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7. Supplementary material to Section 3.2 on the critical case

We give a proof to Theorem 3.2. We keep notations from Section 5 on the
sub-critical case, and adapt very closely the arguments of this section. We recall
that ci(f) = sup{|| fn [ 1x(,), 7 € N} for all k € N. We recall that C' denotes any
unimportant finite constant which may vary from line to line, which does not
depend on n or f. In this case, the condition (32) is strengthened as follows:

for all A > 0,
Pn <M, li_{n pn/n=1 and li_>m n — pn, — Alog(n) = +oc.

Lemma 7.1. Under the assumptions of Theorem 3.2, we have that lim,, . E[n""RE(n)?] =

0.
Proof. Mimicking the proof of Lemma 5.2, we get:

lim E[RF (n)?4]Y/? < lim Ces(f) Vn27P2 = 0.

n—oo

This trivially implies the result. (]
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2 S. V. BITSEKI PENDA AND J-F. DELMAS

Lemma 7.2. Under the assumptions of Theorem 3.2, we have that lim,, o E[n"'Ri(n)?] =

0.

Proof. Mimicking the proof of Lemma 5.3, we get B[R (n)?]"/2 < Cea(f)/n — p.
As lim, oo p/n = 1, this implies that lim, ., E[n"'R1(n)?] = 0. O

Similarly to Lemma 5.4, we get the following result on Ra(n).

Lemma 7.3. Under the assumptions of Theorem 3.2, we have that lim,_,o E[n~/2Ry(n)] =

0.
We now consider the asymptotics of Va(n).

Lemma 7.4. Under the assumptions of Theorem 3.2, we have that lim,, n_IVQ(n) =

YSHU(F) in probability, where S(F), defined in (29), is well defined and finite.

In the proof, we shall use the analogue of (8) with f replaced by f in the
left hand-side, whereas f € L*(x) does imply that f € L*(u) but does not
imply that f € L*(u). Thanks to (8), we get for f € L*(u) and g € L%(u), as
Rif = a;leij and |oj| = «, that:

12 (F @om 9) 1, < 1P (F @om 9) 1, o D217 (QRsS) Sogm Q)
jedJ

||L2(u ||L2(u)

<C (1F ey + 1 sy 190z
SO llpag ll9lpe( - (1)
Proof. We keep the decomposition (45) of Va(n) = Vs(n) + Vi(n) given in

the proof of Lemma 5.5. We recall Vg(n) = |Gp—p| ' Mg, (Hen) with Hep
defined in (46). We set

Hon= > W) 1y and Vs(n) =[Gyl "Me, _,(Hon),

0<l<k<p; >0

where for 0 </ < k<pand 0<r<p—k:

R, = 20tk Qpr e (P ) = 9 (HO/2 Qpe =R (P,
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where we used that 2a2 = 1. For f € L%(u), we recall f defined in (26). We

set:

BSY = or Q=R (P(Q(f) @y 25 (),

B2 = 27 tQr =R Q7 (f) @gym O (S R (f2))),
jeJ

hyyY = 27t ar 1= (97 (37 Ri(fr)) @y QT (1)),
jeJ

so that h,(cng)r = B,gng)r+zg’:1 h,(:’ﬂ Thanks to (6) for » > 1 and (1) for r = 0, we
have using Jensen’s inequality, (16) and the fact that the sequence (53,,r € N)

is nonincreasing:

n _ | frllpzqny forr>1,
1A N < C2 026, | fell o 2
| fx Hm(u) for r = 0.

Using the same arguments, that (u,R;(g)) = 0 for g € L?(u) (as R;(g) is an
eigen-vector of Q associated to ;) and that || 3. ; R;(fr) ||L2(u) < C | fell gz

(as R; are bounded operators on L?(u)), we get:

(n,3) Il fx ”L2(M) for r > 1,

n,2 2= /3 f L2(;
|| hl(g,ﬁ, ) H 2(,u.) —+ H hk,&r || 2( ) < C (k+€)/2 I || YA H 2( )
L HJk HL4(,u) ’

We deduce that

3
S IR < Cea(Pea(i2 4072, (2)
i=1

Using (36) for the first inequality, Jensen’s inequality for the second in-

equality, the triangular inequality for the third inequality and (2) for the last
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inequality, we get:

E |(Vo(n) = Vo(n))*| = 1Gnp| *EMs, _, (Ho(n) — Ho(n))?
n—p
< ClGnyp| ™t Y 2™ QM (He(n) — Ho(n)) 1720
m=0
< C'|| Ho(n) — Ho(n) |72,
p—k—1 3

] 2
<o ¥ 3 YU,

0<l<k<p r=0 i=1
p 2

< Ccz(f)204(f>2<zﬁ’"> '
=0

We deduce that

E[(Va(n) ~ V(n))”] < CeaPes( (D 50)
r=0
and then that
lin Bl 2(Vi(n) — Vo(n))?] = 0. ®

n—oo

We set Hén} = ZO§€<k§p;r20 P Lipykapy With for 0 <2 <k < pand 0 <

r<p-—k:

hk,é,?‘ = 2_(k+€)/2</% j)fk,f,r> = <:u7 h](cilf)7r>

We have that
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We have:

n—p
= n - m m(j N
E[(Ve(n) — H{")?| < ClGu |7 > 2™ | Q" (Hgn — HY") |12,

m=0

n—p p—k—1 ?
SC‘Gn—p‘_l Z2m( Z omtp—r—ko—(k+) /QH:PfkaHLZ )

m=0 0<l<k<p r=0

p—k—1

k—
< C(n—p)\Gn—p\*l ( Z Z

0<t<k<p 7=0

2
o—(p+l—r)/2 | P(frer) L2(M))

SO =p)[Gapl™ | D 27N TR (ill2goll D Ri(fo)l e

0<t<k<p Jj€J JjeJ

< C’(n — p)‘anprl C%(f)’

where we used (36) for the first inequality, (15) for the second, o = 1/+/2 for the
third, (6) and the fact that Q(3"c; Rif) = X ;e a;R;(f), with |aj| = 1/v/2,
for the fourth, [|3 ;¢ Ri(f)llzz(uy < | fllpe(,) for the last. From the latter

inequality we conclude that:

lim E[n~2(Vg(n) — HM)? = 0. (4)

n—oo

We set for k,0 € N: hj , = 2~ (k+0/2(y, P(fz,)) and we consider the sums

Hy = Z (k+1)|hg,| and HE(f) = Z hie = St (5)
0<t<k 0tk

Using (5), we have:

el < C2EHO2 N R (i) gy | Ri o) 2y < €226 ().
jeJ

This implies that Hf < Cc3(f), Hi(f) < Cc3(f) and then that Hy and H(f)

are well defined. We write:
hk%T = hz,ﬁ + hz,é,rﬂ with hz,ﬂ,r - 27(k+€)/2 <:u7 inl?,é,r)?
where we recall that f, . = frer — fi, and

Hén} _ Hﬁ[n},* +Hén],o (5)
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with
¥ ;0 o
H([in] = Z (p— k)hz,e and H([jn] = Z Pk Lirskap)-
0<t<k<p 0<l<k<p;r>0
Recall lim,,_,o, p/n = 1. We have:

n T HY — HE ()] < In7lp — WIHEH 0 Hy S [hEl,

0<t<k
k>p

so that lim,, |n_1H6M’* — H{(f)| = 0 and thus:

lim n ' HI = HE(§). (6)

n—o0

We now prove that n_lHén]’O converges towards 0. We have:

or=" D (0507657 R fi @sym Ry fi- (7)
G.47€,0,0,#1
This gives:
P = > 2 RGP ) Ly
0<l<k<p,r>0
p—k—1
< Y ™o e ‘(Mﬂ’(ijfk ®sym Rj'fe»‘ ‘ (0:0;)"
0<t<k<p . ET,0;0,#1 =0

(8)

where we used (7) for the inequality. Using (5) in the upper bound (8), we get

(1, ?(Rj’fk@@symj{jff»‘ < 2Ry (fie) 2y 1 R5(F) 2y < C NIkl Loy 1 el L2y -

This implies that |H(En]’o\ < ¢, with
c=Ce(p)® > 27FH02 N 100,
0<t<k<p . ET,0;0,1#1

Since J is finite, we deduce that c is finite. This gives that lim,,_, n‘lHén]’o =
0. Recall that H(En] and H§(f) are complex numbers (i.e. constant functions).

Use (5) and (6) to get that:

lim n_lH([;n} = Hi(f) (9)

n—oo
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It follows from (3), (4) and (9) that:
Tim E[(n~"Ve(n) — H§(7)*] = 0. (10)
We recall H" () defined in (53). From (55), we have:
E[n~2V5(n)?] < 202Gy | 2B [Me, _, (45,0(P)?] + 2072 H ()2
Using (51) with o = 1/v/2, we get |H™ ()] < C c3(f) and thus:
lim n2H!" ()2 = 0.

n—oo

Next, as (56) holds for o = 1/1/2, we get (57) with the right hand-side replaced
by Cci(f) (n — p)2==P) and thus:

lim n?|G,—p| *E [Mg,_,(45,())%] = 0.

n—oo
It then follows that:
lim E[n"2Vs(n)? = 0.

n—oo
Finally, since Va(n) = V5(n) + Vs(n), we get thanks to (7) that in probability
limy, o0 0~ Vo(n) = Hg(f) = B7(f). O

Lemma 7.5. Under the assumptions of Theorem 3.2, we have that in proba-
bility lim,, 00 Vi(n) = S§4(f), where SY(f), defined in (28), is well defined
and finite.

Proof. We recall the decomposition (58): Vi(n) = Vz(n) + Va(n). First,
following the proof of (10) in the spirit of the proof of (62), we get:
Tim El(n"Va(m)~H{ () =0 with  Hi() = 32740, (Y Ry(f) @y () = SR,
>0 jeJ
Let us stress that the proof requires to use (4). Since } ;5 27 (u, PQXjes Ri(fo)®sym
Ri(fo)))] < > >0 27¢c3(f), we deduce that X¢(f) is well defined and finite.
Next, from (64) we have

Eln 2V3(n)%] < 207 2|Gup| 2E [Mg, , (A3 (D)?] + 20 2H)" (1)2.

n—p
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It follows from (65) (with an extra term n — p as 2a? = 1 in the right hand
side) and (63) that lim, o E[n"2V3(n)?] = 0. Finally the result of the lemma
follows as Vi = V3 + V. O

We now check the Lindeberg condition using a fourth moment condition.

Recall R3(n) =3 e, , E [An,i(f)*] defined in (66).

Lemma 7.6. Under the assumptions of Theorem 3.2, we have that lim, oo n 2R3 (n) =

0.

Proof. Following line by line the proof of Lemma 5.8 with the same notations
and taking o = 1/v/2, we get that concerning |{1,v;—¢)| or (i, [t ,—e|), the
bounds for ¢ € {1,2,3,4} are the same; the bounds for ¢ € {5,6,7} have an
extra (p — ¢) term, the bounds for i € {8,9} have an extra (p — £)? term. This
leads to (compare with (73)):

Rs(n) < Cn®2-7) c(f)

which implies that lim,, ., n 2R3(n) = 0. O

The proof of Theorem 3.2 then follows the proof of Theorem 3.1.

8. Supplementary material to Section 3.3 on the supercritical case

8.1. Complementary results and proof of Corollary 3.1

Now, we state the main result of this section, whose proof is given in Section

8.3. Recall that 6; = o/ and |0j] = 1 and M ; is defined in Lemma 3.1.

Theorem 8.1. Let X be a BMC with kernel P and initial distribution v such
that Assumptions 2.2 (i) and 2.4 are in force with o € (1/v/2,1) in (16).
We have the following convergence for all sequence § = (fy, £ € N) uniformly

bounded in L?(p) (that is supcy || fo lL2gu < +00):

(203) 72N, () — 3 (20) 7> 00 Mo j(fe) —— O

n—00
LeN Jj€J
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Remark 8.1. We stress that if for all £ € N, the orthogonal projection of f;
on the eigen-spaces corresponding to the eigenvalues 1 and «;, j € J, equal 0,

then My ;(fe) =0 for all j € J and in this case, we have

(20%) N, g(f) —— 0.

As a direct consequence of Theorem 8.1 and Remark 2.5, we deduce the

following results. Recall that f = f — (1, £).

Corollary 8.1. Under the assumptions of Theorem 8.1, we have for all f €
L?(p):

(20) "Mz, (f) = > 07(1 = (2a0;) ") Muo 5(f) N
]E«] n—oo
(20) " Mg, () ~ 3 03 Mo (f) — 0.

jed

Proof. We first take f = (f, f,...) and next f = (f,0,...) in Theorem 8.1,
and then use (20). O

We directly deduce the following Corollary.

Corollary 8.2. Under the hypothesis of Theorem 8.1, if « is the only eigen-
value of Q with modulus equal to o (and thus J is reduced to a singleton), then

we have:

(202) 2N, 5(f) —— Y (20) " Mu(fo),

n—o00
LeN

where, for f € F, Mo (f) = limp_00(200) " Mg, (R(f)), and R is the projection

on the eigen-space associated to the eigen-value «.

The Corollary 3.1 is then a direct consequence of Corollary 8.2.
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8.2. Proof of Lemma 3.1

Let f € L?(u) and j € J. Use that R;(L?(u)) € CL?*(p) to deduce that
E [| My, ;(f)[?] is finite. We have for n € N*:

E[M,j(f)|[Hoa] = (205)™" > E[R;f(Xio) + R; f(Xir)|Ho1]
1€GpH_1

= (20;)7" > 20R;f(X))

ieanl

= (20;)" " 3" R (X5

1€GyH_1

= My—1,;(f),

where the second equality follows from branching Markov property and the
third follows from the fact that R; is the projection on the eigen-space associ-
ated to the eigen-value «; of Q. This gives that M;(f) is a H-martingale. We
also have, writing f; for R;(f):

E [|Mn;(£)I°] = (20)7"E [Mg, (f;) M, (f)]

n—1

= (20%) 7" (1, 9"(1;)) + (20)7 3 2w, @K1 @k @m OFF))
k=0
n—1
< C (2037 (1, (1) + (20) 72 2R, 01 (0¥ £ |e?))
k=0
n—kg
< 020 "I filFgy +C 207 D ULl ()
k=0

where we used the definition of M, ; for the first equality, (76) with m =
n for the second equality, Assumption 2.2 (ii) for the first term of the first
inequality, the fact that QFf; ®gym Qk?j < |QFf;|®? for the second term of
the first inequality and for the last inequality, we followed the lines of the
proof of Lemma 5.1. Finally, using that |Q¥f;| = oF|f;|, this implies that
sup,en E [|My,;(f)]?] < 400. Thus the martingale M;(f) converges a.s. and in

L? towards a limit.
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8.3. Proof of Theorem 8.1

Recall the sequence (f,,n € N) defined in Assumption 2.4 and the o-field
H,, = o{Xy,u € T,}. Let (pp,n € N) be a sequence of integers such that p,, is

even and (for n > 3):

on .
_ N ] _ 9 — 1 _(n_pn) R —
5 < Pn <n, nh_{rolo(n Pn) =00 and nh_)rgloa Bs.s2=0.  (12)

Notice such sequences exist. When there is no ambiguity, we shall write p for
Pn. Using Remark 5.2, it suffices to do the proof with lek%} (f) instead of N, ¢(f).
We deduce from (21) that:

NP(§) = RE (n) + Ra(n) + To(P), (13)

with notations from (34) and (35):

n—pp—1
R (n) = |Gu|™* > Mg, (fai),
k—ko
T.(f) = Ri(n) = > E[Npi(f)|Hn p,],
i€Gr_p,
Ri(n) =An= > (Noi(H) = E[Nni(H|Hnop,]) -
i€G_p,

Furthermore, using the branching Markov property, we get for all i € G, :
E[Nni(D)|Hn—p,] = E[Nni(F) | Xi]. (14)
We have the following elementary lemma.

Lemma 8.1. Under the assumptions of Theorem 8.1, we have the following

convergence:
: 2\—n [ko] 2} _
nll_}n;o(Qoz ) "E [RO (n)*] =0.
Proof. We follow the proof of Lemma 5.2. As 2a2 > 1 and following the
arguments leading to (41) we get that for some constant C' which does not

depend on n or p:

1/2 A )
E [R’gO (n)ﬂ < 0 27P/2(22) D)2,
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It follows from the previous inequality that (2a%)™"E [Ro(n)?] < C(2a)™2P.

Then use 2 > 1 and lim,, o, p = 0o to conclude. O
Next, we have the following lemma.

Lemma 8.2. Under the assumptions of Theorem 8.1, we have the following

convergence:

lim (2%)"E [R4(n)2] =0.

n—oo
Proof. First, we have:

r 2

E[Rs(n)*]=E || > (Nua() = E[Nn()|Xi])

i€Gn_p

=E | D E[(Noi(f) = ENwi(DIXi])?[Hn)
i€Gn_p

<E| Y E[Nai(f)?IX]], (15)
i€Gn_p

where we used (14) for the first equality and the branching Markov chain
property for the second and the last inequality. Note that for all i € G, _;

we have
2

E [E[Nn:(F)?1Xi]] = |Gal'E |E (ZMiGM(ﬁ)> Xl |,
/=0

where we used the definition of N,, ;(f). Putting the latter equality in (15) and

using the first inequality of (36), we get
D

E[R4(n)’] < |Gn| ' E[Mg, ,(hy)] < C27P(u,hy),  with hy(z) = B[ Mg, .(f))?]
£=0

Using the second inequality of (36) and (15), we get

D p 2
(shp) = Bu(Y Mg, . (f))?] < (Z Eu[(MGp_e(fe))Q]l/?) < C(2a).
=0

£=0
This implies that

(20%)7"E [R4(n)?] < C (20%) 7" (20%)P = C (2a2)P7™.
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We then conclude using 2a? > 1 and (12). O
Now, we study the third term of the right hand side of (13). First, note that:

T.(f) = > E[Nni(P)IXi]

i€G_p
D
= Z |Gn|_1/2ZEXi[MGﬁ—Z(fZ)]
i€G_p =0
D
=Ga| 72 > D 2P () (X),

’L'E(anﬁ /=0

where we used (14) for the first equality, the definition (19) of N, (f) for the
second equality and (74) for the last equality. Next, projecting in the eigen-
space associated to the eigenvalue o, we get

T.(f) = T () + T2 (),

where, with f = f — (u, f) — > jcs Rj(f) defined in (26):

TR = Gal M2 30 D2 (977 () ) (X0,

1€G,_p £=0
D
T F) = [Cal 77 D Y 277?60 IR (o) (X0
1€Gn_p £=0 jeJ

We have the following lemma.

Lemma 8.3. Under the assumptions of Theorem 8.1, we have the following

convergence:

lim (20%)7"E[|TV(f)[] = 0.

n—oo
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Proof. Recall p is even. We set hjy = 212:0 2P-LQP=L( f,). We have:
(20*) " PE(TV () < (20) "E[Mg, _, (1))
< € (20)72" (1, g
< C (20) 72" P g 2

P
< C(20)7" 2" P 2P B || foll g
=0

P
=C Z 27za7(n7ﬁ+z)ﬁﬁ_g ,
=0

where we used the definition of TT(L1 (f) for the first inequality, the first equation

~

of (36) for the second, Cauchy-Schwarz inequality for the third and (16) for the
last inequality. We have:

/2 ) ) p/2
Z 2~ a—(n—p+f)5ﬁ4 < a_("_p)ﬁﬁ/Q Z(ga)—f_
=0 (=0

Using the third condition in (12) and that 2ac > 1, we deduce the right hand-
side converges to 0 as n goes to infinity. Without loss of generality, we can
assume that the sequence (3,,n € N*) is bounded by 1. Since o > 1/v/2, we
also have:
Xp: 27 ta~ (PO, ) < (1 - 2a) 712720 R/2 < (1 - 2a) 7L 2n/27P/,
t=p/2
Using that n/2 —3p/4 < —n/8, thanks to the first condition in (12), we deduce
the right hand-side converges to 0 as n goes to infinity. Thus, we get that
limn o0 (202) 2K TV ()] = 0. 0

Now, we deal with the term T,EQ)(f) in the following result. Recall My, ;

defined in Lemma 3.1.

Lemma 8.4. Under the assumptions of Theorem 8.1, we have the following

convergence:

(20%) 72T (5) = 3 (2a) > 0 Moo i (f)) —— 0.

n—00
£eN JeJ
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Proof. By definition of T2(f), we have T2(f) = 27%/2 320 (20)"~* 3, 00~ My, (f2)
and thus:

(202) TP () = > (20) 7> 08 Moo j(f2)

LeN jeJ
D o)

= Z (20) 0 (Mo (fo) — Moo j(F0) = D (20)70 077 Mo (f2)-

(= JjeJ {=p+1 jeJ

(16)

Using that |0;] =1, we get:

b
‘Z 2a) Zzen (M n,j (fe) =Moo ;(fe)) Z 2a) EZE | M, (fe) —Moo,;(fo)]-
=0

jed jeJ
Now, using that (fs, ¢ € N) is uniformly bounded in L?(1), a close inspection of
the proof of Lemma 3.1, see (11), reveals us that there exists a finite constant

C' (depending on f) such that for all j € J, we have:

sup sup E[| My, ; (fo)|*) < C.
LeN neN

The L?(v) convergence in Lemma 3.1 yields that:

sup B[| Moo j(f)]] <C and  supsup Y E[|My;(fo) — Moo j(f2)[] < 2|T|VC.
¢eN (eN neN {23

(17)
Since Lemma 3.1 implies that limy, o E[| M, ;(fe) — Mo ;(fr)|] = 0, we deduce,

as 2a > 1 by the dominated convergence theorem that:

lim E ’Z 26! EZen K nj fé ooj(fé))” 0. (18)

n—+oo
jeJ

On the other hand, we have

E[l Y (20)7") 07 Meci(fOll < Y (20)7" ) E[[Mooy(fOl < [TVC ) (20)7F,

t=p+1 jeJ l=p+1 jeJ 0=p+1
(19)

where we used |0;]| = 1 for the first inequality and the Cauchy-Schwarz inequal-
ity and (17) for the second inequality. Finally, from (16), (18) and (19) (with
limy, 00 EZ’ZIBH(QQ)*Z =0) , we get the result of the lemma. O



