + Tn(f), (13)

with notations from (34) and (35):

Rk00 (n) = |Gn|−1/2
n−p̂n−1∑
k=k0

MGk
(f̃n−k),

Tn(f) = R1(n) =
∑

i∈Gn−p̂n

E[Nn,i(f)|Hn−p̂n ],

R4(n) = ∆n =
∑

i∈Gn−p̂n

(Nn,i(f)− E[Nn,i(f)|Hn−p̂n ]) .

Furthermore, using the branching Markov property, we get for all i ∈ Gn−p̂n :

E[Nn,i(f)|Hn−p̂n ] = E[Nn,i(f)|Xi]. (14)

We have the following elementary lemma.

Lemma 8.1. Under the assumptions of Theorem 8.1, we have the following

convergence:

lim
n→∞

(2α2)−n E
[
R

[k0]
0 (n)2

]
= 0.

Proof. We follow the proof of Lemma 5.2. As 2α2 > 1 and following the

arguments leading to (41) we get that for some constant C which does not

depend on n or p̂:

E
[
Rk00 (n)2

]1/2
≤ C 2−p̂/2(2α2)(n−p̂)/2.
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It follows from the previous inequality that (2α2)−nE
[
R0(n)2

]
≤ C(2α)−2p̂.

Then use 2α > 1 and limn→∞ p̂ =∞ to conclude. �

Next, we have the following lemma.

Lemma 8.2. Under the assumptions of Theorem 8.1, we have the following

convergence:

lim
n→∞

(2α2)−nE
[
R4(n)2

]
= 0.

Proof. First, we have:

E[R4(n)2] = E

 ∑
i∈Gn−p̂

(Nn,i(f)− E[Nn,i(f)|Xi])

2
= E

 ∑
i∈Gn−p̂

E[(Nn,i(f)− E[Nn,i(f)|Xi])
2|Hn−p̂]


≤ E

 ∑
i∈Gn−p̂

E[Nn,i(f)
2|Xi]

 , (15)

where we used (14) for the first equality and the branching Markov chain

property for the second and the last inequality. Note that for all i ∈ Gn−p̂

we have

E
[
E[Nn,i(f)

2|Xi]
]

= |Gn|−1E

E
( p̂∑

`=0

MiGp̂−k
(f̃`)

)2

|Xi

 ,
where we used the definition of Nn,i(f). Putting the latter equality in (15) and

using the first inequality of (36), we get

E[R4(n)2] ≤ |Gn|−1 E[MGn−p
(hp̂)] ≤ C 2−p̂〈µ, hp̂ 〉, with hp̂(x) = Ex[(

p̂∑
`=0

MGp̂−`
(f̃))2].

Using the second inequality of (36) and (15), we get

〈µ, hp̂〉 = Eµ[(

p̂∑
`=0

MGp̂−`
(f̃))2] ≤

(
p∑
`=0

Eµ[(MGp−`
(f̃`))

2]1/2

)2

≤ C (2α)2p̂.

This implies that

(2α2)−nE
[
R4(n)2

]
≤ C (2α2)−n (2α2)p̂ = C (2α2)p̂−n.
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We then conclude using 2α2 > 1 and (12). �

Now, we study the third term of the right hand side of (13). First, note that:

Tn(f) =
∑

i∈Gn−p̂

E[Nn,i(f)|Xi]

=
∑

i∈Gn−p̂

|Gn|−1/2
p̂∑
`=0

EXi
[MGp̂−`

(f̃`)]

= |Gn|−1/2
∑

i∈Gn−p̂

p̂∑
`=0

2p̂−`Qp̂−`(f̃`)(Xi),

where we used (14) for the first equality, the definition (19) of Nn(f) for the

second equality and (74) for the last equality. Next, projecting in the eigen-

space associated to the eigenvalue αj , we get

Tn(f) = T (1)
n (f) + T (2)

n (f),

where, with f̂ = f − 〈µ, f〉 −
∑

j∈J Rj(f) defined in (26):

T (1)
n (f) = |Gn|−1/2

∑
i∈Gn−p̂

p̂∑
`=0

2p̂−`
(
Qp̂−`(f̂`)

)
(Xi),

T (2)
n (f) = |Gn|−1/2

∑
i∈Gn−p̂

p̂∑
`=0

2p̂−`αp̂−`
∑
j∈J

θp̂−`j Rj(f`)(Xi).

We have the following lemma.

Lemma 8.3. Under the assumptions of Theorem 8.1, we have the following

convergence:

lim
n→∞

(2α2)−n/2E[|T (1)
n (f)|] = 0.
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Proof. Recall p̂ is even. We set hp̂ =
∑p̂

`=0 2p̂−`Qp̂−`(f̂`). We have:

(2α2)−n/2E[|T (1)
n (f)|] ≤ (2α)−nE[MGn−p̂

(|hp̂|)]

≤ C (2α)−n2n−p̂〈µ, |hp̂|〉

≤ C (2α)−n2n−p̂‖hp̂‖L2(µ)

≤ C (2α)−n2n−p̂
p̂∑
`=0

2p̂−`αp̂−`βp̂−` ‖f` ‖L2(µ)

= C

p̂∑
`=0

2−`α−(n−p̂+`)βp̂−` ,

where we used the definition of T
(1)
n (f) for the first inequality, the first equation

of (36) for the second, Cauchy-Schwarz inequality for the third and (16) for the

last inequality. We have:

p̂/2∑
`=0

2−`α−(n−p̂+`)βp̂−` ≤ α−(n−p̂)βp̂/2

p̂/2∑
`=0

(2α)−`.

Using the third condition in (12) and that 2α > 1, we deduce the right hand-

side converges to 0 as n goes to infinity. Without loss of generality, we can

assume that the sequence (βn, n ∈ N∗) is bounded by 1. Since α > 1/
√

2, we

also have:

p̂∑
`=p̂/2

2−`α−(n−p̂+`)βp̂−` ≤ (1− 2α)−1 2−p̂/2α−n+p̂/2 ≤ (1− 2α)−1 2n/2−3p̂/4.

Using that n/2−3p̂/4 < −n/8, thanks to the first condition in (12), we deduce

the right hand-side converges to 0 as n goes to infinity. Thus, we get that

limn→∞(2α2)−n/2E[|T (1)
n (f)|] = 0. �

Now, we deal with the term T
(2)
n (f) in the following result. Recall M∞,j

defined in Lemma 3.1.

Lemma 8.4. Under the assumptions of Theorem 8.1, we have the following

convergence:

(2α2)−n/2T (2)
n (f)−

∑
`∈N

(2α)−`
∑
j∈J

θn−`j M∞,j(f`)
P−−−→

n→∞
0.
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Proof. By definition of T 2
n(f), we have T 2

n(f) = 2−n/2
∑p̂

`=0(2α)n−`
∑

j∈J θ
n−`
j Mn,j(f`)

and thus:

(2α2)−n/2T (2)
n (f)−

∑
`∈N

(2α)−`
∑
j∈J

θn−`j M∞,j(f`)

=

p̂∑
`=0

(2α)−`
∑
j∈J

θn−`j (Mn,j(f`)−M∞,j(f`))−
∞∑

`=p̂+1

(2α)−`
∑
j∈J

θn−`j M∞,j(f`).

(16)

Using that |θj | = 1, we get:

E[|
p̂∑
`=0

(2α)−`
∑
j∈J

θn−`j (Mn,j(f`)−M∞,j(f`))|] ≤
p̂∑
`=0

(2α)−`
∑
j∈J

E[|Mn,j(f`)−M∞,j(f`)|].

Now, using that (f`, ` ∈ N) is uniformly bounded in L2(µ), a close inspection of

the proof of Lemma 3.1, see (11), reveals us that there exists a finite constant

C (depending on f) such that for all j ∈ J , we have:

sup
`∈N

sup
n∈N

E[|Mn,j(f`)|2] ≤ C.

The L2(ν) convergence in Lemma 3.1 yields that:

sup
`∈N

E[|M∞,j(f`)|2] ≤ C and sup
`∈N

sup
n∈N

∑
j∈J

E[|Mn,j(f`)−M∞,j(f`)|] < 2|J |
√
C.

(17)

Since Lemma 3.1 implies that limn→∞ E[|Mn,j(f`)−M∞,j(f`)|] = 0, we deduce,

as 2α > 1 by the dominated convergence theorem that:

lim
n→+∞

E[|
p̂∑
`=0

(2α)−`
∑
j∈J

θn−`j (Mn,j(f`)−M∞,j(f`))|] = 0. (18)

On the other hand, we have

E[|
∞∑

`=p̂+1

(2α)−`
∑
j∈J

θn−`j M∞,j(f`)|] ≤
∞∑

`=p̂+1

(2α)−`
∑
j∈J

E[|M∞,j(f`)|] ≤ |J |
√
C

∞∑
`=p̂+1

(2α)−`,

(19)

where we used |θj | = 1 for the first inequality and the Cauchy-Schwarz inequal-

ity and (17) for the second inequality. Finally, from (16), (18) and (19) (with

limn→∞
∑∞

`=p̂+1(2α)−` = 0) , we get the result of the lemma. �


