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SUPPLEMENTARY MATERIAL: WEAK LOCAL LIMIT OF PREF-

ERENTIAL ATTACHMENT RANDOM TREES WITH ADDITIVE

FITNESS

TIFFANY Y. Y. LO,∗ Uppsala University

Abstract

This is intended as a complementary article to the published paper [25], where

in addition to the content of [25], we collect the results and detailed proofs that

are omitted from [25].

We study the local weak limit of the linear preferential attachment trees with

additive fitness, where fitness is the random initial vertex attractiveness. We

show that when the fitness are i.i.d. and have positive bounded support, the

weak local limit can be constructed using a sequence of mixed Poisson point

processes. We also provide a rate of convergence for the total variation distance

between the r-neighbourhoods of the uniformly chosen vertex in the preferential

attachment tree and the root vertex of the weak local limit. The proof uses a

Pólya urn representation of the model, for which we give new estimates to the

beta and product beta variables in its construction. As applications, we obtain

limiting results and convergence rates for the degrees of the uniformly chosen

vertex and its ancestors, where the latter are the vertices that are on the path

between the uniformly chosen vertex and the initial vertex.
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1. Introduction

There has been considerable interest in studying the preferential attachment (PA)

random graphs since [2] used them to explain the observed power-law degree distri-

bution in some real networks such as the World Wide Web. The primary feature of
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the stochastic mechanism consists of adding vertices sequentially over time with some

number of edges attached to them, and then connecting these edges to the existing

graph in such a way that vertices with higher degrees are more likely to receive them.

A general overview of PA random graphs can be found in the books [39, 40].

In the basic models, vertices are born with the same constant ‘weight’ as their initial

vertex attractiveness. To relax this assumption, [15] introduced a class of PA graphs

with additive fitness (referred to as Model A in [15]), where fitness is defined as the

random initial attractiveness. When the fitness are i.i.d., this family is the subject of

recent works such as [21] and [26], whose results we discuss in Section 1.3.2. In this

paper, we study the weak local limit of this family, and provide a rate of convergence

for the total variation distance between the local neighbourhoods of the PA tree and

its weak local limit. The result extends that of [4], which considered the PA graphs

with constant initial attractiveness. As applications, we obtain limiting results for

the degree distributions of the uniformly chosen vertex and its ancestors. where rates

of convergence are also provided. Another objective of this article is to present the

arguments of [4] in more detail, which is the main reason why we consider the PA tree

instead of the case where multiple edges are possible.

Before defining the model, note that we view the edges as directed, where a newly-

born vertex always sends a single outgoing edge to an existing vertex in the graph.

We define the weight of a vertex as its in-degree plus its fitness; each time a vertex

receives an edge from another vertex, its weight increases by one. As we mostly work

conditionally on the fitness sequence, we also introduce a conditional version of the

model. Note that the seed graph is a single vertex that has a non-random fitness, but

as we explained in Section 1.3.1 below, the choices of the seed graph and its fitness have

no effect on the weak local limit. This is chosen purely to streamline the argument.

Definition 1. ((x, n)-sequential model and PA tree with additive fitness.) Given a

positive integer n and a sequence x := (xi, i ⩾ 1), with x1 > −1 and xi > 0 for i ⩾ 2,

we construct a sequence of random trees (Gi, 1 ⩽ i ⩽ n) as follows. The seed graph G1

consists of vertex 1 with the initial attractiveness x1 and has degree 0. The graph G2

is constructed by joining vertex 2 and 1 with an edge, and equipping vertex 2 with the

initial attractiveness x2. For 3 ⩽ m ⩽ n, Gm is constructed from Gm−1 by attaching
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one edge between vertex m and k ∈ [m− 1], and the edge is directed towards vertex k

with probability

D
(in)
m−1,k + xk

m− 2 +
∑m−1
j=1 xj

for 1 ⩽ k ⩽ m− 1,

where D
(in)
m,k is the in-degree of vertex k in Gm, and D

(in)
m,k = 0 whenever k ⩾ m. The

m-th attachment step is completed by assigning vertex m the initial attractiveness xm.

We call the resulting graph Gn an (x, n)-sequential model, and its law is denoted by

Seq(x)n. Taking X1 = x1, the distribution PA(π,X1)n of the PA tree with additive

fitness follows from mixing Seq(x)n with the distribution of the i.i.d. fitness sequence

(Xi, i ⩾ 2).

1.1. Local weak convergence

The concept of local weak convergence was independently introduced by [3] and

[1]. Here, we follow [40, Section 2.3 and 2.4], and also [3]. Informally, this involves

exploring some random graph Gn from vertex on, chosen uniformly at random from

Gn, and studying the distributional limit of the neighbourhoods of radius r rooted at

on for each r <∞.

We begin with a few definitions. A rooted graph is a pair (G, o), where G =

(V (G), E(G)) is a graph with vertex set V (G) and edge set E(G), and o ∈ V (G) is

the designated root in G. Next, let r be a finite, positive integer. For any (G, o),

denote by Br(G, o) the rooted neighbourhood of radius r around o. More formally,

Br(G, o) = (V (Br(G, o))), E(Br(G, o))), where

V (Br(G, o)) = {u ∈ V (G) : the distance between u and o is at most r edges};

E(Br(G, o)) = {{u, v} ∈ E(G) : u, v ∈ V (Br(G, o))}.

We refer to Br(G, o) as the r-neighbourhood of vertex o, or simply as the local neigh-

bourhood of o when the reference to r is not needed. Finally, two rooted graphs (G, o)

and (H, o′) are isomorphic, denoted (G, o) ∼= (H, o′), if there is a bijection ψ : V (G) →

V (H) such that ψ(o) = o′ and {u, v} ∈ E(G) if and only if {ψ(u), ψ(v)} ∈ E(H).

Below we define the local weak convergence of a sequence of finite, random graphs

(Gn, n ⩾ 1) using a criterion given in [40, Theorem 2.14].
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Definition 2. (Local weak convergence.) Let (Gn, n ⩾ 1) be a sequence of finite

random graphs. The local weak limit of Gn is (G, o) when for all finite rooted graphs

(H, v) and all finite r,

1

n

n∑
j=1

P[(Br(Gn, j), j) ∼= (H, v)]
n→∞−→ P[(Br(G, o), o) ∼= (H, v)]. (1.1)

The left-hand side of (1.1) is the probability that the r-neighbourhood of a randomly

chosen vertex is isomorphic to (H, v). Note that the convergence in (1.1) is equivalent

to the convergence of the expectations of all bounded and continuous functions with

respect to an appropriate metric on rooted graphs; see e.g. [40, Chapter 2].

1.2. Statement of the main results

In the main result, we fix X1 > −1 and assume that (Xi, i ⩾ 2) are i.i.d. positive

bounded variables with distribution π. We write µ := EX2 <∞ and

χ :=
µ

µ+ 1
. (1.2)

We first define the local weak limit of the PA tree with additive fitness, which is

an infinite rooted random tree that generalises the Pólya point tree introduced in [4].

Hence, we refer to it simply as a π-Pólya point tree, with π being the fitness distribution

of the PA tree. Denote this random tree by (T , 0), so that 0 is its root. We begin

by explaining the Ulam-Harris labelling of trees that we use in the construction of

(T , 0). Starting from the root 0, the children of any vertex v̄ (if any) are generated

recursively as (v̄, j), j ∈ N, and we say that v̄ is the parent of (v̄, j). With the

convention B0(T , 0) = {0}, note that if v̄ := (0, v1, ..., vr), then (v̄, i) ∈ ∂Br+1 :=

V (Br+1(T , 0)) \ V (Br(T , 0)).

Furthermore, each vertex v̄ ∈ V ((T , 0)) has a fitness Xv̄ and a random age av̄,

where 0 < av̄ ⩽ 1. We write av̄,i := a(v̄,i) for convenience. Apart from the root vertex

0, there are two types of vertices, namely, type L (for left) and R (for right). Vertex

v̄ belongs to type L if av̄,i < av̄ for some i ⩾ 1; and v̄ belongs to type R if av̄,i ⩾ av̄

for all i ⩾ 1. There is exactly one type L vertex in ∂Br for all r ⩾ 1, and the labels
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(0, 1, 1, ..., 1) are designated to these vertices. For any vertex v̄, define

Rv̄ = the number of type R children of v̄ in the (T , 0). (1.3)

We also label the type R vertices in increasing order of their ages, so that if v̄ is the

root or belongs to type L, then av̄,1 ⩽ av̄ ⩽ av̄,2 ⩽ ... ⩽ av̄,1+Rv̄ ; and if v̄ belongs to

type R, then av̄ ⩽ av̄,1 ⩽ ... ⩽ av̄,Rv̄ . See Figure 1 below for an illustration of (T , 0)

and the vertex ages.

To understand how the vertex types and the ages above arise in the weak limit,

consider the r-neighbourhood of a uniformly chosen vertex k0 in Gn ∼ PA(π,X1)n.

Observe that there is a unique path from k0 to the initial vertex, unless k0 is the

initial vertex. Apart from k0, the vertices in the r-neighbourhood that belong to this

path are called type L vertices, and the remaining vertices are referred to as type R

vertices. The ages in (T , 0) encode the (rescaled) arrival times of the vertices in the r-

neighbourhood of vertex k0, which determine their degree distributions. A comparison

of the 2-neighbourhoods of the PA tree and (T , 0) is given in Figure 1.

Definition 3. (π-Pólya point tree.) A π-Pólya point tree (T , 0) is defined recursively

as follows. The root 0 has an age a0 = Uχ0 , where U0 ∼ U[0, 1]. Assuming that v̄ ∈ ∂Br

and av̄ have been generated, we define its children (v̄, j) ∈ ∂Br+1 for j = 1, 2, ... as

follows. Independently of all random variables generated before, let Xv̄ ∼ π and

Zv̄ ∼

Gamma(Xv̄, 1), if v̄ is the root or of type R;

Gamma(Xv̄ + 1, 1), if v̄ is of type L.

If v̄ is the root or of type L, let av̄,1|av̄ ∼ U[0, av̄]; and (av̄,i, 2 ⩽ i ⩽ 1 + Rv̄) be the

points of a mixed Poisson point process on (av̄, 1] with intensity

λv̄(y)dy :=
Zv̄

µa
1/µ
v̄

y1/µ−1dy.

If v̄ is of type R, then (av̄,i, 1 ⩽ i ⩽ Rv̄) are sampled as the points of a mixed Poisson

process on (av̄, 1] with intensity λv̄. We obtain (T , 0) by continuing this process ad

infinitum.
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0 1 1 n
a0,1 a0,2

a0,3

0 1 1 n

a0,1,1 a0,1,2 a0,1,3a0,2,1

0 1 1 n

1 n

1 n

a0 k0

k0,1 k0,2 k0,3

k0,1,1 k0,1,2 k0,1,3k0,2,1

Figure 1: A comparison between the 2-neighbourhoods in (T , 0) (left) and the PA tree Gn

rooted at the uniformly chosen vertex k0 (right). We assign Ulam-Harris labels as subscripts
(kv̄) to the vertices in (Gn, k0) to better compare the 2-neighbourhoods. In both figures, the
vertex location corresponds to either its arrival time or its age. A vertex is coloured red (blue)
if it is a type L (R) child. On the left, R0 = 2, R0,1 = 2, R0,2 = 1 and R0,3 = 0. On the right,
the red path starting from k0 leads to the initial vertex. The 2-neighbourhoods are coupled
such that they are isomorphic, and the vertex ages and rescaled arrival times are close to each
other. The dashed edges and the unlabelled vertices are not coupled.

Remark 1. When exploring the r-neighbourhood of the uniformly chosen vertex in

the PA tree, the type L vertices are uncovered via the incoming edge it received from

the probed uniformly chosen vertex or type L vertices. To account for the size-biasing

effect of these edges, the type L gamma variables in the π-Pólya point tree thus have

a unit increment in the shape parameter.

We define the total variation distance between two probability distributions ν1 and ν2

as

dTV (ν1, ν2) = inf{P[V ̸=W ] : (V,W ) is a coupling of ν1 and ν2}. (1.4)

When proving the local weak convergence, we couple the random elements (Br(Gn, k0), k0)

and (Br(T , 0), 0) in the space of rooted graphs (modulo isomorphisms) G such that

they are isomorphic w.h.p., thus bounding their total variation distance. In the main
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theorem below, we emphasise that the convergence does not take into account the ages

and fitness of the π-Pólya point tree, but they are essential for the graph construction

and are used for the couplings later. The results on the asymptotic degree distributions

and the respective convergence rates are deferred to Section 8.

Theorem 1. Suppose that the fitness distribution π is supported on (0, κ] for some

κ <∞. Let Gn ∼ PA(π,X1)n, k0 be a uniformly chosen vertex in Gn and (T , 0) be the

π-Pólya point tree. Then, given r <∞, there is a positive constant C := C(X1, µ, r, κ)

such that

dTV(L ((Br(Gn, k0), k0)),L ((Br(T , 0), 0)) ⩽ C(log log n)−χ (1.5)

for all n ⩾ 3. This implies that the local weak limit of Gn is the π-Pólya point tree.

Next, we state the limiting results for some degree statistics of the PA tree. The

connection of the following results to [4, 7, 40, 26, 31] are discussed in detail later in

Section 8, where we also give the probability mass functions of the limiting distribu-

tions. Recall that D
(in)
n,j is the in-degree of vertex j in Gn ∼ PA(π,X1)n. Define the

degree of vertex j in Gn as

Dn,j := D
(in)
n,j + 1, with D0

n := Dn,k0 , (1.6)

so that D0
n is the degree of the uniformly chosen vertex. Let L(i) be the Ulam-Harris

labels (0, 1, 1, . . . , 1) such that |(0, 1, . . . , 1)| = i + 1, so that kL[i] is the type L vertex

that is exactly i edges away from k0. Type L vertices are commonly known as the

ancestors of k0 in the fringe tree analysis (see e.g. [20]), where their degrees are often

of particular interest. Fixing r ∈ N, let D0
n be as in (1.6) and

Di
n = Dn,kL[i]

if kL[i] ̸= 1 for all 1 ⩽ i ⩽ r;

and if kL[i] = 1 for some i ⩽ r, let

Dj
n = Dn,kL[j]

, for 1 ⩽ j < i and Dj
n = −1 for i ⩽ j ⩽ r.
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As the probability that we see vertex 1 in the r-neighbourhood Br(Gn, k0) tends

to zero as n → ∞, (D0
1, ..., D

r
n) can be understood as the joint degree sequence of

(k0, kL[1], . . . , kL[r]). The next result concerning this joint degree sequence follows

directly from Theorem 1.

Corollary 1. Retaining the notation above, assume that π is supported on (0, κ] for

some κ < ∞. Define U0 ∼ U[0, 1], aL[0] = Uχ0 , and given aL[i−1], let aL[i] ∼

U[0, aL[i−1]] for 1 ⩽ i ⩽ r. Independently from (aL[i], 0 ⩽ i ⩽ r), let XL[i] be i.i.d.

random variables with distribution π, and

ZL[i] ∼

Gamma(XL[i], 1), if i = 0,

Gamma(XL[i] + 1, 1) if 1 ⩽ i ⩽ r.

Writing L[0] = 0, let RL[i] be conditionally independent variables with RL[i] ∼ Po
(
ZL[i](a

−1/µ
L[i] −

1)
)
. Define R

(r)
:= (R0+1, RL[1]+2, ..., RL[r]+2) and D

(r)

n := (D0
n, D

1
n, ..., D

r
n). There

is a positive constant C := C(X1, µ, r, κ) such that

dTV

(
L (D

(r)

n )),L (R
(r)

)
)
⩽ C(log log n)−χ for all n ⩾ 3.

We now state a convergence result for D0
n in (1.6). In view of Definition 2, the

limiting distribution of D0
n and the convergence rate can be read from Theorem 1.

However, the theorem below holds without the assumption of bounded fitness and has

a much sharper rate. The improvement in the rate can be understood as a consequence

that k0 only needs to be large enough so that w.h.p. it has a small degree, in contrast

to having a small enough r-neighbourhood for all r < ∞, as required when proving

Theorem 1.

Theorem 2. Assume that the p-th moment of the distribution π is finite for some

p > 4. Let R0 ∼ Po(Z0(a
−1/µ
0 − 1)), where given X0 ∼ π, Z0 ∼ Gamma(X0, 1), and

independently of Z0, U0 ∼ U[0, 1] and a0 := Uχ0 . Writing ξ0 = R0+1, there are positive

constants C := C(X1, µ, p) and 0 < d < χ(1/4− 1/(2p)) such that

dTV

(
L (D0

n),L (ξ0)
)
⩽ Cn−d for all n ⩾ 1. (1.7)
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1.3. Possible extensions and related works

Below we discuss the possible ways of extending Theorem 1, but we refrain from

pursuing these directions in the interest of article length. We also give an overview on

the recent development in the PA graphs with additive fitness, and collect some results

on the local weak convergence of related PA models.

1.3.1. Possible extensions The convergence rate in (1.5) roughly follows from k0 ⩾

n(log log n)−1 w.p. at least (log log n)−1, and on this event, we can couple the two

graphs such that the probability that (Br(Gn, k0), k0) ∼= (Br(T , 0), 0) tends to one as

n→ ∞. It is likely possible to improve the rate by optimising this and similar choices

of thresholds, as well as making the dependence on the radius r explicit by carefully

keeping track of the coupling errors, but with much added technicality.

When Xi = 1 a.s. for all i ⩾ 2, [10, Theorem 1] established that the choice of the

seed graph has no effect on the local weak limit. This is because w.h.p., the local

neighbourhood does not contain any of the seed vertices. By simply replacing the seed

graph in the proof, Theorem 1 can be shown to hold for more general seed graphs.

With some straightforward modifications to the proof, we can also show that when

the fitness is bounded, the π-Pólya point tree is the weak local limit of the PA trees

with self-loops, and when each vertex in the PA model sends m ⩾ 2 outgoing edges,

the limit is a variation of the π-Pólya point tree; see e.g. [4] for the non-random unit

fitness case.

By adapting the argument of the recent paper [17], it is possible to show that the

weak convergence in Theorem 1 holds for fitness distributions with finite p-th moment

for some p > 1. The convergence rate should be valid for fitness distributions with

at least exponentially decaying tails, but the assumption of bounded fitness greatly

simplifies the proof. The i.i.d. assumption is only needed so that the fitness variables

that we see in the local neighbourhood are i.i.d., and for applying the standard moment

inequality in Lemma 15. Hence, we believe the theorem to at least hold for a fitness

sequence X such that (1) Xi has the same marginal distribution π for all i ⩾ 2; and

(2) for some m ⩾ 1, the variables in the collection (Xi, i ∈ A) are independent for any

A such that {i, j ∈ A : |i − j| > 2m}. If in the limit, the vertex labels in the local

neighbourhood are at least 2m apart from each other w.h.p., then (1) and (2) ensure
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that these vertices have i.i.d. fitness; while (2) alone may be sufficient for proving a

suitable analogue of the standard moment inequality Lemma 15.

The weak convergence in Theorem 1 should hold in probability, meaning that as n→

∞, 1
n

∑n
j=1 1[(Br(Gn, j), j)

∼= (H, v)] → P[(Br(T , 0), 0) ∼= (H, v)]. This convergence is

valid in the case where the initial attractiveness are equal a.s. [40, Chapter 5], and for

certain PA models where each newly added vertex sends a random number of outgoing

edges [17]. For the PA tree with additive fitness, this could be proved by adapting

the ‘second moment’ method used in [17, 40], which involves establishing that the

r-neighbourhoods of two independently, uniformly chosen vertices in the PA tree are

disjoint w.h.p.

1.3.2. Related works The fitness variables were assumed to be i.i.d. in [26], [21] and

[5]. In [26], martingale techniques were used to investigate the maximum degree for

fitness distributions with different tail behaviours, where the results are applicable

to PA graphs with additive fitness that allow for multiple edges. The authors also

studied the empirical degree distribution (e.d.d.), whose detail we defer to Remark 4.

The model is a special case of the PA tree considered in [21], where vertices are chosen

with probability proportional to a suitable function of their fitness and degrees at each

attachment step. Using Crump-Mode-Jagers (CMJ) branching processes, [21] studied

the e.d.d. and the condensation phenomenon. The same method was applied in [5] to

investigate the e.d.d., the height and the degree of the initial vertex, assuming that the

fitness are bounded. Note that these articles focused on ‘global’ results, which cannot

be deduced from the local weak limit.

As observed in [38], the model is closely related to the weighted random recursive

trees introduced in [9]. Due to the Pólya urn representation (Theorem 3 below), the

PA tree with additive fitness can be viewed as a special case of this model class, where

the weights of the vertices are distributed as (S
(X)
n,j −S

(X)
n,j−1, 2 ⩽ j ⩽ n) with S

(X)
n,0 = 0

and S
(X)
n,n = 1, and B

(X)
j and S

(X)
n,j being the variables Bj and Sn,j in (1.8) and (1.9)

mixed over the fitness sequence X. For the weighted random recursive trees, [9] studied

the average degree of a fixed vertex and the distance between of a newly added vertex

and the initial vertex. The joint degree sequence of fixed vertices, the height and the

profile were investigated in [38], and a more refined result on the height was given in
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[30]. When X is a deterministic sequence satisfying a certain growth condition, [38]

and [30] showed that their results are applicable to the corresponding PA tree with

additive fitness.

We now survey the local weak limit results developed for PA graphs. When x1 = 0

and xi = 1 for all i ⩾ 2, the (x, n)-sequential model is the pure ‘sequential’ model in [4]

with no multiple edges; and a special case of the model considered in [37], where the

‘weight’ function there is the identity function plus one. Using the CMJ embedding

method, [37] studied the asymptotic distribution of the subtree rooted at a uniformly

chosen vertex, which implies the local weak convergence of the PA family considered

in their work. The urn representation of PA models was used in [4], [40, Chapter 5],

[16, Chapter 4] and [17] to study local weak limits. In particular, they showed that

the weak limit of several PA models with non-random fitness and possibly random

out-degrees is a variant of the Pólya point tree [4]. Again using the CMJ method, it

can be shown that the local weak convergence result of [18] for a certain ‘continuous

time branching process tree’ implies that the PA tree with additive fitness converges

in the directed local weak sense.

Finally, a different PA model was considered in [5, 8, 11, 12], where the probability

that a new vertex attaches to an existing vertex is proportional to its fitness times its

degree. Currently, there are no results concerning the local weak convergence of this

model class.

1.4. Proof overview

1.4.1. Pólya urn representation of the (x, n)-sequential model In the proof of Theorem

1, the key ingredient is an alternative definition of the (x, n)-sequential model in

Definition 1, which relies on the fact that the dynamics of PA graphs can be represented

as embedded classical Pólya urns. In a classical Pólya urn initially with a red balls

and b black balls, a ball is chosen randomly from the urn, and is returned to the urn

along with a new ball of the same colour. It is well-known that the a.s. limit of the

proportion of red balls has the Beta(a, b) distribution; see e.g. [28]. Furthermore, by

de Finetti’s theorem (see e.g. [28, Theorem 1.2, p. 29]), conditional on β ∼ Beta(a, b),

the indicators that a red ball is chosen at each step are distributed as independent

Bernoulli variables with parameter β. In the PA mechanism, an existing vertex i can
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0 S1,5 S2,5 S3,5 S4,5

U2 U3 U4 U5
1 2 3 4 5

Figure 2: An example of the (x, n)-Pólya urn tree for n = 5, where Ui ∼ U[0, Sn,i−1] for
i = 2, ..., 5 and an outgoing edge is drawn from vertices i to j if Ui ∈ [Sn,j−1, Sn,j).

be represented by some colour i in an urn, and its weight is given by the total weight of

the balls in the urn. At each urn step, we choose a ball w.p. proportional to its weight,

and if vertex i is chosen at some step j > i, we return the chosen ball, an extra ball of

colour i with weight 1, plus a ball of new colour j with weight xj to the urn. Classical

Pólya urns are naturally embedded in this multi-colour urn; see [33]. The attachment

steps of the graph can therefore be generated independently when conditioned on the

associated beta variables.

Definition 4. ((x, n)-Pólya urn tree.) Given x and n, let Tj :=
∑j
i=1 xi, and (Bj , 1 ⩽

j ⩽ n) be independent random variables such that B1 := 1 and

Bj ∼ Beta(xj , j − 1 + Tj−1) for 2 ⩽ j ⩽ n. (1.8)

Moreover, let Sn,0 := 0, Sn,n := 1 and

Sn,j :=

n∏
i=j+1

(1−Bi) for 1 ⩽ j ⩽ n− 1. (1.9)

We connect n vertices with labels [n] := {1, . . . , n} as follows. Let Ij = [Sn,j−1, Sn,j)

for 1 ⩽ j ⩽ n. Conditionally on (Sn,j , 1 ⩽ j ⩽ n − 1), let (Uj , 2 ⩽ j ⩽ n) be

independent variables such that Uj ∼ U[0, Sn,j−1]. If j < k and Uk ∈ Ij , we attach

an outgoing edge from vertex k to vertex j. We say that the resulting graph is an

(x, n)-Pólya urn tree and denote its law PU(x)n.

An example of the (x, n)-Pólya urn tree is given in Figure 2. Note that 1 − Bj in

Definition 4 is βj−1 in [38]. As we only work with Bj and Sn,j by fixing the sequence

x, we omit x from their notation throughout this article. The (x, n)-Pólya urn tree is
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related to the (x, n)-sequential model via the following result of [38].

Theorem 3. (Theorem 1.1, [38].) Let Gn be an (x, n)-Pólya urn tree, then Gn has

the same law as the (x, n)-sequential model, that is, PU(x)n
d
= Seq(x)n.

A proof of Theorem 3 is given in Section 10.1, as the argument is needed to prove a

variation of the result that we use later. From now on, we work with the (x, n)-Pólya

urn tree in place of the (x, n)-sequential model.

1.4.2. Coupling for the non-random fitness case When proving Theorem 1, we couple

the (randomised) urn tree and the π-Pólya point tree such that for all positive integers

r, the probability that their r-neighbourhoods are not isomorphic is of order at most

(log log n)−χ. To give a brief overview to the coupling, below we suppose that Xi = 1

a.s. for i ⩾ 2 and only consider the r = 1 case. We couple the children of the uniformly

chosen vertex in the urn tree Gn and the root in the π-Pólya point tree (T , 0) such

that w.h.p., they have the same number of children, and the ages and the rescaled

arrival times of these children are close enough. Note that for non-random fitness, the

urn tree is simply an alternative definition of the PA tree with additive fitness. For

Gn, we use the terms ‘age’ and ‘rescaled arrival times’ interchangeably.

I. The ages of the roots. As mentioned before, the ages in (T , 0) encode the

rescaled arrival times in Gn. Since for any vertex in either Gn or (T , 0), the number

of its children and the ages of its children depend heavily on its own age, we need to

couple the uniformly chosen vertex k0 in Gn and the root of (T , 0) such that their ages

are close enough.

II. The type R children and a Bernoulli-Poisson coupling. Using the urn

representation in Definition 4, the ages and the number of the type R children of vertex

k0 can be encoded in a sequence of conditionally independent Bernoulli variables, where

the success probabilities are given in terms of the variables Bi and Sn,i in (1.8) and

(1.9). See Figure 3 for an illustration. To couple this Bernoulli sequence to a suitable

discretisation of the mixed Poisson point process in Definition 3, we use the beta-

gamma algebra and the law of large numbers to approximate Bi and Sn,i for large

enough i. Once we use these estimates to swap the success probabilities with simpler
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(
k0
n

)χ
1

(
j1
n

)χ
×

(
j2
n

)χ
×

(
j3
n

)χ
×

k0 j1 j2 j3

Figure 3: An illustration of the relation between the Bernoulli sequence on ((k0/n)
χ, 1]

constructed using (1[Uj ∈ Ik0 ], k0 + 1 ⩽ j ⩽ n) and the (x, n)-Pólya urn tree, where k0 is
the uniformly chosen vertex, Uj and Ik0 are as in Definition 4. We put a point on (j/n)χ if
vertex k0 receives the outgoing edge from vertex j. Here the type R children of k0 are j1, j2
and j3. The rescaled arrival times ((j/n)χ, k0 + 1 ⩽ j ⩽ n) are later used to discretise the
mixed Poisson process in the coupling step.

quantities, we can apply the standard Bernoulli-Poisson coupling.

III. The ages of the type L children. It is clear that the numbers of the type

L children of vertex k0 and the root of (T , 0) only differ when k0 = 1, which occurs

w.p. n−1. To couple their ages such that they are close enough, we use the estimates

for Bi and Sn,i to approximate the distribution of the type L child of vertex k0. This

completes the coupling of the 1-neighbourhoods.

We reiterate that although the closeness of the ages are not part of the local weak

convergence, we need to closely couple the ages of the children of vertex k0 and the

root in (T , 0), as otherwise we cannot couple the 2-neighbourhoods when we prove the

theorem for all finite radii.

1.4.3. Random fitness and the general local neighbourhood Here we summarise the

additional ingredients needed for handling the random fitness and for coupling the

neighbourhoods of any finite radius.

When x is a realisation of the fitness sequence X, Bi and Sn,i can be approximated

in the same way as in the non-random fitness case if w.h.p., the sums
∑i
h=2Xh are

close to (i − 1)µ for all i greater than some suitably chosen function ϕ(n). As X is

i.i.d., we can apply standard moment inequalities to show that this event occurs w.h.p.

The remaining parts of the coupling are similar to the above.

When coupling general r-neighbourhoods, we use an induction over the neighbour-

hood radius. For any vertex in the neighbourhood other than the uniformly chosen
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vertex, the distributions of its degree and the ages of its children cannot be read from

Definition 4, due to the conditioning effects of the discovered edges in the breadth-first

search that we define later. However, these effects can be quantified when we work

conditionally on the fitness sequence. In particular, their distributions can be deduced

from an urn representation of the (x, n)-sequential model conditional on the discovered

edges. Consequently, the coupling argument for the root vertex can be applied to these

non-root vertices as well.

1.5. Article outline

The approximation results for Bi and Sn,i in (1.8) and (1.9) are in Section 2, and are

proved in Section 9. In Section 3, we define the tree exploration process, and describe

the offspring distributions of the root and of any type L or R parent in the subsequent

generations of the local neighbourhood in the (x, n)-Pólya urn tree. We also introduce

a conditional analogue of the π-Pólya point tree (T , 0) in Section 4, which we need for

coupling the urn tree and (T , 0). We couple the 1-neighbourhoods in the urn tree and

this analogue in Section 5, and their general r-neighbourhoods in Section 6. To prove

Theorem 1, we couple the analogue and (T , 0) in Section 7. We discuss in more detail

the connection of Corollary 1 and Theorem 2 to the previous works [4, 7, 26, 40] in

Section 8. In Section 10, we construct the urn representation of the (x, n)-sequential

model conditional on a set of edges; and Section 11 collects the additional proofs, which

includes that of Theorem 2.

2. Approximation of the beta variables

Let Bi and Sn,i be as in (1.8) and (1.9), where we treat x in Bi and Sn,i as a

realisation of the fitness sequence X := (Xi, i ⩾ 1). In this section, we state the

approximation results for Bi and Sn,i, assuming that X1 := x1 > −1 is fixed and

(Xi, i ⩾ 2) are i.i.d. positive variables with µ := EX2 < ∞ and E[Xp
2 ] < ∞ for

some p > 2. These results are later used to derive the limiting degree distribution of

the uniformly chosen vertex of the PA tree and the corresponding convergence rate,

where the fitness is not necessarily bounded (Theorem 2). The proofs of the upcoming

lemmas are deferred to Section 9.
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For the approximations, we require that w.h.p., X is such that
∑i
h=2Xh is close

enough to its mean (i − 1)µ for all i sufficiently large. So given 0 < α < 1 and n, we

define

Aα,n =

{ ∞⋂
i=⌈ϕ(n)⌉

{∣∣∣∣ i∑
h=2

Xh − (i− 1)µ

∣∣∣∣ ⩽ iα
}}

, (2.1)

where ϕ(n) = Ω(nχ), with χ as in (1.2). The first lemma is due to an application of

standard moment inequalities.

Lemma 1. Assume that E[Xp
2 ] < ∞ for some p > 2. Given a positive integer n

and 1/2 + 1/p < α < 1, there is a constant C := C(µ, α, p) such that P[Aα,n] ⩾

1− Cnχ[−p(α−1/2)+1].

In the remainder of this article, we mostly work with a realisation x of X such that

Aα,n holds, which we denote (abusively) as x ∈ Aα,n. Below we write Px and Ex to

indicate the conditioning on a specific realisation of the fitness sequence x. The next

lemma, which extends [4, Lemma 3.1], states that Sn,k ≈ (k/n)χ for large enough k

and n when x ∈ Aα,n. The proof relies on that we can replace Ex[Sn,k] with (k/n)χ

when x ∈ Aα,n, and approximate Sn,k with Ex[Sn,k] using a martingale argument. As

Aα,n occurs w.h.p., the result allows us to substitute these Sn,k with (k/n)χ when we

construct a coupling for the (x, n)-Pólya urn tree (Definition 4).

Lemma 2. Given a positive integer n and 1/2 < α < 1, assume that x ∈ Aα,n. Then

there are positive constants C := C(x1, µ, α) and c := c(x1, µ, α) such that

Px

[
max

⌈ϕ(n)⌉⩽k⩽n

∣∣∣∣Sn,k − (kn
)χ∣∣∣∣ ⩽ δn

]
⩾ 1− εn, (2.2)

where ϕ(n) = Ω(nχ), δn := Cn−χ(1−α)/4 and εn := cn−χ(1−α)/2.

Remark 2. For vertices whose arrival time is of order at most nχ, the upper bound

δn in Lemma 2 is only meaningful when χ > (α + 3)/4, as otherwise δn is of order

greater than (k/n)χ. However, the bound is still useful for studying the local weak

limit of the PA tree, as w.h.p. we do not see vertices with arrival times that are o(n)

in the local neighbourhood of the uniformly chosen vertex.

The last lemma is an extension of [4, Lemma 3.2]. It says that on the event Aα,n,
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we can construct the urn tree by generating suitable gamma variables in place of Bj

in (1.8). These gamma variables are comparable to Zv̄ in the construction of the π-

Pólya point tree (Definition 3), after assigning Ulam-Harris labels to the vertices of

the urn tree. To state the result, we recall a distributional identity. Independently

of Bj , let ((Zj , Z̃j−1), 2 ⩽ j ⩽ n) be conditionally independent variables such that

Zj ∼ Gamma(xj , 1) and Z̃j ∼ Gamma(Tj + j, 1), where Tj :=
∑j
i=1 xi. Then by the

beta-gamma algebra; see e.g. [27],

(
Bj , Z̃j−1 + Zj

)
=d

(
Zj

Zj + Z̃j−1

, Z̃j−1 + Zj

)
for 2 ⩽ j ⩽ n,

where the two random variables on the right-hand side are independent. Using the law

of the large numbers, we prove the following.

Lemma 3. Given positive integer n and 1/2 < α < 3/4, let Zj and Z̃j be as above.

Define the event

Eε,j :=

{∣∣∣∣∣ Zj
Zj + Z̃j−1

− Zj
(µ+ 1)j

∣∣∣∣∣ ⩽ Zj
(µ+ 1)j

ε

}
for 2 ⩽ j ⩽ n. (2.3)

When x ∈ Aα,n, there is a positive constant C := C(x1, α, µ) such that

Px

[ n⋂
j=⌈ϕ(n)⌉

Eε,j

]
⩾ 1− C(1 + ε)4ε−4nχ(4α−3), (2.4)

where ϕ(n) = Ω(nχ). In addition,

Px

[ n⋂
j=⌈ϕ(n)⌉

{Zj ⩽ j1/2}
]
⩾ 1−

n∑
j=⌈ϕ(n)⌉

j−2
3∏
ℓ=0

(xj + ℓ); (2.5)

and if xi ∈ (0, κ] for all i ⩾ 2, then there is a positive constant C such that

Px

[ n⋂
j=⌈ϕ(n)⌉

{Zj ⩽ j1/2}
]
⩾ 1− Cκ4n−χ. (2.6)
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3. Offspring distributions of the type L and R parents in the urn tree

Recall that a vertex in the local neighbourhood of the uniformly chosen vertex k0 in

the PA tree is a type L parent if it lies on the path from the uniformly chosen vertex

to the initial vertex; otherwise it is a type R parent. In this section, we state two main

lemmas for the (x, n)-Pólya urn tree (Definition 4). In Lemma 5, for the root k0, any

type L or type R parent in the subsequent generations of the local neighbourhood, we

encode its type R children in a suitable Bernoulli sequence that we introduce later. In

Lemma 6, we construct the distribution of the type L children of the uniformly chosen

vertex and any type L parent in the subsequent generations. For vertex k0, these results

follow immediately from the urn representation in Definition 4 and Theorem 3. For

the non-root vertices, these lemmas cannot be deduced from Definition 4. Instead, we

need the urn representation in Section 10, which accounts for the conditioning effects

of the edges uncovered in the neighbourhood exploration.

3.1. Breath-first search

To construct the offspring distributions, we need to keep track of the vertices that

we discover in the local neighbourhood. For this purpose, we have to precisely define

the exploration process. We start with a definition.

Definition 5. (Breadth-first order.) Write w̄ <UH ȳ if the Ulam-Harris label w̄ is

smaller than ȳ in the breadth-first order. This means that either |w̄| < |ȳ|, or when

w̄ = (0, w1, ..., wq) and ȳ = (0, v1, ..., vq), wj < vj for j = min{l : vl ̸= wl}. If w̄ is

either smaller than or equal to ȳ in the breadth-first order, then we write w̄ ⩽UH ȳ.

As examples, we have (0, 2, 3) <UH (0, 1, 1, 1) and (0, 3, 1, 5) <UH (0, 3, 4, 2). We

run a breadth-first search on the (x, n)-Pólya urn tree Gn as follows.

Definition 6. (Breadth-first search (BFS).) A BFS ofGn splits the vertex set V (Gn) =

[n] into the random subsets (At,Pt,Nt)t⩾0 as follows, where the letters respectively

stand for active, probed and neutral. We initialise the search with

(A0,P0,N0) = ({k0},∅, V (Gn) \ {k0}),

where k0 is uniform in [n]. Given (At−1,Pt−1,Nt−1), where each vertex in At−1∪Pt−1
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already receives an additional Ulam-Harris label of the form w̄, (At,Pt,Nt) is generated

as follows. Let v[1] = k0 and v[t] ∈ N be the vertex in At−1 that is the smallest in the

breadth-first order:

v[t] = kȳ ∈ At−1 if ȳ <UH w̄ for all kw̄ ∈ At−1 \ {kȳ}. (3.1)

Note that the Ulam-Harris labels appear as subscripts. Denote Dt the set of vertices

in Nt−1 that either receives an incoming edge from v[t] or sends an outgoing edge to

v[t]:

Dt := {j ∈ Nt−1 : {j, v[t]} or {v[t], j} ∈ E(Gn)},

where {i, j} is the edge directed from vertex j to vertex i < j. Then in the t-th

exploration step, we probe vertex v[t] by marking the neutral vertices attached to v[t]

as active. That is,

(At,Pt,Nt) = (At−1 \ {v[t]} ∪ Dt,Pt−1 ∪ {v[t]},Nt−1 \ Dt); (3.2)

and if v[t] = kȳ, we use the Ulam-Harris scheme to label the newly active vertices as

kȳ,j := k(ȳ,j), j ∈ N, in increasing order of their vertex arrival times, so that kȳ,i < kȳ,j

for any i < j. If At−1 = ∅, we set (At,Pt,Nt) = (At−1,Pt−1,Nt−1).

The characterisation of the BFS above is standard, and more details can be found

in works such as [39, Chapter 4] and [23]. The vertex labelling v[t] is very useful for the

construction here, as the offspring distribution of v[t] depends on the vertex partition

(At−1,Pt−1,Nt−1); whereas the vertex arrival times are helpful for identifying a type

L vertex in the BFS (see Lemma 4 below) and constructing the offspring distributions.

On the other hand, we shall use the Ulam-Harris labels to match the vertices when

coupling the urn tree and the π-Pólya point tree (Definition 3). Hereafter we ignore

the possibility that v[t] = 1, because when t (or equivalently the number of discovered

vertices) is not too large, the probability that v[t] = o(n) tends to zero as n→ ∞. For

t ⩾ 1, let v(op)[t] (resp. v(oa)[t]) be the vertex in Pt−1 (resp. At−1) that has the earliest

arrival time, where op and oa stand for oldest probed and oldest active. That is,

v(op)[t] := min{j : j ∈ Pt−1} and v(oa)[t] := min{j : j ∈ At−1}. (3.3)
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Figure 4: Each level corresponds to each time step of the BFS (x, n)-Pólya urn tree Gn.
The vertices are arranged from left to right in increasing order of their arrival times. Black
and blue vertices correspond to the probed and the active vertices. The red path joins the
uniformly chosen vertex and the discovered type L vertices. Here, P3 = {k(u)

0 , k
(u)
0,1 , k

(u)
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(op)[4] = k
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3.2. Construction of the offspring distributions

To distinguish the (x, n)-Pólya urn tree Gn from the other models, we apply Ulam-

Harris labels of the form k
(u)
ȳ to its vertices, where the superscript (u) stands for urn.

An example is given in Figure 4. Define

R
(u)
ȳ = the number of type R children of k

(u)
ȳ in the (x, n)-Pólya urn tree; (3.4)

noting that R
(u)
0 is the in-degree of the uniformly chosen vertex k

(u)
0 in Gn. Before we

proceed further, we prove a simple lemma to help us identify when v[t] in (3.1) is a

type L vertex, which will be useful for constructing the offspring distributions later.

The result can be understood as a consequence of the facts that in the tree setting,

we uncover a new active type L vertex immediately after we probe an active type L

vertex, and that the oldest probed vertex cannot be rediscovered as children of another

type R vertex in the subsequent explorations.

Lemma 4. Assume that At−1∪Pt−1 does not contain vertex 1. If t = 2, then v(op)[2] =

k
(u)
0 and v(oa)[2] = k

(u)
0,1 ; while if 2 < i ⩽ t, v(op)[i] and v(oa)[i] are type L children,
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where v(oa)[i] is the only type L child in Ai−1, and it receives an incoming edge from

v(op)[i].

Proof. We prove the lemma by an induction on 2 ⩽ i ⩽ t. The base case is clear,

since P1 = {k(u)0 } and A1 consists of its type L and R children. Assume that the lemma

holds for some 2 ⩽ i < t. If we probe a type L child at time i, then v[i] = v(oa)[i],

and there is vertex u ∈ Ni−1 that receives the incoming edge emanating from v[i].

Hence, vertex u belongs to type L and v(oa)[i+1] = u. Furthermore, v(op)[i+1] = v[i],

as v(op)[i] sends an outgoing edge to v[i] by assumption, implying v[i] < v(op)[i]. If

we probe a type R vertex at time i, then v[i] > v(oa)[i] and we uncover vertices in

Ni−1 that have later arrival times than v[i]. Setting Pi = Pi−1 ∪ {v[i]}, we have

v(op)[i+ 1] = v(op)[i] and v(oa)[i+ 1] = v(oa)[i], which are of type L. □

To construct the offspring distributions for each parent in the local neighbourhood,

we also need to define some notation and variables. Let E0 = ∅, and for t ⩾ 1, let

Et be the set of edges connecting the vertices in At ∪ Pt. Given a positive integer m,

denote the set of vertices and edges in Pt and Et whose arrival time in Gn is earlier

than that of vertex m as

Pt,m = Pt ∩ [m− 1] and Et,m = {{h, i} ∈ Et : i < m}; (3.5)

noting that (A0,P0,N0) = ({k0},∅, V (Gn) \ {k0}) and E0 = ∅. Below we use

[t] in the notation to indicate the exploration step, and omit x for simplicity. Let

((Zi[t], Z̃i[t]), 2 ⩽ i ⩽ n, i ̸∈ Pt−1) be independent variables, where

Zi[1] ∼ Gamma(xi, 1) and Z̃i[1] ∼ Gamma(Ti−1 + i− 1, 1), (3.6)

with Ti :=
∑i
j=1 xj . Now, suppose that t ⩾ 2. Due to the size-bias effect of the edge

{v(op)[t], v(oa)[t]} ∈ Et−1, we define

Zi[t] ∼ Gamma(xi + 1[i = v(oa)[t]], 1), i ∈ At−1 ∪Nt−1, (3.7)

so that the initial attractiveness of the type L child v(oa)[t] is xv(oa)[t] + 1. The shape

parameter of Z̃i[t] defined below is the total weight of the vertices in At−1∪Nt−1 whose
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arrival time is earlier than the i-th time step. This is because when adding a new vertex

to the (x, n)-sequential model conditional on having the edges Et−1, the recipient of

its outgoing edge cannot be a vertex in Pt−1, and is chosen w.p. proportional to the

current weights of the vertices in At−1∪Nt−1 that arrive before the new vertex. Hence,

define

Z̃i[t] ∼


Gamma(Ti−1 + i− 1, 1), if 2 ⩽ i ⩽ v(oa)[t];

Gamma(Ti−1 + i, 1), if v(oa)[t] < i < v(op)[t],

Gamma(Ti−1 + i−
∑
h∈Pt−1,i

xh − |Et−1,i|, 1), if v(op)[t] < i ⩽ n.

(3.8)

Let B1[t] := 1 and Bi[t] := 0 for i ∈ Pt−1, as the edges attached to Pt−1 are already

determined. Furthermore, define

Bi[t] :=
Zi[t]

Zi[t] + Z̃i[t]
for i ∈ At−1 ∪Nt−1. (3.9)

Denote Sn,0[t] := 0, Sn,n[t] := 1 and

Sn,i[t] :=

n∏
j=i+1

(1−Bj [t]) =

n∏
j=i+1;j ̸∈Pt−1

(1−Bj [t]) for 1 ⩽ i ⩽ n− 1, (3.10)

where the second equality is true because Bi[t] = 0 for i ∈ Pt−1. Observe that by

the beta-gamma algebra, (Bi[1], 1 ⩽ i ⩽ n) =d (Bi, 1 ⩽ i ⩽ n) and (Sn,i[1], 1 ⩽

i ⩽ n) =d (Sn,i, 1 ⩽ i ⩽ n), where Bi and Sn,i are as in (1.8) and (1.9). For t ⩾ 2,

(Bi[t], 1 ⩽ i ⩽ n) are the beta variables in the urn representation of the (x, n)-sequential

model conditional on having the edges Et−1; see Section 10.

We construct a Bernoulli sequence that encodes the type R children of vertex v[t]

as follows. For j ∈ Nt−1 and v[t] + 1 ⩽ j ⩽ n, let 1R[j → v[t]] be an indicator variable

that takes value one if and only if vertex j sends an outgoing edge to v[t]; while for

j ̸∈ Nt−1, let 1R[j → v[t]] = 0 w.p. one, since the recipient of the incoming edge from

vertex j is already in Pt−1. Note that if v[t] = k
(u)
ȳ , then R

(u)
ȳ in (3.4) is equal to∑n

j=v[t]+1 1R[j → v[t]]. We also assume Nt−1 ̸= ∅, because for large n, w.h.p. the

local neighbourhood of vertex k0 does not contain all the vertices of Gn. To state the
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distribution of (1R[j → v[t]], v[t] + 1 ⩽ j ⩽ n), we use (3.9) and (3.10) to define

Pj→v[t] :=


Sn,v[t][t]

Sn,j−1[t]
Bv[t][t], if j ∈ {v[t] + 1, . . . , n} ∩ Nt−1;

0, if j ∈ {v[t] + 1, . . . , n} \ Nt−1.

(3.11)

Definition 7. Given (At−1,Pt−1,Nt−1) and (Bj [t], v[t] ⩽ j ⩽ n), let Yj→v[t], v[t]+1 ⩽

j ⩽ n be conditionally independent Bernoulli variables, each with parameter Pj→v[t].

Define this Bernoulli sequence by the random vector

Y
(v[t],n)
Be :=

(
Y(v[t]+1)→v[t], Y(v[t]+2)→v[t], ..., Yn→v[t]

)
.

With the preparations above, we are ready to state the main results of this section.

For t ⩾ 2, the following lemmas are immediate consequences of the urn representation

in Section 10 for the (x, n)-sequential model conditional on the discovered edges. For

t = 1, they follow directly from Theorem 3. The first lemma states that we can encode

the type R children of the uniformly chosen vertex (the root) or a non-root parent in

the local neighbourhood in a Bernoulli sequence; see Figure 3 in the case of the root.

Lemma 5. Assume that Nt−1 ̸= ∅ and At−1 ∪ Pt−1 does not contain vertex 1.

Then given (At−1,Pt−1,Nt−1), the random vector (1R[j → v[t]], v[t] + 1 ⩽ j ⩽ n)

is distributed as Y
(v[t],n)
Be .

Remark 3. When |Et−1| = o(n) for some t ⩾ 2, Pj→v[t] in (3.11) is approximately

distributed as (Sn,v[t]/Sn,j−1)Bv[t] for n sufficiently large, with Bj and Sn,j as in (1.8)

and (1.9). As we shall see later in the proof, |Et−1| = o(n) indeed occurs w.h.p.

The next lemma states when v[t] is the uniformly chosen vertex or a type L parent,

we can use the beta variables in (3.9) to obtain the distribution of the type L child of

v[t]. Observe that (Bj [t], 2 ⩽ j ⩽ v[t] − 1) does not appear in Definition 7, but are

required for this purpose.

Lemma 6. Assume that Nt−1 ̸= ∅, At−1∪Pt−1 does not contain vertex 1, and v[t] is

either the uniformly chosen vertex or of type L. Given (At−1,Pt−1,Nt−1), let Sn,j [t]

be as in (3.10), and U ∼ U[0, Sn,v[t]−1[t]]. For 1 ⩽ j ⩽ v[t] − 1, the probability

that vertex j receives the only incoming edge from v[t] is given by the probability that
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Sn,j−1[t] ⩽ U < Sn,j [t].

4. An intermediate tree for graph couplings

As the π-Pólya point tree (T , 0) in Definition 3 does not have vertex labels that

are comparable to the vertex arrival times of the (x, n)-Pólya urn tree Gn, we define

a suitable conditional analogue of the π-Pólya point tree. We call this analogue the

intermediate Pólya point tree (Tx,n, 0), where vertex 0 is its root, and the subscripts

are the parameters corresponding to x and n of Gn.

All the variables of (Tx,n, 0) have the superscript (i) (for intermediate). Each vertex

of (Tx,n, 0) has an Ulam-Harris label v̄, an age a
(i)
v̄ and a type (except for the root),

which are defined similarly as in Section 1.2 for (T , 0). Moreover, vertex v̄ has an

additional PA label k
(i)
v̄ , which determines its initial attractiveness by taking x

k
(i)
v̄
. The

distributions of the PA labels are constructed using gamma variables similar to (3.6)

(3.7) and (3.8), and as we remark after the definition, k
(i)
v̄ are approximately distributed

as vertices (or equivalently the arrival times) k
(u)
v̄ in the local neighbourhood in Gn.

Denote

R
(i)
v̄ = the number of type R children of vertex v̄ in (Tx,n, 0), (4.1)

which is analogous to Rv̄ in (1.3) and R
(u)
v̄ in (3.4). Finally, recall χ in (1.2) and

w̄ ⩽UH v̄ whenever the Ulam-Harris label w̄ is smaller than v̄ in the breadth-first

order (Definition 5).

Definition 8. (Intermediate Pólya point tree.) Given n and x, (Tx,n, 0) is constructed

recursively as follows. The root 0 has an age a
(i)
0 = Uχ0 and an initial attractiveness

x
k
(i)
0
, where U0 ∼ U[0, 1] and k

(i)
0 = ⌈nU0⌉. Assume that

((
a
(i)
w̄ , k

(i)
w̄

)
, w̄ ⩽UH v̄

)
and((

R
(i)
w̄ , a

(i)
w̄,j , k

(i)
w̄,j

)
, w̄ <UH v̄

)
have been generated, such that k

(i)
w̄ > 1 for w̄ ⩽UH v̄. If

vertex v̄ is the root or belongs to type L, we generate
((
a
(i)
v̄,j , k

(i)
v̄,j

)
, 1 ⩽ j ⩽ 1+R

(i)
v̄

)
as

follows.

1. We sample the age of its type L child (v̄, 1) by letting Uv̄,1 ∼ U[0, 1] and a
(i)
v̄,1 =

a
(i)
v̄ Uv̄,1.

2. Next we choose the PA label k
(i)
v̄,1. Suppose that t = |{w̄ : w̄ ⩽UH v̄}|, so that t =

1 if v̄ = 0. We define the conditionally independent variables ((Z(i)
j [t], Z̃(i)

j [t]), 2 ⩽
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j ⩽ n, j ̸∈ {k(i)w̄ : w̄ <UH v̄}) as follows. Let Tj :=
∑j
ℓ=1 xℓ. When v̄ = 0, let

Z(i)
j [1] ∼ Gamma(xj , 1) and Z̃(i)

j [1] ∼ Gamma(Tj−1 + j − 1, 1);

whereas when v̄ = (0, 1, 1, ..., 1), let Z(i)
j [t] ∼ Gamma(xj + 1[j = k

(i)
v̄ ], 1), and

Z̃(i)
j [t] ∼


Gamma(Tj−1 + j − 1, 1), 2 ⩽ j ⩽ k

(i)
v̄ ;

Gamma(Tj−1 + j, 1), k
(i)
v̄ < j < k

(i)
v̄′ ;

Gamma
(
Tj−1 + j + 1− |v̄| −Wv̄,j , 1

)
, k

(i)
v̄′ < j ⩽ n,

where Wv̄,j :=
∑

{k(i)w̄ <j:w̄<UH v̄}
{x

k
(i)
w̄

+ R
(i)
w̄ }, and v̄′ = (0, 1, 1, ..., 1) with |v̄′| =

|v̄| − 1. For either the root or the type L parent, define B
(i)
1 [t] := 1, B

(i)
j [t] := 0

for j ∈ {k(i)w̄ : w̄ <UH v̄} and

B
(i)
j [t] :=

Z(i)
j [t]

Z(i)
j [t] + Z̃(i)

j [t]
for j ∈ [n] \ {k(i)w̄ : w̄ <UH v̄}; (4.2)

then let S
(i)
n,0[t] := 0, S

(i)
n,n[t] := 1 and S

(i)
n,j [t] :=

∏n
ℓ=j+1(1 − B

(i)
ℓ [t]) for 1 ⩽ j ⩽

n− 1. Momentarily define b := k
(i)
v̄ and c := k

(i)
v̄,1, we choose the PA label c such

that S
(i)
n,c−1[t] ⩽ Uv̄,1S

(i)
n,b−1[t] < S

(i)
n,c[t].

3. We generate the ages and the PA labels of the type R children. Let (a
(i)
v̄,j , 2 ⩽

j ⩽ 1 +R
(i)
v̄ ) be the points of a mixed Poisson process on (a

(i)
v̄ , 1] with intensity

λ
(i)
v̄ (y)dy :=

Z(i)
b [t]

µ
(
a
(i)
v̄

)1/µ y1/µ−1dy. (4.3)

Then choose k
(i)
v̄,j , 2 ⩽ j ⩽ 1 +R

(i)
v̄ such that

((
k
(i)
v̄,j − 1

)
/n
)χ
< a

(i)
v̄,j ⩽

(
k
(i)
v̄,j/n

)χ
. (4.4)

If v̄ is of type R, let Zb[t] ∼ Gamma(xb, 1) and apply step 3 only to obtain
((
a
(i)
v̄,j , k

(i)
v̄,j

)
, 1 ⩽

j ⩽ R
(i)
v̄

)
. We build (Tx,n, 0) by iterating this process, and terminate the construction

whenever there is some vertex v̄ such that b = 1.
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We now discuss the distributions of the PA labels above. Clearly, k
(i)
0 is uniform

in [n]. Observe that t above is essentially the number of breadth-first exploration

steps in (Tx,n, 0), starting from the root 0. Suppose that we have completed t −

1 exploration steps in Gn, starting from its uniformly chosen vertex k
(u)
0 , and the

resulting neighbourhood is coupled to that of vertex 0 ∈ V ((Tx,n, 0)) such that they

are isomorphic and k
(i)
w̄ = k

(u)
w̄ for all w̄ in the neighbourhoods. If v[t] = k

(u)
v̄ , a

moment’s thought shows that the total weight of the vertices {k(i)w̄ < j : w̄ <UH v̄}

and the vertex set Pt−1,j satisfy

Wv̄,j + |v̄| − 1 =
∑

h∈Pt−1,j

xh + |Et−1,j |,

where Pt−1,j and Et−1,j are as in (3.5). Hence, recalling the gammas in (3.7) and

(3.8), it follows that Zj [t] =d Z(i)
j [t] and Z̃j [t] =d Z̃(i)

j [t] for any j. So by Lemma 6,

k
(i)
v̄ =d k

(u)
v̄ if v̄ is a type L child. However, k

(i)
v̄ is only approximately distributed as

k
(u)
v̄ if v̄ is of type R. The discretised Poisson point process that generates these PA

labels will be coupled to the Bernoulli sequence in Lemma 5 that encodes the type R

children of k
(u)
v̄ .

When k
(i)
v̄ = 1, it must be the case that v̄ = 0 or v̄ = (0, 1, . . . , 1). We stop

the construction in this case to avoid an ill-defined Z(i)
1 [t] when −1 < x1 ⩽ 0 and

k
(i)
0 = 1; and also because vertex 1 cannot have a type L neighbour, so steps 1 and

2 are unnecessary in this case. Nevertheless, for r < ∞ and any vertex v̄ in the r-

neighbourhood of vertex 0 ∈ V ((Tx,n, 0)), the probability that k
(i)
v̄ = 1 tends to zero

as n→ ∞.

5. Local weak convergence: the base case

Recall that, as in Section 3.2, k
(u)
v̄ are the vertices in the local neighbourhood of the

uniformly chosen vertex k
(u)
0 of the (x, n)-Pólya urn tree Gn (Definition 4). Let χ be

as in (1.2), (Tx,n, 0) be the intermediate Pólya point tree in Definition 8, with k
(i)
v̄ and

a
(i)
v̄ being the PA label and the age of vertex v̄ in the tree. Here, we couple (Gn, k

(u)
0 )

and (Tx,n, 0) such that w.p. tending to one, (B1(Gn, k
(u)
0 ), k

(u)
0 ) ∼= (B1(Tx,n, 0), 0),(

k
(u)
0,j /n

)χ ≈ a
(i)
0,j and k

(u)
0,j = k

(i)
0,j . For convenience, we also refer to the rescaled arrival
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time (k/n)χ of vertex k in Gn simply as its age.

Let U0 ∼ U[0, 1], a
(i)
0 = Uχ0 and k

(u)
0 = ⌈nU0⌉, where a(i)0 is the age of vertex 0. By

a direct comparison to Definition 8, a
(i)
0 ≈

(
k
(u)
0 /n

)χ
and the initial attractiveness of

vertex 0 is x
k
(u)
0

. Under this coupling we define the event

H1,0 = {a(i)0 > (log log n)−χ}, (5.1)

which guarantees that we choose a vertex of low degree in Gn. To prepare for the

coupling, let ((Zj [1], Z̃j [1]), 2 ⩽ j ⩽ n) and (Sn,j [1], 1 ⩽ j ⩽ n) be as in (3.6) and

(3.10). We use (Sn,j [1], 1 ⩽ j ⩽ n) to construct the distribution of the type R children

of k
(u)
0 , and for sampling the initial attractiveness of vertex (0, 1) ∈ V ((Tx,n, 0)).

Furthermore, let the ages (a
(i)
0,j , 1 ⩽ j ⩽ 1 + R

(i)
0 ) and R

(u)
0 be as in Definition 8

and (3.4). Below we define a coupling of (Gn, k
(u)
0 ) and (Tx,n, 0); and for this coupling

we define the events that the children of k
(u)
0 have low degrees, the 1-neighbourhoods

are isomorphic and of size at most (log n)1/r, and the ages are close enough as

H1,1 = {a(i)0,1 > (log log n)−2χ},

H1,2 =

{
R

(u)
0 = R

(i)
0 , for v̄ ∈ V (B1(Tx,n, 0)), k(u)v̄ = k

(i)
v̄ ,

∣∣∣∣a(i)v̄ −
(
k
(u)
v̄

n

)χ∣∣∣∣ ⩽ C1b(n)

}
,

H1,3 = {R(i)
0 < (log n)1/r}, (5.2)

where R
(i)
0 and R

(u)
0 are as in (3.4) and (4.1), b(n) := n−

χ
12 (log log n)χ and C1 :=

C1(x1, µ) will be chosen in the proof of Lemma 8 below. Because the initial attrac-

tiveness of the vertices (0, j) and k
(u)
0,j match and their ages are close enough on the

event H1,2, we can couple the Bernoulli and the mixed Poisson sequences that encode

their type R children, and hence the 2-neighbourhoods. The event H1,1 ensures that

the local neighbourhood of k
(u)
0 grows slowly; and on the event H1,3, the number of

vertex pairs that we need to couple for the 2-neighbourhoods are not too large. So

by a union bound argument, the probability that any of the subsequent couplings fail

tends to zero as n→ ∞.

The aim of this section is to show that when
∑j
i=2 xi ≈ (j−1)µ for all j sufficiently

large, we can couple the two graphs such that
⋂3
i=0 H1,i occurs w.h.p. Thus, let An :=
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A2/3,n be as in (2.1) with α = 2/3; this α is chosen to simplify the calculation, and

can be chosen under the assumption of bounded fitness. Recall that Px indicates the

conditioning on a specific realisation of the fitness sequence x. The main result is

the lemma below, and is the base case when we inductively prove an analogous result

for the general radius r < ∞. Because B1(Tx,n, 0) approximately distributes as the

1-neighbourhood of the π-Pólya point tree after randomisation of x, and Lemma 1 says

that P[Acn] = O(n−b) for some b > 0, it follows from the lemma below and (1.4) that

(1.5) of Theorem 1 holds for r = 1.

Lemma 7. Assume that xj ∈ (0, κ] for j ⩾ 2 and x ∈ An. Let H1,j, j = 0, . . . , 3 be as

in (5.1) and (5.2). Then there is a coupling of (Gn, k
(u)
0 ) and (Tx,n, 0), with a positive

constant C := C(x1, µ, κ) such that

Px

[( 3⋂
j=0

H1,j

)c]
⩽ C(log log n)−χ for all n ⩾ 3. (5.3)

The proof of Lemma 7 consists of several lemmas which we now develop. From the

definitions of a
(i)
0 and a

(i)
0,1, it is obvious that the probabilities of the events H1,0 and

H1,1 tend to one as n → ∞; and by Chebyshev’s inequality, we can show that this is

also true for the event H1,3. We take care of H1,2 in the lemma below, whose proof is

the core of this section.

Lemma 8. Retaining the assumption and the notation of Lemma 7, there is a coupling

of (Gn, k
(u)
0 ) and (Tx,n, 0), with a positive constant C := C(x1, µ, κ) such that

Px

[
H1,0 ∩H1,1 ∩Hc

1,2

]
⩽ Cn−β(log log n)1−χ for all n ⩾ 3,

where 0 < γ < χ/12 and β = min{χ/3− 4γ, γ}.

Given that the vertices k
(u)
0 ∈ V ((Gn, k

(u)
0 )) and 0 ∈ V ((Tx,n, 0)) are coupled, we

prove Lemma 8 as follows. Note that v[1] = k
(u)
0 , where v[t] is as in (3.1). We first

couple Y
(v[1],n)
Be in Definition 7 and a discretisation of the mixed Poisson process that

encodes the ages and the PA labels that are of type R. Then, we couple the type L

vertices k
(u)
0,1 and (0, 1) ∈ V ((Tx,n, 0)) such that on the event H1,0 ∩ H1,1, k

(i)
0,1 = k

(u)
0,1

and
(
k
(u)
0,1/n

)χ ≈ a
(i)
0,1 w.h.p.
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For the means of the discretised Poisson process, we define

λ
[1]
v[1]+1 :=

∫ ( v[1]+1
n )

χ

a
(i)
0

Zv[1][1]
(a

(i)
0 )1/µµ

y1/µ−1dy and λ
[1]
j :=

∫ ( jn )
χ

( j−1
n )

χ

Zv[1][1]
(a

(i)
0 )1/µµ

y1/µ−1dy

(5.4)

for v[1] + 2 ⩽ j ⩽ n, where Zv[1][1] is the gamma variable in (3.6).

Definition 9. Given v[1] = k
(u)
0 , a

(i)
0 and Zv[1][1], let Vj→v[1], v[1] + 1 ⩽ j ⩽ n, be

conditionally independent Poisson random variables, each with parameter λ
[1]
j as in

(5.4). Define this Poisson sequence by the random vector

V
(v[1],n)
Po := (V(v[1]+1)→v[1], V(v[1]+2)→v[1], ..., Vn→v[1]).

Next, we define the events that ensure Pj→v[1] is close enough to λ
[1]
j . Let ϕ(n) =

Ω(nχ), C⋆ := C⋆(x1, µ) be a positive constant such that (2.2) of Lemma 2 holds with

δn = C⋆n−
χ
12 . Let Zj [1], Bj [1] and Sj [1] be as in (3.6), (3.9) and (3.10). Given

0 < γ < χ/12, define the events

F1,1 =

{
max

⌈ϕ(n)⌉⩽j⩽n

∣∣∣∣Sn,j [1]− ( jn
)χ∣∣∣∣ ⩽ C⋆n−

χ
12

}
;

F1,2 =

n⋂
j=⌈ϕ(n)⌉

{∣∣∣∣Bj [1]− Zj [1]
(µ+ 1)j

∣∣∣∣ ⩽ Zj [1]n−γ

(µ+ 1)j

}
;

F1,3 =

n⋂
j=⌈ϕ(n)⌉

{Zj [1] ⩽ j1/2}.

(5.5)

The next lemma is the major step towards proving Lemma 8, as it implies that

we can couple the ages and the initial attractiveness of the type R children of the

uniformly chosen vertex k
(u)
0 := v[1] ∈ V (Gn, k

(u)
0 ) and the root 0 ∈ V (Tx,n, 0).

Lemma 9. Retaining the assumption and the notation in Lemma 8, let Y
(v[1],n)
Be and

V
(v[1],n)
Po be as in Definition 7 and 9; and F1,i, i = 1, 2, 3 be as in (5.5). Then we can

couple the random vectors so that there is a positive constant C := C(x1, µ, κ) such

that

Px

[
{Y(v[1],n)

Be ̸= V
(v[1],n)
Po } ∩

3⋂
i=1

F1,i ∩H1,0

]
⩽ Cn−γ(log log n)1−χ for all n ⩾ 3.
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We summarise the proof here and defer the detail to Section 11.1. On the event

F1,1 ∩ F1,2 ∩ H1,0, a little calculation shows that the Bernoulli success probability

Pj→v[1] in (3.11) is close enough to

P̂j→v[1] :=

(
v[1]

j

)χ Zv[1][1]
(µ+ 1)v[1]

, (5.6)

while the event F1,3 ensures that P̂j→v[1] ⩽ 1. The Poisson mean λ
[1]
j ≈ P̂j→v[1] as

a
(i)
0 ≈ (v[1]/n)χ. Hence, we use P̂j→v[1] in (5.6) as means to construct two intermediate

Bernoulli and Poisson random vectors, and then explicitly couple the four processes.

It is enough to consider the coupling under the event
⋂3
j=1 F1,j ∩ H1,0, because when

x ∈ An, Lemma 2 and 3 imply that F1,1, F1,2 and F1,3 occur w.p. tending to one as

n→ ∞.

Below we use Lemma 2, 3 and 9 to prove Lemma 8.

Proof of Lemma 8. We bound the right-hand side of

Px[Hc
1,2 ∩H1,1 ∩H1,0]

⩽ Px

[ 3⋂
j=1

F1,j ∩
1⋂
j=0

H1,j ∩Hc
1,2

]
+ Px

[( 3⋂
j=1

F1,j

)c]

⩽ Px

[ 3⋂
j=1

F1,j ∩
1⋂
j=0

H1,j ∩Hc
1,2

]
+ Px[F

c
1,3] + Px[F

c
1,2] + Px[F

c
1,1], (5.7)

under a suitable coupling of (Gn, k
(u)
0 ) and (Tx,n, 0). We first handle the last three

terms. Firstly, apply (2.6) of Lemma 3 to obtain

Px[F
c
1,3] = Px

[ n⋃
j=ϕ(n)

{Zj [1] ⩾ j1/2}
]
⩽ Cκ4n−χ, (5.8)

where C is a positive constant. Since x ∈ An, we can apply (2.4) of Lemma 3 (with

ε = n−γ , 0 < γ < χ/12 and α = 2/3) and Lemma 2 to deduce that

Px[F
c
1,2] = Px

[ n⋃
j=⌈ϕ(n)⌉

{∣∣∣∣Bj [1]− Zj [1]
(µ+ 1)j

∣∣∣∣ ⩾ Zj [1]n−γ

(µ+ 1)j

}]
⩽ Cn4γ−

χ
3 ;

Px[F
c
1,1] ⩽ Px

[
max

⌈ϕ(n)⌉⩽k⩽n

∣∣∣∣Sn,k[1]− (kn
)χ∣∣∣∣ ⩾ C⋆n−

χ
12

]
⩽ cn−χ

6 , (5.9)
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where C := C(x1, γ, µ) and c := c(x1, µ). Note that Px[F
c
1,2] → 0 as n → ∞ due to

our choice of γ.

Next, we give the appropriate coupling to bound the first probability of (5.7). Let

the vertices k
(u)
0 ∈ V (Gn, k

(u)
0 ) and 0 ∈ V (Tx,n, 0) be coupled as in the beginning of

this section. Assume that they are such that the event H1,0 occurs; and the variables

((Zj [1], Z̃j [1]), 2 ⩽ j ⩽ n) are such that
⋂3
j=1 F1,j holds. We first argue that under

the event
⋂3
j=1 F1,j ∩ H1,0, their type R children can be coupled such that w.h.p.,

R
(u)
0 = R

(i)
0 and k

(u)
0,j = k

(i)
0,j for j = 2, ..., 1 + R

(i)
0 . In view of Definition 4 and 8,

this follows readily from Lemma 9. It remains to prove that under this coupling,

|(k(u)0 /n)χ−a(i)0 | and |a(i)0,j − (k
(u)
0,j /n)

χ| are sufficiently small. Since k
(u)
0 = ⌈n(a(i)0 )1/χ⌉,

and for j = 2, ..., 1 + R
(i)
0 , k

(u)
0,j satisfies k

(u)
0,j > k

(u)
0 and ((k

(u)
0,j − 1)/n)χ < a

(i)
0,j ⩽

(k
(u)
0,j /n)

χ, it is enough to bound (ℓ/n)χ− ((ℓ− 1)/n)χ for k
(u)
0 +1 ⩽ ℓ ⩽ n. For such ℓ,

we use k
(u)
0 > n(log log n)−1 on the event H1,0, and the mean value theorem to obtain

1[H1,0]

[(
ℓ

n

)χ
−
(
ℓ− 1

n

)χ]
⩽ 1[H1,0]

χ

n

(
n

ℓ− 1

)1−χ

⩽
χ(log log n)1−χ

n
. (5.10)

Next, we couple the type L child of k
(u)
0 ∈ V (Gn, k

(u)
0 ) and 0 ∈ V (Tx,n, 0), such

that k
(u)
0,1 = k

(i)
0,1 and (k

(u)
0,1/n)

χ ≈ a
(i)
0,1. Independently from a

(i)
0 , let U0,1 ∼ U[0, 1] and

a
(i)
0,1 = U0,1a

(i)
0 . Recalling v[2] = k

(u)
0,1 in the BFS, it follows from Definition 4 and 8

that we can define k
(u)
0,1 to satisfy

Sn,v[2]−1[1] ⩽ U0,1Sn,v[1]−1[1] < Sn,v[2][1],

or equivalently,

Sn,v[2]−1[1] ⩽
a
(i)
0,1

a
(i)
0

Sn,v[1]−1[1] < Sn,v[2][1]; (5.11)

and take k
(u)
0,1 = k

(i)
0,1. Now, we show that under this coupling, a

(i)
0,1 ≈ (k

(u)
0,1/n)

χ on the

‘good’ event H1,0∩H1,1∩F1,1. Observe that Sn,v[2][1] = Ω((log log n)−3χ) on the good

event, because for n large enough,

Sn,v[2][1] ⩾ U0,1Sn,v[1]−1[1] ⩾ (log log n)−2χ

[(
v[1]− 1

n

)χ
− C⋆n−

χ
12

]
⩾ (log log n)−2χ[(log log n)−χ − 2C⋆n−

χ
12 ].
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Since Sn,j [1] increases with j, the last calculation implies that |Sn,j [1] − (j/n)χ| ⩽

C⋆n−
χ
12 for j = k

(u)
0,1 , k

(u)
0,1 −1. Furthermore, a little calculation shows that on the event

H1,0 ∩ F1,1, there is a constant c := c(x1, µ) such that

∣∣(Sn,v[1]−1[1]/a
(i)
0 )− 1

∣∣ = cn−
χ
12 (log log n)χ.

Swapping (Sn,v[1]−1[1]/a
(i)
0 ), Sn,v[2][1] and Sn,v[2]−1[1] in (5.11) for one, (v[2]/n)χ and

((v[2] − 1)/n)χ at the costs above, we conclude that there exists Ĉ := Ĉ(x1, µ) such

that on the good event, |a(i)0,1 − (k
(u)
0,1/n)

χ| ⩽ Ĉn−
χ
12 (log log n)χ.

Hence, we can take C1 := Ĉ ∨ χ for the event H1,2, and apply Lemma 9 to obtain

Px

[ 3⋂
j=1

F1,j ∩Hc
1,2 ∩H1,1 ∩H1,0

]
= Px

[
{Y(v[1],n)

Be ̸= V
(v[1],n)
Po } ∩

3⋂
j=1

F1,j ∩
1⋂
j=0

H1,j

]

⩽ Px

[
{Y(v[1],n)

Be ̸= V
(v[1],n)
Po } ∩

3⋂
j=1

F1,j ∩H1,0

]
⩽ Cn−γ(log log n)1−χ, (5.12)

where C := C(x1, µ, κ) is as in Lemma 9. The lemma is proved by applying (5.8), (5.9)

and (5.12) to (5.7). □

Before proving Lemma 7, we need a result that says that under the graph coupling,

the event that vertex k
(u)
0 has a low degree occurs w.h.p. The next lemma is proved

in Section 11.2 using Chebyshev’s inequality. Recall that An := A2/3,n is the event in

(2.1) with α = 2/3.

Lemma 10. Assume that xi ∈ (0, κ] for i ⩾ 2 and x ∈ An. Let H1,i, 0, . . . , 3 be as in

(5.2). There is a coupling of (Gn, k
(u)
0 ) and (Tx,n, 0), with a positive integer p and a

positive constant C := C(p, κ) such that

Px

[ 2⋂
i=0

H1,i ∩Hc
1,3

]
⩽ C(log n)−

p
r (log log n)

p
µ+1 for all n ⩾ 3.

We now complete the proof of Lemma 7 by applying Lemma 8 and 10.
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Proof of Lemma 7. The lemma follows from bounding the right-hand side of

Px

[( 3⋂
i=0

H1,i

)c]
= Px[Hc

1,0] +

3∑
i=1

Px

[ i−1⋂
j=0

H1,j ∩Hc
1,i

]
,

under the coupling in the proof of Lemma 8. To bound Px[Hc
1,0] and Px[H1,0 ∩ Hc

1,1],

recall that a
(i)
0 = Uχ0 and a

(i)
0,1 = U0,1a

(i)
0 , where U0 and U0,1 are independent standard

uniform variables. Hence,

Px[H1,0 ∩Hc
1,1] = E

[
1[H1,0]Px[U0,1 ⩽ (a

(i)
0 )−1(log log n)−2χ|U0]

]
⩽ Px[U0,1 ⩽ (log log n)−χ]

= (log log n)−χ; (5.13)

and Px[Hc
1,0] = Px[U0 ⩽ (log log n)−1] = (log log n)−1. Bounding the remaining

probabilities using Lemma 8 and 10 completes the proof. □

6. Local weak convergence: the general case

Recall the definitions of k
(u)
w̄ , a

(i)
w̄ and k

(i)
w̄ in the beginning of Section 3.2 and

Definition 8. In this section, we inductively couple the uniformly rooted Pólya urn

graph (Gn, k
(u)
0 ) and the intermediate Pólya point tree (Tx,n, 0) in Definition 8 such

that w.h.p., (Br(Gn, k
(u)
0 ), k

(u)
0 ) ∼= (Br(Tx,n, 0), 0), and for k

(u)
w̄ ∈ V (Br(Gn, k

(u)
0 )) and

w̄ ∈ V (Br(Tx,n, 0), their ages are closed enough (
(
k
(u)
w̄ /n

)χ ≈ a
(i)
w̄ ) and their PA labels

and arrival times match (k
(i)
w̄ = k

(u)
w̄ ).

Given a positive integer r, let L[q] := (0, 1, ..., 1) and |L[q]| = q+1 for 2 ⩽ q ⩽ r, so

that L[q] and k
(u)
L[q] are the type L children in ∂Bq := V (Bq(Tx,n, 0))\V (Bq−1(Tx,n, 0))

and ∂Bq := V (Bq(Gn, k
(u)
0 ))\V (Bq−1(Gn, k

(u)
0 )). Let χ/12 := β1 > β2 > · · · > βr > 0,

so that n−βq > n−βq−1(log log n)qχ for n large enough. To ensure that we can couple

the (q + 1)-neighbourhoods for 1 ⩽ q ⩽ r− 1, we define the coupling events analogous
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to H1,j , j = 1, 2, 3 in (5.2):

Hq,1 = {a(i)L[q] > (log log n)−χ(q+1)},

Hq,2 =

{
(Bq(Gn, k

(u)
0 ), k

(u)
0 ) ∼= (Bq(Tx,n, 0), 0), with k(u)v̄ = k

(i)
v̄

and

∣∣∣∣a(i)v̄ −
(
k
(u)
v̄

n

)χ∣∣∣∣ ⩽ Cqn
−βq for v̄ ∈ V (Bq(Tx,n, 0))

}
,

Hq,3 = {R(i)
v̄ < (log n)1/r for v̄ ∈ V (Bq−1(Tx,n, 0))},

(6.1)

where R
(i)
v̄ is as in (4.1) and Cq := Cq(x1, µ) will be chosen in the proof of Lemma 12

later.

Let An := A2/3,n be the event in (2.1) and Px indicates the conditioning on a

specific realisation of the fitness sequence x. The next lemma is the key result of this

section, which essentially states that if we can couple (Gn, k
(u)
0 ) and (Tx,n, 0) such

that (Bq(Gn, k
(u)
0 ), k

(u)
0 ) ∼= (Bq(Tx,n, 0), 0) w.h.p., then we can achieve this for the

(q + 1)-neighbourhoods too.

Lemma 11. Let Hq,i, 1 ⩽ q ⩽ r− 1, i = 1, 2, 3 be as in (5.2) and (6.1). Assume that

xi ∈ (0, κ] for i ⩾ 2 and x ∈ An. Given r <∞ and 1 ⩽ q ⩽ r−1, if there is a coupling

of (Gn, k
(u)
0 ) and (Tx,n, 0), with a positive constant C := C(x1, µ, κ, q) such that

Px

[( 3⋂
i=1

Hq,i

)c]
⩽ C(log log n)−χ for all n ⩾ 3,

then there is a coupling of (Gn, k
(u)
0 ) and (Tx,n, 0), with a positive constant C ′ :=

C ′(x1, µ, κ, q) such that

Px

[( 3⋂
i=1

Hq+1,i

)c]
⩽ C ′(log log n)−χ for all n ⩾ 3.

Since Lemma 7 implies that such a graph coupling exists for r = 1, combining

Lemma 7 and 11 yields the following corollary, which is instrumental in proving

Theorem 1.

Corollary 2. Retaining the assumption and the notation in Lemma 11, there is a

coupling of (Gn, k
(u)
0 ) and (Tx,n, 0), with a positive constant C := C(x1, µ, κ, r) such
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that

Px

[( 3⋂
i=1

Hr,i

)c]
⩽ C(log log n)−χ for all n ⩾ 3.

The proof of Lemma 11 is in the same vein as that of Lemma 7. Fixing 1 ⩽ q ⩽ r−1,

we may assume that two graphs are already coupled such that the event
⋂3
i=1 Hq,i has

occurred. On the event Hq,1, it is clear from the definitions of a
(i)
L[q+1] and Hq+1,1, that

Hq+1,1 occurs w.h.p.; while on the event Hq,1 ∩ Hq,3, we can easily show that Hq+1,3

occurs w.h.p. So for the most part of the proof, we handle the event Hq+1,2.

To couple the graphs such that Hq+1,2 occurs w.h.p., we consider the vertices of ∂Bq
and ∂Bq in the breath-first order, and couple k

(u)
w̄ ∈ ∂Bq and w̄ ∈ ∂Bq so that w.h.p.,

their numbers of children are the same and not too large, and the children’s ages are

close enough. Recall the definition of v[t] in (3.1). If v[t] = k
(u)
w̄ , the associated events

are as follows:

Kt,1 =

{
R

(u)
w̄ = R

(i)
w̄ , and for 1 ⩽ j ⩽ 1 +R

(i)
w̄ ,

k
(i)
w̄,j = k

(u)
w̄,j and

∣∣∣∣a(i)w̄,j − (k(u)w̄,j

n

)χ∣∣∣∣ ⩽ Cq+1n
−βq+1

}
,

Kt,2 = {R(i)
w̄ < (log n)1/r},

(6.2)

where R
(u)
w̄ and R

(i)
w̄ are as in (3.4) and (4.1), Cq+1 and βq+1 are as in the event Hq+1,2.

Below we only consider the coupling of the type L children in detail, because the type

R case can be proved similarly. Observe that for n large enough, there must be a type

L child in ∂Bq on the event
⋂3
j=1 Hq,j . Define v[τ [q]] = k

(u)
L[q], so that

τ [1] = 2 and τ [q] = |V (Bq−1(Gn, k
(u)
0 ))|+ 1 for 2 ⩽ q ⩽ r − 1

are the exploration times of the type L children. Noting that

(Aτ [q]−1,Pτ [q]−1,Nτ [q]−1) = (∂Bq, V (Bq−1(Gn, k
(u)
0 )), V (Gn) \ V (Bq(Gn, k

(u)
0 ))),
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we let

((
Zj [τ [q]], Z̃j [τ [q]]

)
, j ∈ Aτ [q]−1 ∪Nτ [q]−1

)
and (Sn,j [τ [q]], 1 ⩽ j ⩽ n)

be as in (3.7), (3.8) and (3.10). For convenience, we also denote

ζq := Zv[τ [q]][τ [q]], so that ζq ∼ Gamma(xv[τ [q]] + 1, 1). (6.3)

We use (Sn,j [τ [q]], 1 ⩽ j ⩽ n) to generate the children of vertex v[τ [q]], and let(
a
(i)
L[q],j , 2 ⩽ j ⩽ 1+R

(i)
L[q]

)
be the points of the mixed Poisson process on

(
a
(i)
L[q], 1

]
with

intensity
ζq

µ
(
a
(i)
L[q]

)1/µ y1/µ−1dy, (6.4)

and a
(i)
L[q],1 ∼ U

[
0, a

(i)
L[q]

]
.

In the sequel, we develop lemmas analogous to Lemma 8 and 10 to show that on

the event
⋂3
j=1 Hq,j , we can couple the vertices v[τ [q]] ∈ ∂Bq and τ [q] ∈ ∂Bq such that

the events Kτ [q],1 and Kτ [q],2 occur w.h.p. As in the 1-neighbourhood case, the difficult

part is proving the claim for Kτ [q],1. From now on we write

Hq,l :=

3⋂
j=1

Hq,j ∩ {|∂Bq| = l} for all l ⩾ 1. (6.5)

Lemma 12. Retaining the assumption and the notation in Lemma 11, let βq, Kτ [q],1
and Hq,l be as in (6.1), (6.2) and (6.5). Then, there is a coupling of (Gn, k

(u)
0 ) and

(Tx,n, 0), with a positive constant C := C(x1, µ, κ, q) such that

Px(Hq,l ∩Hq+1,1 ∩ Kcτ [q],1) ⩽ Cn−d(log log n)q+1(log n)q/r for all n ⩾ 3 and l ⩾ 1,

where 0 < γ < χ/12 and d := min{χ/3− 4γ, γ, 1− χ, βq}.

Similar to Lemma 8, the key step is to couple the type R children of vertex k
(u)
L[q]. Let

the Bernoulli sequence Y
(v[τ [q]],n)
Be be as in Definition 7, which by Lemma 5, encodes
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the type R children of vertex k
(u)
L[q]. Additionally, define

ML[q] := min
{
j ∈ [n] : (j/n)χ ⩾ a

(i)
L[q]

}
. (6.6)

We want to use the bins
(
a
(i)
L[q], ((j/n)

χ)nj=ML[q]

)
to construct the discretised mixed

Poisson process that encodes the ages and the PA labels, i.e.
((
a
(i)
L[q],j , k

(i)
L[q],j

)
, 2 ⩽ j ⩽

1+R
(i)
L[q]

)
. However, it is possible that ML[q] ̸= v[τ [q]]+1, and in which case the num-

bers of Bernoulli and Poisson variables do not match and a modification of Y
(v[τ [q]],n)
Be

is needed. IfML[q] ⩽ v[τ [q]], define Yj→v[τ [q]],ML[q] ⩽ j ⩽ v[τ [q]] as Bernoulli variables

with means Pj→v[τ [q]] := 0, and concatenate the vectors (Yj→v[τ [q]],ML[q] ⩽ j ⩽ v[τ [q]])

and Y
(v[τ [q]],n)
Be . This corresponds to the fact that vertex j cannot send an outgoing

edge to vertex v[τ [q]] in (Gn, k
(u)
0 ). If ML[q] ⩾ v[τ [q]] + 1, let Y

(v[τ [q]],n)
Be be as in

Definition 7. Saving notation, we redefine

Y
(v[τ [q]],n)
Be :=

(
Y
M̃L[q]→v[τ [q]]

, Y
(M̃L[q]+1)→v[τ [q]]

, ..., Yn→v[τ [q]]

)
, (6.7)

where

M̃L[q] := min{ML[q], v[τ [q]] + 1}. (6.8)

We also make the following adjustment so that the upcoming Poisson random vector is

a discretisation of the mixed Poisson point process on (a
(i)
L[q], 1], and is still comparable

to the modified Y
(v[τ [q]],n)
Be . When ML[q] ⩽ v[τ [q]] + 1, define the Poisson means

λ
[τ [q]]
ML[q]

:=

∫ (
ML[q]
n

)χ
a
(i)

L[q]

ζq

µ
(
a
(i)
L[q]

)1/µ y1/µ−1dy, λ
[τ [q]]
j :=

∫ ( jn )
χ

( j−1
n )

χ

ζq

µ
(
a
(i)
L[q]

)1/µ y1/µ−1dy

(6.9)

for ML[q] + 1 ⩽ j ⩽ n. When ML[q] ⩾ v[τ [q]] + 2, we let

λ
[τ [q]]
j := 0 for v[τ [q]] + 1 ⩽ j < ML[q], (6.10)

in addition (6.9), so that there are no Poisson points outside the interval (a
(i)
L[q], 1].

Definition 10. Given k
(u)
L[q], a

(i)
L[q] and ζq defined in (6.3), let M̃L[q] be as in (6.8); and



38 T. Y. Y. LO

for M̃L[q] + 1 ⩽ j ⩽ n, let Vj→v[τ [q]] be conditionally independent Poisson random

variables, each with parameters λ
[τ [q]]
j given in (6.9) and (6.10). Define this Poisson

sequence by the random vector

V
(v[τ [q]],n)
Po :=

(
V
M̃L[q]→v[τ [q]]

, V
(M̃L[q]+1)→v[τ [q]]

, ..., Vn→v[τ [q]]

)
.

We proceed to define the events analogous to F1,j , j = 1, 2, 3 in (5.5). On these

events, Pj→v[τ [q]] in (3.11) and λ
[τ [q]]
j are close enough for most j, and so we can couple

the point processes as before. Let ϕ(n) = Ω(nχ), 0 < γ < χ/12, Zj [τ [q]], Bj [τ [q]]

and and Sn,j [τ [q]] be as in (3.7), (3.9) and (3.10), and C⋆q := C⋆q (x1, µ) be a positive

constant that we specify later. Define

Fτ [q],1 =

{
max

⌈ϕ(n)⌉⩽j⩽n

∣∣∣∣Sn,j [τ [q]]− ( jn
)χ∣∣∣∣ ⩽ C⋆qn

− χ
12

}
,

Fτ [q],2 =

n⋂
j=⌈ϕ(n)⌉;j ̸∈Pτ[q]−1

{∣∣∣∣Bj [τ [q]]− Zj [τ [q]]
(µ+ 1)j

∣∣∣∣ ⩽ Zj [τ [q]]n−γ

(µ+ 1)j

}
,

Fτ [q],3 =

n⋂
j=⌈ϕ(n)⌉;j ̸∈Pτ[q]−1

{Zj [τ [q]] ⩽ j1/2}. (6.11)

The following analogue of Lemma 9 is the main ingredient for proving Lemma 12.

Lemma 13. Retaining the assumption and the notation in Lemma 12, let Y
(v[τ [q]],n)
Be ,

V
(v[τ [q]],n)
Po and Fτ [q],j, j = 1, 2, 3 be as in Definition 7, 10 and (6.11). Then we can

couple the random vectors so that there is a positive constant C = C(x1, µ, κ, q) such

that

Px

[
{Y(v[τ [q]],n)

Be ̸= V
(v[τ [q]],n)
Po } ∩

3⋂
i=1

Fτ [q],i ∩Hq,l

]
⩽ Cn−d(log log n)q+1(log n)q/r

for all n ⩾ 3, where d := min{βq, γ, 1− χ}.

We highlight the main steps here, and leave the detail in Section 11.3. As in the

proof of Lemma 9, we construct a Bernoulli and a Poisson sequence using suitable

means P̂j→v[τ [q]], M̃L[q] ⩽ j ⩽ n, with M̃L[q] as in (6.8). Then, we couple the four

processes. However, this time we need to handle the cases where we couple a Bernoulli

variable with mean zero and a Poisson variable with positive mean, or vice versa. We
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take care of these cases by choosing the appropriate P̂j→v[τ [q]]. Firstly, we observe that

on the event (
⋂3
j=1 Fτ [q],j) ∩ (

⋂3
j=1 Hq,j), Pj→v[τ [q]] is close enough to

P̂j→v[τ [q]] :=

(
v[τ [q]]

j

)χ
ζq

(µ+ 1)v[τ [q]]
⩽ 1 (6.12)

for j ∈ {v[τ [q]]+1, . . . , n}\V (Bq(Gn, k
(u)
0 )); whereas for max{ML[q], v[τ [q]]+1} ⩽ j ⩽

n, λ
[τ [q]]
j ≈ P̂j→v[τ [q]] because a

(i)
L[q] ≈ (v[τ [q]]/n)χ on the event Hq,2. Hence, we can

couple Yj→v[τ [q]] and Vj→v[τ [q]] for j ∈ {max{ML[q], v[τ [q]]+1}, . . . , n}\V (Bq(Gn, k
(u)
0 ))

as in Lemma 9.

When j ∈ V (Bq(Gn, k
(u)
0 )), the Bernoulli variable Yj→v[τ [q]] has mean zero and

we couple it to a Bernoulli variable with mean (6.12) as in Lemma 9. By a little

computation,

|∂Bj | < 1 + j(log n)j/r, |V (Bj(Gn, k
(u)
0 ))| < 1 + j + j2(log n)j/r (6.13)

for 1 ⩽ j ⩽ q on the event Hq,3. Because P̂j→v[τ [q]] are sufficiently small and there are

at most O((log n)q/r) such pairs of Bernoulli variables, we can use a union bound to

show that the probability that Yj→v[τ [q]] ̸= Vj→v[τ [q]] for any such j tends to zero as

n→ ∞.

We now consider the coupling of Yj→v[τ [q]] and Vj→v[τ [q]] for M̃L[q] ⩽ j ⩽ max{ML[q], k
(u)
L[q]+

1}. In Table 1 below, we give the possible combinations of the Bernoulli and Poisson

means, and our choice of intermediate means. As indicated in the table, we choose

P̂j→v[τ [q]] > 0 whenever Pj→v[τ [q]] > 0. When ML[q] ⩽ v[τ [q]], we couple Vj→v[τ [q]] and

a Poisson variable with mean zero; while when ML[q] ⩾ v[τ [q]] + 2, Vj→v[τ [q]] := 0 by

construction, and it is coupled with a Poisson variable with mean (6.12). However, the

number of these pairs is small because ML[q] ≈ v[τ [q]] + 1 when a
(i)
L[q] ≈ (v[τ [q]]/n)χ.

Consequently, another union bound argument shows that the probability that any of

these couplings fail tends to zero as n→ ∞.

We are now ready to prove Lemma 12.

Proof of Lemma 12. Recall the definition of Hq,l in (6.5). We bound the right-hand
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ML[q] ⩽ k
(u)
L[q] ML[q] ⩾ k

(u)
L[q] + 2 ML[q] = k

(u)
L[q] + 1

Pj→v[τ [q]] 0 as in (3.11) as in (3.11)

λ
[τ [q]]
j as in (6.9) 0 as in (6.9)

P̂j→v[τ [q]] 0 as in (6.12) as in (6.12)

Table 1: Combinations of means for M̃L[q] ⩽ j ⩽ max{ML[q], k
(u)

L[q]+1}. Note that j = k
(u)

L[q]+1

when ML[q] = k
(u)

L[q] + 1, and in that case, the coupling is the same as that of Lemma 9.

side of

Px[Hq,l ∩Hq+1,1 ∩ Kcτ [q],1]

⩽ Px

[
Hq,l ∩

3⋂
j=1

Fτ [q],j ∩Hq+1,1 ∩ Kcτ [q],1
]
+ Px

[
Hq,l ∩

( 3⋂
j=1

Fτ [q],j

)c]

⩽ Px

[
Hq,l ∩

3⋂
j=1

Fτ [q],j ∩Hq+1,1 ∩ Kcτ [q],1
]
+

3∑
j=1

Px[Hq,l ∩ F cτ [q],j ], (6.14)

starting from the last three terms. Using (6.13), a computation similar to that for

Lemma 2 shows that there are positive constants C⋆q = C⋆q (x1, µ) and c
⋆ = c⋆(x1, µ, q)

such that

Px

[
Hq,l ∩

{
max

⌈ϕ(n)⌉⩽j⩽n

∣∣∣∣Sn,j [τ [q]]− ( jn
)χ∣∣∣∣ ⩽ C⋆qn

− χ
12

}]
⩽ c⋆n−

χ
6 , (6.15)

which bounds Px[Hq,l ∩ F cτ [q],1]. Combining (6.13) and the argument of Lemma 3 also

yields

Px[Hq,l ∩ F cτ [q],3] ⩽ Cκ4n−χ and Px[Hq,l ∩ F cτ [q],2] ⩽ C ′n4γ−
χ
3 , (6.16)

for some positive constants C := C(q), C ′ = C ′(x1, γ, µ, q) and 0 < γ < χ/12.

Next, we bound the first term under a suitable coupling of the vertices k
(u)
L[q] ∈ ∂Bq

and L[q] ∈ ∂Bq, starting from their type R children. Assume that

((
k
(u)
w̄ , k

(i)
w̄ , a

(i)
w̄

)
, w̄ ∈ V (Bq(Tx,n, 0))

)
,
((
R

(u)
w̄ , R

(i)
w̄ ), w̄ ∈ V (Bq−1(Tx,n, 0))

)
,((

Zj [τ [q]], Z̃j [τ [q]]
)
, j ∈ [n] \ V (Bq−1(Tx,n, 0))

)
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are coupled such that Eq :=
⋂3
j=1 Hq,j ∩

⋂3
j=1 Fτ [q],j occurs. In view of Definition 8

and 7, it follows from Lemma 13 that on the event Eq, there is a coupling such that

R
(u)
L[q] = R

(i)
L[q] and k

(u)
L[q],j = k

(i)
L[q],j for 2 ⩽ j ⩽ 1+R

(i)
L[q] w.h.p. Note that kL[q],j ⩾ML[q]

when Y
(v[τ [q]],n)
Be and V

(v[τ [q]],n)
Po are coupled. Thus, using ML[q] ⩾ n(a

(i)
L[q])

1/χ, a little

calculation shows that there is a constant ĉ := ĉ(µ) such that

1

[ 2⋂
i=1

Hq,i

] [(
j

n

)χ
−
(
j − 1

n

)χ]
⩽
ĉ(log log n)(1+q)(1−χ)

n
, ML[q] ⩽ j ⩽ n,

implying the ages of the type R children are close enough.

We proceed to couple the type L child of k
(u)
L[q] ∈ ∂Bq and L[q] ∈ ∂Bq on the event

Eq ∩Hq+1. Independently from all the variables generated so far, let UL[q],1 ∼ U[0, 1].

Set a
(i)
L[q],1 := a

(i)
L[q+1] = UL[q],1a

(i)
L[q], so that a

(i)
L[q],1 is the age of vertex (L[q], 1) ∈ ∂Bq+1.

Temporarily defining f := k
(u)
L[q] and g := k

(u)
L[q],1, we define g to satisfy

Sn,g−1[τ [q]] ⩽ UL[q],1Sn,f−1[τ [q]] < Sn,g[τ [q]]. (6.17)

In light of Definition 8 and Lemma 6, k
(i)
L[q],1 = g. To establish a

(i)
L[q],1 ≈ (g/n)χ, we first

show that we can substitute Sn,j [τ [q]] with (j/n)χ for j = g − 1, g at a small enough

cost. A straightforward computation shows that on the event Eq ∩Hq+1,1,

UL[q],1 ⩾ (log log n)−(q+2)χ and f ⩾ n(log log n)−(q+1) − Cqn
1−βq/χ,

where Cq is the constant in the event Hq,2. Consequently, there is a constant C :=

C(x1, µ, q) such that on the event Eq ∩Hq+1,1,

Sn,g[τ [q]] ⩾ UL[q],1Sn,f−1[τ [q]] ⩾ (log log n)−(q+2)χ

[(
f − 1

n

)χ
− C⋆qn

− χ
12

]
⩾ C(log log n)−(2q+3)χ. (6.18)

This implies that g = Ω(nχ), and so |Sn,j [τ [q]]− (j/n)χ| ⩽ C⋆qn
−χ/12 for j = g − 1, g.

Additionally, a direct calculation yields

∣∣∣(Sn,f−1[τ [q]]/a
(i)
L[q]

)
− 1
∣∣∣ ⩽ C̃n−βq (log log n)(q+1)χ
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for some C̃ := C̃(x1, µ, q). By replacing Sn,j [τ [q]], j = g − 1, g in (6.17) with a
(i)
L[q]

and (j/n)χ at the costs above, and using βq+1 < βq, we conclude that, on the event

Eq∩Hq+1,1, there is a constant Ĉ := Ĉ(x1, µ, q) such that |a(i)L[q],1−(g/n)χ| ⩽ Ĉn−βq+1 .

Now, pick Cq+1 := Ĉ ∨ ĉ for the event Kτ [q],1 and Hq+1,2. By Lemma 13, there is a

positive constant C := C(x1, µ, κ, q) such that

Px

[
Hq,l ∩

3⋂
j=1

Fτ [q],j ∩Hq+1,1 ∩ Kcτ [q],1
]
⩽ Px

[
{Y(v[τ [q]],n)

Be ̸= V
(v[τ [q]],n)
Po } ∩

3⋂
j=1

Fτ [q],j ∩Hq,l

]
⩽ Cn−d(log log n)q+1(log n)q/r, (6.19)

where d = min{βq, γ, 1−χ}. The lemma follows from applying (6.15), (6.16) and (6.19)

to (6.14). □

The following analogue of Lemma 10 shows that under the graph coupling, w.h.p.

v[τ [q]] has at most (log n)1/r children. We omit the proof as it is similar to Lemma 10.

Lemma 14. Retaining the assumption and the notation in Lemma 11, let Kτ [q],j and

Hq,j be as in (6.2) and (6.5). Then, given positive integers r < ∞ and q < r, there

is a coupling of (Gn, k
(u)
0 ) and (Tx,n, 0), with an integer p > 0 and a constant C :=

C(κ, p) > 0 such that

Px[Hq,l ∩ Kq,1 ∩ Kcq,2] ⩽ C(log n)−
p
r (log log n)

p(q+1)
µ+1 for all n ⩾ 3.

We now apply Lemma 12 and 14 to prove Lemma 11.

Proof of Lemma 11. We begin by stating the type R analogues of Lemma 12 and

14. Suppose that (Gn, k
(u)
0 ) and (Tx,n, 0) are coupled such that for a type R child

v[t] = k
(u)
w̄ ∈ ∂Bq, the event

Hq+1,1 ∩ Jq,l,t := Hq+1,1 ∩Hq,l ∩
⋂

{s<t:v[s]∈∂Bq}

(Ks,1 ∩ Ks,2) (6.20)

has occurred for some l ⩾ 2, where Hq+1,1, Hq,l, Ks,1 and Ks,2 are as in (6.1), (6.5)

and (6.2). Let ((Zj [t], Z̃j [t]), j ∈ At−1 ∪ Nt−1) and (Sn,j [t], 1 ⩽ j ⩽ n) be as in (3.7),

(3.8) and (3.10). We use these variables to generate the type R children of k
(u)
w̄ , and to
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sample the ages (a
(i)
w̄,j , 1 ⩽ j ⩽ R

(i)
w̄ ) of the mixed Poisson process with intensity (6.4),

where ζq and a
(i)
L[q] are replaced with Z

k
(i)
w̄
[t] ∼ Gamma(x

k
(i)
w̄
, 1) and a

(i)
w̄ . Note that

v[t] > k
(u)
L[q], and on the event Jq,l,t, the number of discovered vertices up to time t can

be bounded as

|At−1 ∪ Pt−1| ⩽ 2 + q + (q + 1)2(log n)(q+1)/r,

as implied by (6.13). Hence, we can proceed similarly as for Lemma 12 and 13. In

particular, there is a coupling of (Gn, k
(u)
0 ) and (Tx,n, 0), with positive constants C :=

C(x1, µ, κ, q) and c := c(κ, p) such that for n ⩾ 3,

Px

[
Kct,1 ∩ Jq,l,t

]
⩽ Cn−d(log log n)q+1(log n)

q+1
r ;

Px

[
Kct,2 ∩ Kt,1 ∩ Jq,l,t

]
⩽ c(log n)−

p
r (log log n)

p(q+1)
µ+1 ,

(6.21)

where d = min{χ/3− 4γ, 1− χ, γ, βq}.

Define H̃q :=
⋂3
j=1 Hq,j . To bound Px[H̃c

q+1] using Lemma 12, 14 and (6.21), we

use

Px[(H̃q+1)
c] ⩽ Px[H̃c

q+1 ∩ H̃q] + Px[H̃c
q]

= Px

[( 3⋂
j=2

Hq+1,j

)c
∩Hq+1,1 ∩ H̃q

]
+ Px[Hc

q+1,1 ∩ H̃q] + Px[H̃c
q]

= Px

[( ⋂
{s:v[s]∈∂Bq}

(Ks,1 ∩ Ks,2)
)c

∩Hq+1,1 ∩ H̃q

]
(6.22)

+ Px[H̃q ∩Hc
q+1,1] + Px[H̃c

q], (6.23)

where the last equality follows from

( 3⋂
j=2

Hq+1,j

)c
∩ H̃q =

( ⋂
{s:v[s]∈∂Bq}

(Ks,1 ∩ Ks,2)
)c

∩ H̃q.

The lemma is proved once we show that the probabilities in (6.22) and (6.23) are of

order at most (log log n)−χ. By assumption, there is a constant C := C(x1, µ, κ, q) such

that Px[H̃c
q] ⩽ C(log log n)−χ. Recall that a

(i)
L[q],1 = UL[q],1a

(i)
L[q], where UL[q],1 ∼ U[0, 1]
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is independent of a
(i)
L[q]. Thus, similar to (5.13),

Px[H̃q ∩Hc
q+1,1] ⩽ (log log n)−χ.

For (6.22), define K̃q,s,j = K|V (Bq(Gn,k
(u)
0 ))|+s,j for j = 1, 2 and 1 ⩽ s ⩽ |∂Bq|. Noting

that |∂Bq| ⩽ c[n, q] := ⌊1 + q(log n)
q
r ⌋ on the event Hq,3,

Px

[( ⋂
{s:v[s]∈∂Bq}

(Ks,1 ∩ Ks,2)
)c

∩Hq+1,1 ∩ H̃q

]

= Px

[c[n,q]⋃
l=1

{
{|∂Bq| = l} ∩

( l⋂
s=1

(K̃q,s,1 ∩ K̃q,s,2)
)c}

∩Hq+1,1 ∩ H̃q

]
.

By a union bound, and recalling the definitions of Hq,l and Jq,l,s in (6.5) and (6.20),

the probability above is at most

c[n,q]∑
l=1

{
Px[K̃cq,1,2 ∩ K̃q,1,1 ∩Hq+1,1 ∩Hq,l] + Px[K̃cq,1,1 ∩Hq+1,1 ∩Hq,l]

+

l∑
s=2

Px[K̃cq,s,2 ∩ K̃q,s,1 ∩Hq+1,1 ∩ Jq,l,s] + Px[K̃cq,s,1 ∩Hq+1,1 ∩ Jq,l,s]
}
. (6.24)

We bound (6.24) using (6.21), Lemma 12 and 14, where we choose p > 2(r − 1) in

Lemma 14 so that
∑c[n,q]
l=1

∑l
s=2 Px[K̃cq,s,2∩K̃q,s,1∩Jq,l,s] → 0 as n→ ∞. It follows that

there is a constant C := C(x1, µ, κ, q) such that (6.24) is bounded by C(log log n)−χ.

□

7. Completion of the proof

Equipped with Corollary 2, we can prove Theorem 1.

Proof of Theorem 1. In view of (1.1), it is enough to establish (1.5) of Theorem 1.

Let G′
n ∼ PA(π,X1)n (Definition 1), k0 be its randomly chosen vertex, (TX,n, 0) be the

intermediate Pólya point tree (Tx,n, 0) randomised over X, and (T , 0) be the π-Pólya

point tree in Definition 3. By the triangle inequality for the total variation distance,
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for any r <∞ we have

dTV (L ((Br(G
′
n, k0), k0)) ,L ((Br(T , 0), 0)))

⩽ dTV (L ((Br(G
′
n, k0), k0)) ,L ((Br(TX,n, 0), 0)))

+ dTV (L ((Br(TX,n, 0), 0)) ,L ((Br(T , 0), 0))) .

Let An := A2/3,n be as in (2.1). Applying Jensen’s inequality to the total variation

distance, the above is bounded by

E[dTV (L ((Br(G
′
n, k0), k0)|X) ,L ((Br(TX,n, 0), 0)|X))]

+ dTV (L ((Br(TX,n, 0), 0)) ,L ((Br(T , 0), 0)))

⩽ E[1[An]dTV (L ((Br(G
′
n, k0), k0)|X) ,L ((Br(TX,n, 0), 0)|X))]

+ P[Acn] + dTV (L ((Br(TX,n, 0), 0)) ,L ((Br(T , 0), 0))) .

We prove that each term on the right-hand side is of order at most (log log n)−χ,

starting from the expectation. Let Hr,j , j = 1, 2, 3 be as in (6.1). For the (x, n)-Pólya

urn tree Gn with x ∈ An, Corollary 2 implies that there is a coupling of (Gn, k
(u)
0 ) and

(Tx,n, 0), with a positive constant C := C(x1, µ, κ, r) such that

Px

[
Br(Tx,n, 0), 0 ̸∼= (Br(Gn, k

(u)
0 ), k

(u)
0 )
]
⩽ Px

[( 3⋂
j=1

Hr,j

)c]
⩽ C(log log n)−χ; (7.1)

and following from the definition (1.4) of the total variation distance, the expectation

is at most C(log log n)−χ.

The probability P[Acn] can be bounded using Lemma 1 (with α = 2/3). We now

couple (Br(T , 0), 0) and (Br(TX,n, 0), 0) to bound the last term. For this coupling,

denote by E the event that the PA labels in Br(TX,n, 0) are distinct, that is, k(i)w̄ ̸= k
(i)
v̄

for any w̄ ̸= v̄. We first construct Br(TX,n, 0), then on the event E, we set Br(T , 0)

as Br(TX,n, 0), inheriting the Ulam-Harris labels, ages, types and fitness from the

latter; and if the PA labels are not distinct, we generate Br(T , 0) independently from
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Br(TX,n, 0). Under this coupling,

P[(Br(TX,n, 0), 0) ̸∼= (Br(T , 0), 0)] = P[{(Br(TX,n, 0), 0) ̸∼= (Br(T , 0), 0)} ∩ Ec]. (7.2)

From the definition of Hr,2 in (6.1), we can use (7.1) and Lemma 1 to bound the second

term in (7.2) by P[Ec] ⩽ P
[(⋂3

j=1 Hr,j

)c]
⩽ C(log log n)−χ. So, once again by (1.4),

dTV (L ((Br(TX,n, 0), 0)) ,L ((Br(T , 0), 0))) ⩽ C(log log n)−χ,

which concludes the proof. □

8. Remarks on the limiting distributions of the degree statistics

In this section, we discuss the connection of Corollary 1 and Theorem 2 to [4, 7, 40,

26, 31]. To this end, we state and prove the probability mass function (p.m.f.) of the

limiting distributions of the degrees of the uniformly chosen vertex k0 in PA(π,X1)n

and its type L neighbour kL[1].

Below we write an ∼ bn to indicate limn→∞ an/bn = 1. We start with the degree of

the uniformly chosen vertex.

Proposition 1. Retaining the assumption and the notation in Theorem 2, let ξ0 be as

in the theorem. The p.m.f. of the distribution of ξ0 is

pπ(j) = (µ+ 1)

∫ ∞

0

Γ(x+ j − 1)Γ(x+ µ+ 1)

Γ(x)Γ(x+ µ+ j + 1)
dπ(x), j ⩾ 1. (8.1)

Furthermore, if EXµ+1
2 <∞, then as j → ∞,

pπ(j) ∼ Cπj
−(µ+2), Cπ := (µ+ 1)

∫ ∞

0

Γ(x+ µ+ 1)

Γ(x)
dπ(x). (8.2)

Remark 4. We use Proposition 1 to relate Theorem 2 to some known results.

(i) When π is a point mass at 1, (pπ(j), j ⩾ 1) is the p.m.f. of Geo1(
√
U) (also known

as the Yule-Simon distribution), which is the mixture of geometric distributions

on positive integers, with the parameter sampled according to the distribution

of
√
U , where U ∼ U(0, 1). For such fitness sequence and the model that allows
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for self-loops, [7] established that the limiting empirical degree distribution is

(pπ(j), j ⩾ 1); and using Stein’s method, [31, Theorem 6.1] showed that the total

variation distance is at most n−1 log n.

(ii) In the multiple-edge setting, and assuming only the fitness has a finite mean,

[26] used stochastic approximation to obtain the a.s. limit of the empirical degree

distribution. Theorem 2 and Proposition 1 are special cases of [26, Theorem 2.4

and 2.6], but the distributional representation and the rate in Theorem 2 are new.

Proof of Proposition 1. The p.m.f. in (8.1) is an exercise of integration. The steps

are similar to the case where the fitness are non-random, and can be found in [4,

Lemma 5.2]. The following proof of (8.2) is the same as [26]. By [22, Theorem 1,

equation (5)], jµ+2Γ(x+ j − 1)/Γ(x+ µ+ j + 1) ⩽ 1 for all x > 0 and j ⩾ 1. Hence,

fµ,j(x) = jµ+2 Γ(x+ j − 1)

Γ(x+ µ+ j + 1)

Γ(x+ µ+ 1)

Γ(x)

is dominated by Γ(x+µ+1)/Γ(x). Thus, if EXµ+1
2 <∞, the dominated convergence

theorem ([14, Theorem 1.5.8, p. 24]) implies that

lim
j→∞

jµ+2pπ(j) = (µ+ 1)

∫ ∞

0

lim
j→∞

fµ,j(x)dπ(x),

and so (8.2) follows from limj→∞ jµ+2Γ(x+ j − 1)/Γ(x+ j + µ+ 1) = 1. □

In the following, we give the limiting p.m.f. of the degree of the type L neighbour

kL[1] of the uniformly chosen vertex k0, which shows that the distribution also exhibits

a power-law behaviour. When the PA tree has constant initial attractiveness, the

proposition is a special case of [4, Lemma 5.2] and [40, Lemma 5.9]. The proof is

similar to that of Proposition 1, hence omitted.

Proposition 2. Retaining the assumption and the notation in Theorem 1, let RL[1]

be as in the theorem, the p.m.f. of the random variable RL[1] + 2 is given by

qπ(j) = µ(µ+ 1)(j − 1)

∫ ∞

0

Γ(x+ j − 1)Γ(x+ µ+ 1)

Γ(x+ 1)Γ(x+ µ+ j + 1)
dπ(x), j ⩾ 2. (8.3)
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Furthermore, if EXµ
2 <∞, then as j → ∞,

qπ(j) ∼ Cπj
−(µ+1), Cπ = µ(µ+ 1)

∫ ∞

0

Γ(x+ µ+ 1)

Γ(x+ 1)
dπ(x).

Comparing Proposition 1 and 2, we see that in the limit, the degree of vertex kL[1]

has a heavier tail than the degree of k0. This is due to the fact that kL[1] has received

an incoming edge from k0, and so kL[1] is more likely to have a higher degree than k0.

9. Proofs for the approximation results

Here we prove the lemmas in Section 2. The argument is adapted from [32] and

has a similar flavour as [6], both of which studied different PA models. For the proofs

below, we recall that ϕ(n) = Ω(nχ), where χ is as in (1.2).

Proof of Lemma 1. Given p > 2, choose 1/2+1/p < α < 1. Let Aα,n be as in (2.1),

T ⋆m :=
∑m
i=2Xi and Cp be the positive constant given in Lemma 15 below, which

bounds the moment of a sum of variables in terms of the moments of the summands.

Then,

P[Acα,n] = P
[ ∞⋃
j=⌈ϕ(n)⌉

{|T ⋆j − (j − 1)µ| > jα}
]

⩽
∞∑

j=⌈ϕ(n)⌉

P[|T ⋆j − (j − 1)µ| > jα] by a union bound,

⩽
∞∑

j=⌈ϕ(n)⌉

E[|T ⋆j − (j − 1)µ|p]j−αp by Chebyshev’s inequality,

⩽ CpE[|X2 − µ|p]
∞∑

j=⌈ϕ(n)⌉

j−p(α−1/2) by Lemma 15,

⩽ CpE[|X2 − µ|p]
∫ ∞

⌈ϕ(n)⌉−1

y−p(α−1/2)dy

= Cp[p(α− 1/2)− 1]−1
E[|X2 − µ|p](⌈ϕ(n)⌉ − 1)1−p(α−1/2),

where p(α− 1/2) > 1 and E[|X2 − µ|p] < ∞. The lemma follows from ϕ(n) = Ω(nχ).

□

The next lemma can be found in [35, Item 16, p. 60], where [13] is credited.
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Lemma 15. Let Y1, ..., Yn be independent random variables such that for i = 1, ..., n,

EYi = 0 and E|Yi|p <∞ for some p ⩾ 2. Let Wn :=
∑n
i=1 Yi, then

E[|Wn|p] ⩽ Cpn
p/2−1

n∑
i=1

E[|Yi|p],

where

Cp :=
1

2
p(p− 1)max(1, 2p−3)

[
1 +

2

p
K

(p−2)/2m
2m

]
,

and the integer m satifies the condition 2m ⩽ p ⩽ 2m+ 2 and K2m =
∑m
i=1

i2m−1

(i−1)! .

Keeping the notation Ti :=
∑i
h=1 xh and ϕ(n) = Ω(nχ), we now prove Lemma 2

under the assumption that the event Aα,n holds for the realisation x of the fitness

sequence X (written as x ∈ Aα,n). We use the subscript x in Px and Ex to indicate

the conditioning on X = x. The first step is to derive an expression for Ex[Sn,k] that

holds for any realisation of the fitness sequence, where we modify a moment formula

used in proving [38, Proposition 1.3].

Lemma 16. Let Ti be as above and Bi, Sn,i be as in (1.8) and (1.9). Then for

1 ⩽ k < n and a positive integer p,

Ex[S
p
n,k] =

[
p−1∏
h=0

Tk + k + h

Tn + n− 1 + h

]
p−1∏
j=0

n−1∏
i=k+1

[
1 +

1

Ti + i− 1 + j

]
. (9.1)

Proof. Since (Bi, 1 ⩽ i ⩽ n) are independent beta random variables, we use the

moment formula of the beta distribution to show that for p ⩾ 1,

Ex[S
p
n,k] =

n∏
i=k+1

E [(1−Bi)
p
] =

n∏
i=k+1

p−1∏
j=0

Ti−1 + i− 1 + j

Ti + i− 1 + j
,

=

p−1∏
j=0

{
(Tk + k + j)

(Tn + n− 1 + j)

(Tn + n− 1 + j)

(Tk + k + j)

n∏
i=k+1

Ti−1 + i− 1 + j

Ti + i− 1 + j

}
.

Noting that Tk + k + j and Tn + n − 1 + j in the second product above cancel with

(Tn + n− 1 + j)/(Tk + k + j), we can rewrite the final term as

Ex[S
p
n,k] =

[
p−1∏
h=0

Tk + k + h

Tn + n− 1 + h

]
n−1∏
i=k+1

p−1∏
j=0

Ti + i+ j

Ti + i− 1 + j
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=

[
p−1∏
h=0

Tk + k + h

Tn + n− 1 + h

]
p−1∏
j=0

n−1∏
i=k+1

[
1 +

1

Ti + i− 1 + j

]
,

hence concluding the proof. □

Taking k = 1 in (9.1) recovers the original formula of [38], where Ti here is Ai in

[38]. Next, we use the moment formula to show that when x ∈ Aα,n, the difference

between the mean of Sn,k and (k/n)χ is small enough for large n and k ⩾ ⌈ϕ(n)⌉.

Lemma 17. Given 1/2 < α < 1 and a positive integer n, assume that x ∈ Aα,n. Then

there is a positive constant C := C(x1, µ, α) such that for all ⌈ϕ(n)⌉ ⩽ k ⩽ n,∣∣∣∣Ex[Sn,k]−
(
k

n

)χ∣∣∣∣ ⩽ Cnχ(α−1). (9.2)

Proof. We first prove the upper bound for Ex[Sn,k], using the techniques for proving

[32, Lemma 4.4]. Applying the formula (9.1) (with p = 1), for x ∈ Aα,n and k ⩾ ⌈ϕ(n)⌉,

we obtain

Ex[Sn,k] ⩽
k(µ+ 1) + kα + b

n(µ+ 1)− nα + b− 1

n−1∏
i=k+1

[
1 +

1

iµ− iα + i+ b− 1

]
. (9.3)

where b := x1 − µ. We rewrite the first term on the right-hand side of (9.3) as follows.

(
k

n

)
µ+ 1 + k−1+α + k−1b

µ+ 1− n−1+α + n−1(b− 1)
=

(
k

n

)[
1 +

kα−1 + nα−1 + (k−1 − n−1)b+ n−1

µ+ 1− nα−1 + n−1(b− 1)

]
⩽
k

n
(1 + Ckα−1)

⩽
k

n
(1 + Cnχ(α−1)),

where C := C(x1, µ, α) is some positive constant. To bound the product term on the

right-hand side of (9.3), we take logarithm and bound

∣∣∣∣∣
n−1∑
i=k+1

log

(
1 +

1

i(µ+ 1)− iα + b− 1

)
− 1

µ+ 1
log
(n
k

)∣∣∣∣∣ .
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By the triangle inequality, we have∣∣∣∣∣
n−1∑
i=k+1

log

(
1 +

1

iµ− iα + i+ b− 1

)
− 1

µ+ 1
log
(n
k

)∣∣∣∣∣
⩽

∣∣∣∣∣
n−1∑
i=k+1

log

(
1 +

1

iµ− iα + i+ b− 1

)
− 1

i(µ+ 1)− iα + b− 1

∣∣∣∣∣ (9.4)

+

∣∣∣∣∣
n−1∑
i=k+1

1

i(µ+ 1)− iα + b− 1
− 1

µ+ 1
log
(n
k

)∣∣∣∣∣ . (9.5)

We use y−log(1+y) ⩽ y2 in y ⩾ 0 to bound (9.4). Letting yi = (i(µ+1)−iα+b−1)−1,

this implies that (9.4) is bounded by
∑n
i=k+1 y

2
i for k ⩾ ⌈ϕ(n)⌉ and n large enough;

and by an integral comparison,
∑n
i=k+1 y

2
i = O(n−χ). For (9.5), we have

∣∣∣∣∣
n−1∑
i=k+1

1

i(µ+ 1)− iα + b− 1
− 1

(µ+ 1)
log
(n
k

)∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=k+1

(
1

i(µ+ 1)− iα + b− 1
− 1

(µ+ 1)i

)
+O(k−1)

∣∣∣∣∣
⩽

n−1∑
i=k+1

∣∣∣∣ iα − b+ 1

i(µ+ 1)(i(µ+ 1)− iα + b− 1)

∣∣∣∣+O(k−1)

⩽ C ′
n−1∑
i=k+1

i−2+α +O(k−1)

⩽ C ′(1− α)−1[ϕ(n)]α−1 +O(n−χ),

where C ′ := C ′(x1, µ, α) is some positive constant. Combining the bounds above, a

little calculation shows that there are positive constants C := C(x1, µ, α) and C̃ :=

C̃(x1, µ, α) such that for x ∈ Aα,n and ⌈ϕ(n)⌉ ⩽ k ⩽ n,

Ex[Sn,k] ⩽ (k/n)χ(1 + Cnχ(α−1)) exp{C̃nχ(α−1)}.

Since ex = 1+ x+O(x2) for x near zero, there is a positive constant C := C(x1, µ, α)

such that for ⌈ϕ(n)⌉ ⩽ k ⩽ n and n large enough,

Ex[Sn,k] ⩽ (k/n)χ(1 + Cnχ(α−1)) ⩽ (k/n)χ + Cnχ(α−1),



52 T. Y. Y. LO

hence proving the desired upper bound. The lower bound can be proved by first noting

that for ⌈ϕ(n)⌉ ⩽ k ⩽ n,

Ex[Sn,k] ⩾
k(µ+ 1)− kα + b

n(µ+ 1) + nα + b− 1

n∏
i=k+1

[
1 +

1

iµ+ iα + i+ b− 1

]
.

and repeating the calculations above. The detail is omitted. □

With Lemma 17 and a martingale argument, we can prove Lemma 2.

Proof of Lemma 2. Let δ̂n = Cnχ(α−1)/4, where C := C(x1, µ, α) is the positive

constant in (9.2) of Lemma 17. Writing K := ⌈ϕ(n)⌉, define

Ẽn,δ̂n :=

{
max
K⩽k⩽n

∣∣∣∣Sn,k − (kn
)χ∣∣∣∣ ⩾ 2δ̂n

}
.

The lemma follows from bounding Px[Ẽn,δ̂n ] under the assumption x ∈ Aα,n. By the

triangle inequality, we have

Px[Ẽn,δ̂n ] ⩽ Px

[
max
K⩽k⩽n

|Sn,k −Ex[Sn,k]|+ max
K⩽j⩽n

|Ex[Sn,j ]− (j/n)χ| ⩾ 2δ̂n

]
.

Applying Lemma 17 to bound the difference between (j/n)χ and Ex[Sn,j ], we obtain

Px[Ẽn,δ̂n ] ⩽ Px

[
max
K⩽k⩽n

|Sn,k −Ex[Sn,k]| ⩾ δ̂n

]
⩽ Px

[
max
K⩽k⩽n

∣∣Sn,k(Ex[Sn,k])
−1 − 1

∣∣ ⩾ δ̂n

]
,

where the second inequality is due to Ex[Sn,k] ⩽ 1. We bound the right-hand side

of the above using a martingale argument. Recall that Ex[Sn,k] =
∏n
j=k+1E[1− Bj ].

Define M0 := 1 and for j = 1, ..., n−K, let

Mj :=

n∏
i=n−j+1

1−Bi
E[1−Bi]

=
Sn,n−j
E[Sn,n−j ]

;

Let Fj be the σ-algebra generated by (Bi, n− j + 1 ⩽ i ⩽ n) for 1 ⩽ j ⩽ n−K, with

F0 = ∅. It follows that ((Mj ,Fj), 0 ⩽ j ⩽ n − K) is a martingale with E[Mj ] = 1.

Since (Mj−1)2 is a submartingale, Doob’s inequality [14, Theorem 4.4.2, p. 204] yields

Px[Ẽn,δ̂n ] ⩽ Px

[
max

0⩽j⩽n−K
|Mj − 1| ⩾ δ̂n

]
⩽ δ̂−2

n Varx(Mn−K), (9.6)
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where Varx(Mn−K) is the variance conditional on x. We use the formulas for the first

and second moments of the beta distribution to bound the variance:

Varx(Mn−K) = Ex[(Mn−K)2]− 1 =

[ n∏
j=K+1

(Tj−1 + j)

(Tj−1 + j − 1)

(Tj + j − 1)

(Tj + j)

]
− 1

=

n∏
j=K+1

[
1 +

Tj − Tj−1

(Tj + j)(Tj−1 + j − 1)

]
− 1.

Below we allow the positive constant C ′ = C ′(x1, µ, α) to vary from line to line. As

|
∑j
i=2 xi − (j − 1)µ| ⩽ jα for all K + 1 ⩽ j ⩽ n when x ∈ Aα,n, a little computation

yields

Varx(Mn−K) ⩽
n∏

j=K+1

[
1 +

µ+ jα + (j − 1)α

{(µ+ 1)j − µ− jα + x1}{(µ+ 1)j − 2µ− jα + x1 − 1}

]
− 1

⩽
n∏

j=K+1

(1 + C ′jα−2)− 1

⩽ C ′Kα−1, (9.7)

Applying (9.7) to (9.6) completes the proof. □

We conclude this section with the proof of Lemma 3, recalling that Zj ∼ Gamma(xj , 1)

and Z̃j ∼ Gamma(Tj + j, 1).

Proof of Lemma 3. Writing Tj :=
∑j
i=1 xi and Yj ∼ Gamma(Tj + j − 1, 1), we first

prove (2.4). Let Eε,j be as in (2.3), we have

Px[E
c
ε,j ] = Px

[∣∣∣∣∣ Zj
Zj + Z̃j−1

− Zj
(µ+ 1)j

∣∣∣∣∣ ⩾ Zj
(µ+ 1)j

ε

]

= Px

[∣∣∣∣∣ (µ+ 1)j

Zj + Z̃j−1

− 1

∣∣∣∣∣ ⩾ ε

]

⩽ Px

[∣∣∣∣∣Zj + Z̃j−1

(µ+ 1)j
− 1

∣∣∣∣∣ ⩾ ε

1 + ε

]

= Px

[∣∣∣∣ Yj
(µ+ 1)j

− 1

∣∣∣∣ ⩾ ε

1 + ε

]
;
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and by Chebyshev inequality,

Px[E
c
ε,j ] ⩽

(
1 + ε

ε

)4

Ex

[(
Yj

(µ+ 1)j
− 1

)4
]
,

and so (2.4) follows from bounding the moment above under the assumption x ∈ Aα,n,

and applying a union bound. Let aj := Tj + j − 1. Using the moment formula for the

standard gamma distribution, a little calculation shows that the moment is equal to

Ex[Y
4
j ]

(µ+ 1)4j4
−

4Ex[Y
3
j ]

(µ+ 1)3j3
+

6Ex[Y
2
j ]

(µ+ 1)2j2
− 4Ex[Yj ]

(µ+ 1)j
+ 1

=

∏3
k=0(aj + k)

(µ+ 1)4j4
−

4
∏2
k=0(aj + k)

(µ+ 1)3j3
+

6
∏1
k=0(aj + k)

(µ+ 1)2j2
− 4aj

(µ+ 1)j
+ 1.

Noting that |aj − (µ+1)j| ⩽ jα+x1 +µ+1 for j ⩾ ϕ(n), a direct computation shows

that there is a positive constant C := C(x1, µ, α) such that

Ex

[(
Yj

(µ+ 1)j
− 1

)4
]
⩽ Cj4α−4. (9.8)

We now prove (2.4) using (9.8). Let C := C(x1, α, µ) be a positive constant that may

vary at each step of the calculation. Then,

Px

[ n⋃
j=⌈ϕ(n)⌉

Ecε,j

]
⩽

n∑
j=⌈ϕ(n)⌉

Px[E
c
ε,j ] ⩽ C

(
1 + ε

ε

)4 n∑
j=⌈ϕ(n)⌉

j4α−4

⩽ C

(
1 + ε

ε

)4 ∫ ∞

⌈ϕ(n)⌉−1

y4α−4dy ⩽ C(1 + ε)4ε−4nχ(4α−3),

as required. Next, we use a union bound and Chebyshev’s inequality to prove (2.5) as

follows:

Px

[ n⋃
j=⌈ϕ(n)⌉

{Zj ⩾ j1/2}
]
⩽

n∑
j=⌈ϕ(n)⌉

Ex[Z4
j ]j

−2 =

n∑
j=⌈ϕ(n)⌉

j−2
3∏
ℓ=0

(xj + ℓ).

If we further assume x2 ∈ (0, κ], then there are positive numbers C ′ and C ′′ such that

Px

[ n⋃
j=⌈ϕ(n)⌉

{Zj ⩾ j1/2}
]
⩽ C ′κ4

n∑
j=⌈ϕ(n)⌉

j−2 ⩽ C ′κ4
∫ ∞

ϕ(n)−1

y−2dy ⩽ C ′′κ4n−χ,
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hence proving (2.6). □

10. The urn representation of the sequential model conditional on a set of

edges

Here we develop the urn representation for the (x, n)-sequential model in Definition

1, but conditional on a set of edges. This is used in Section 3 to describe the offspring

distributions of the type L and R parents. We first reproduce the proof of Theorem 3

in [38], as the argument for the (x, n)-sequential model conditional on a set of edges is

similar after some modifications.

10.1. Proof of Theorem 3

We use an urn embedding to prove Theorem 3; see e.g. [34, 38]. Let G′
n ∼ Seq(x)n be

an (x, n)-sequential model, and D
(in)
n,j be the in-degree of vertex j in G′

n. Additionally,

let Mk(n) :=
∑k
j=1(xj +D

(in)
n,j ) be the total weight of the first k vertices in G′

n, with

M0(n) = 0, and Uk(n) =Mk(n)−Mk−1(n) = D
(in)
n,k + xk being the weight of vertex k

after n completed attachment steps, with Uk(n) = 0 whenever k > n. Furthermore,

denote by Polya(b, w;n) the law of the number of white balls after the n-th draw in a

classical Pólya urn, initially with w white balls and b black balls. The following lemma

is an easy modification of [34, Lemma 2] that relates Uk(n) to the number of white

balls in a classical Pólya urn.

Lemma 18. Retaining the notations above, let Tk :=
∑k
j=1 xj. Then given n ⩾ 2,

Un−1(n) ∼ Polya(Tn−2 + n− 2, xn−1; 1), (10.1)

and conditional on Mk(n) and the events ({Uj(n) = Uj(n− 1)}, k + 1 ⩽ j ⩽ n− 1),

Uk(n) ∼ Polya(Tk−1 + k − 1, xk;Mk(n)− Tk − k + 1). (10.2)

Proof. To prove (10.1), note that when adding vertex n to the existing graph G′
n−1,

the probability that vertex n sends an outgoing edge to n− 1 is xn−1/(Tn−1 + n− 2).

This implies that Un−1(n) evolves like Polya(Tn−2 + n− 2, xn−1; 1).

For (10.2), given that one of the vertices in [k] is chosen when adding vertex n to
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G′
n−1, a straightforward computation, using the definition of the conditional probability

and the PA rules, shows that the conditional probability that Uk(n) = Uk(n − 1) + 1

is Uk(n − 1)/Mk(n − 1). This implies that Uk(n) behaves like Polya(b, w;m), where

b = Tk−1 + k − 1 is the total weight of the first k − 1 vertices after k steps, w = xk,

and m = Mk(n) −Mk(k) = Mk(n) − Tk − k + 1 is the number of times the vertices

1, ..., k are picked after the k-th step. □

We now use Lemma 18 to prove Theorem 3. Recall that the subscript x in Px and

Ex indicates the conditioning on the fitness sequence x.

Proof of Theorem 3. It is enough to consider the attachment steps 3 ⩽ m ⩽ n, as

the first two PA steps are deterministic. To add vertex m to G′
m−1, we consider the

vertices in [m− 1] in the decreasing order of their labels. By Lemma 18, Um−1(m) ∼

Polya(Tm−2 +m− 2, xm−1; 1); and when 1 ⩽ k ⩽ m− 2, given that vertex m attaches

to a vertex in [k], Uk(m) ∼ Polya(Tk−1 + k − 1, xk;Mk(m) − Tk − k + 1). Hence,

for any 1 ⩽ k ⩽ m − 1, conditional on the event that vertex m attaches to one of

the vertices in [k], Uk(m) = Uk(m − 1) + 1 (resp. Uk(m) = Uk(m − 1)) has the same

probability as a trial in a sequence of conditionally independent Bernoulli variables

with success probability Bk (resp. 1 − Bk). We emphasise that Bk only depends on

the initial attractiveness (xj , 1 ⩽ j ⩽ k) and not Mk(m), since Mk(m)−Mk(k) is the

number of draws from the Pólya urn.

To conclude the proof, observe that

Px[Uk(m) = Uk(m− 1) + 1|G′
m−1]

= Px

[
Uk(m) = Uk(m− 1) + 1,

m−1⋂
i=k+1

{Ui(m) = Ui(m− 1)}
∣∣∣∣G′

m−1

]

= Px

[
Uk(m) = Uk(m− 1) + 1

∣∣∣∣ m−1⋂
i=k+1

{Ui(m) = Ui(m− 1)}, G′
m−1

]

×
m−2∏
h=k+1

Px

[
Uh(m) = Uh(m− 1)

∣∣∣∣ m−1⋂
i=h+1

{Ui(m) = Ui(m− 1)}, G′
m−1

]
× Px[Um−1(m) = Um−1(m− 1)|G′

m−1].

Hence, given (Bk, 2 ⩽ k ⩽ n), the edges in the (x, n)-Pólya urn tree are independent,



Local weak limit of PA trees with additive fitness 57

and the probability that vertex m attaches to vertex k in G′
n is Bk

∏m−1
j=k+1(1 − Bj).

Noting that

Sn,k − Sn,k−1 = Bk

n∏
j=k+1

(1−Bj) and
Sn,k − Sn,k−1

Sn,m−1
= Bk

m−1∏
j=k+1

(1−Bj),

concludes the proof. □

10.2. Constructing the sequential model conditional on a set of edges

In this section, we study the distribution of the (x, n)-sequential model when condi-

tional on a finite collection of edges. Importantly, this model has an urn representation

that is analogous to the (x, n)-Pólya urn tree, thus enabling us to identify the offspring

distribution of non-root vertices discovered in the BFS (Definition 6) of an (x, n)-

sequential model.

10.2.1. The attachment rules Given x and n, let G′
n ∼ Seq(x)n be an (x, n)-sequential

model. To specify the edges that we condition on, let Qj→k be a zero-one variable

that takes value one if vertex j sends an outgoing edge to k in G′
n, and D

(in)
n,k :=∑n

j=k+1Qj→k be the in-degree of vertex k in G′
n, with D

(in)
n,k = 0 if k ⩾ n. In view

of the PA rules, if Qk→i = 1 for some 1 ⩽ i < k, then Qk→j = 0 for any j ̸= i.

Furthermore, we write {i, j} to denote the edge directed from j to i < j.

Now, let Vd be a subset of V (G′
n) such that for any vertex i ∈ Vd, its degree and

the arrival times of all its neighbours are determined, hence the subscript d. Moreover,

for each i ∈ Vd, we require that Qi→k = 1 for some k < i and Qi→j = 0 for all j ̸= k,

so that vertex k is the recipient of the only outgoing edge from vertex i. Denote Ed

all the edges of the vertices in Vd. Given Vd and Ed, we investigate how conditioning

on all the edges of the vertices in Vd:

I := I (Vd,Ed) :=
⋂

{j,k}̸∈Ed;
j∈Vd,j<k⩽n

{Qk→j = 0} ∩
⋂

{j,k}∈Ed;
1⩽j<k⩽n

{Qk→j = 1},

changes the attachment rules of G′
n. Note that Px(I ) > 0, since the vertices of Vd

obey the attachment rules.

To prepare for the subsequent arguments, denote Vs := {j ∈ [n]\Vd : {i, j} or {j, i} ∈



58 T. Y. Y. LO

Ed} the vertices that are not in Vd, but shares at least one edge in Ed with a vertex

in Vd, hence the subscript s in Vs. We assume that Vd ∪ Vs ⊂ [n], as otherwise

the whole tree can be constructed deterministically from the event I . Moreover, let

u
(o)
d := u

(o)
d (Vd) (resp. u

(o)
s := u

(o)
s (Vs)) be the vertex in Vd (resp. Vs) that has the

earliest vertex arrival time:

u
(o)
d := min

i∈Vd

i, and u(o)s := min
i∈Vs

i, (10.3)

where the superscript (o) stands for oldest. On the event I , u
(o)
s must be a recipient

of at least one incoming edge from the vertices in Vd, and it does not send an outgoing

edge to a vertex in Vd. Because if u
(o)
s sends an outgoing edge to some vertex i ∈ Vd,

then by the definition of Vs, there is some vertex j < u
(o)
s in Vs that receives the edge

emanating from i. Since Px(I ) > 0, i cannot send two outgoing edges to j and u
(o)
s .

We also impose the following assumption on the collection of edges, which greatly

simplifies the upcoming computation. As we discuss below, this assumption includes

the case where the collection is the discovered vertices and edges in the BFS (Definition

6).

The outgoing edge sent by any vertex in Vd \ {u(o)d } is received by another vertex in

Vd and u
(o)
d ,u

(o)
s > 1. (△)

A moment’s thought reveals that under (△), u
(o)
d must send an outgoing edge to u

(o)
s ,

and any vertex in Vs \ {u(o)s } must be sending an outgoing edge to a vertex in Vd. To

see how (△) fits into the BFS, we first prove a simple lemma. Recall the definitions

of v[t], v(op)[t] and v(oa)[t] in (3.1) and (3.3), and that Pt−1 and At−1 are the sets of

probed and active vertices in the BFS.

Lemma 19. Given t ⩾ 2, assume that At−1∪Pt−1 does not contain vertex 1. Then the

recipient of the incoming edge from vertex i ∈ Pt−1 is also in Pt−1, unless i = v(op)[t],

in which case the recipient is v(oa)[t] ∈ At−1.

Proof. The vertex we probe at exploration time 2 ⩽ j ⩽ t, v[j], either belongs to

type L or R. If it belongs to type R, then it must have been discovered at some step

i < j via the outgoing edge it sends to v[i] ∈ Pj−1. If v[j] is a type L vertex, by Lemma

4, v[s] = v(op)[j + 1] and vertex v(oa)[j + 1] ∈ Aj receives the incoming edge from v[j].
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□

In view of Lemma 19, Vd and Vs correspond to Pt−1 and At−1 for any t ⩾ 2 under

the assumption (△); noting that w.h.p. Pt−1 and At−1 do not contain vertex 1. It

follows that u
(o)
d and u

(o)
s correspond to v(op)[t] and v(oa)[t] respectively. Under (△),

the event I can be written as

I = {Q
u
(o)
d →u

(o)
s

= 1} ∩ K(Vd,Ed) (10.4)

:= {Q
u
(o)
d →u

(o)
s

= 1} ∩
⋂

{j,k}̸∈Ed;
j∈Vd,j<k⩽n

{Qk→j = 0} ∩
⋂

{j,k}∈Ed\{u(o)
s ,u

(o)
d };

u
(o)
d ⩽j<k⩽n

{Qk→j = 1}

We now show that conditioning on I , G′
n has a modified PA rules. Firstly, note

that conditioning on I does not change the attachment rules for the first u
(o)
s −1 steps

for constructing G′
n. Next, we study how it changes the rule for constructing G′

i from

G′
i−1 for u

(o)
s < i < u

(o)
d . Under the assumption (△), the edges in Ed \ {u(o)s ,u

(o)
d } are

born after step u
(o)
d , so they do not affect step u

(o)
s < i < u

(o)
d . Hence it is enough to

consider how conditioning on the edge {u(o)s ,u
(o)
d } changes the rules of these attachment

steps. The upcoming lemma is a variation of [36, Lemma 3.5]. We state the lemma in

slightly greater generality, but is clearly applicable to our case by taking ℓ = u
(o)
s and

p = u
(o)
d in what follows. Choose any two positive integers ℓ and p, with ℓ < p. The

lemma below implies that given Qp→ℓ = 1 and G′
m−1, where ℓ < m < p, we attach

vertex m to ℓ according to the same PA rule, but also include the edge {ℓ, p} in the

vertex weight of ℓ. In other words, we can think of the initial attractiveness of vertex

ℓ as xℓ + 1 instead of xℓ.

Lemma 20. Let Qm→j, G
′
m and D

(in)
m,j be as above and Tm :=

∑m
j=1 xj. Then for

j, ℓ < m < p,

Px[Qm→j = 1|G′
m−1, Qp→ℓ = 1] =

D
(in)
m−1,j + xj + 1[j = ℓ]

Tm−1 +m− 1
. (10.5)

Proof. We follow the proof of [36, Lemma 3.5], but with some minor modifications.
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First, we use the definition of conditional probability to write

Px[Qm→j = 1|G′
m−1, Qp→ℓ = 1]

=
Px[Qm→j = 1|G′

m−1]Px[Qp→ℓ = 1|G′
m−1, Qm→j = 1]

Px[Qp→ℓ = 1|G′
m−1]

. (10.6)

We compute the probabilities above as follows. Evidently,

Px[Qm→j = 1|G′
m−1] =

D
(in)
m−1,j + xj

Tm−1 +m− 2
.

This in turn implies that

Px[Qp→ℓ = 1|G′
m−1] =

Ex[D
(in)
p−1,ℓ + xℓ|G′

m−1]

Tp−1 + p− 2
,

and

Px[Qp→ℓ = 1|G′
m−1, Qm→j = 1] =

Ex[D
(in)
p−1,ℓ + xℓ|G′

m−1, Qm→j = 1]

Tp−1 + p− 2
.

Moreover, Lemma 22 at the end of this section implies that for ℓ < m < p,

Ex[D
(in)
p−1,ℓ + xℓ|G′

m−1] = (D
(in)
m−1,ℓ + xℓ)

p−2∏
h=m−1

Th + h

Th + h− 1
.

Note that

Ex[D
(in)
m,ℓ + xℓ|G′

m−1, Qm→j = 1] = D
(in)
m−1,ℓ + xℓ + 1[ℓ = j],

and so by another application of Lemma 22,

Ex[D
(in)
p−1,ℓ + xℓ|G′

m−1, Qm→j = 1] = (D
(in)
m−1,ℓ + xℓ + 1[j = ℓ])

p−2∏
h=m

Th + h

Th + h− 1
.

Applying these results to (10.6) and simplifying yields

Px[Qm→j = 1|G′
m−1, Qp→ℓ = 1] =

(D
(in)
m−1,j + xj)(D

(in)
m−1,ℓ + 1[j = ℓ] + xℓ)

(Tm−1 +m− 1)(D
(in)
m−1,ℓ + xℓ)

, (10.7)
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and (10.7) is equal to (10.5) by considering the cases ℓ = j and ℓ ̸= j separately. □

Given that u
(o)
d < m ⩽ n and m ̸∈ Vs ∪ Vd, we proceed to prove that on the event

K(Vd,Ed), defined in (10.4), we attach vertex m to j ∈ [m− 1] \Vd w.p. proportional

to the weight of vertex j. Below we exclude the attachment steps of the vertices in

Vs \ {u(o)s } in the lemma, because under the assumption (△), vertex m ∈ Vs \ {u(o)s }

necessarily sends an outgoing edge to a vertex in Vd. To precisely state the lemma,

denote the sets of vertices and edges in Vd and Ed that are born before vertex m as

Vd,m = Vd ∩ [m− 1] and Ed,m = {{i, j} ∈ Ed : j < m}.

When compared to the BFS, Vd,m and Ed,m respectively correspond to Pt,m and Et,m
in (3.5) for any t ⩾ 2.

Lemma 21. Retaining the notations in Lemma 20, let Vd and Ed be such that (△)

holds, with Vd ∪ Vs ⊂ [n]. Let K(Vd,Ed) be as in (10.4). For m ∈ {u(o)d + 1, ..., n} \

(Vs ∪Vd) and j ∈ [m− 1] \Vd,m,

P(Qm→j = 1|G′
m−1,K(Vd,Ed)) =

D
(in)
m−1,j + xj

Tm−1 +m− 1−
∑
k∈Vd,m

xk − |Ed,m|
. (10.8)

Before proving the lemma, note that the edge count in the normalising constant in

(10.8) ism−1−|Ed,m| instead ofm−2−|Ed,m|, as we need to include {u(o)s ,u
(o)
d } ∈ Ed,m.

When attaching vertex m to vertex j ∈ Vs \ {u(o)s }, (△) ensures that vertex j does not

receive any incoming edges from the vertices of Vd, as otherwise these edges have a

size-biasing effect on the initial attractiveness of vertex j, in that case (10.8) no longer

holds.

Proof of Lemma 21. We use the definition of the conditional probability again, this

time to rewrite the the left-hand side of (10.8) in terms of probabilities conditional

on the events occurring before step m. For m ∈ {u(o)d + 1, ..., n} \ (Vs ∪ Vd), let

K(Vd,Ed) := K(Vd,Ed)<m ∩ K(Vd,Ed)⩾m, where K(Vd,Ed)<m collects the events in



62 T. Y. Y. LO

K(Vd,Ed) that occur between step u
(o)
d and step m:

K(Vd,Ed)<m :=
⋂

{k,ℓ}∈Ed,m\{u(o)
s ,u

(o)
d }

{Qℓ→k = 1} ∩
⋂

u
(o)
d ⩽k<ℓ<m;

k∈Vd,{k,ℓ}̸∈Ed,m

{Qℓ→k = 0};

and K(Vd,Ed)⩾m collects the events that occur after or at step m:

K(Vd,Ed)⩾m :=
⋂

{k,ℓ}∈Ed\Ed,m

{Qℓ→k = 1} ∩
⋂

(m∨k)⩽ℓ⩽n;
ℓ∈Vd,{k,ℓ}̸∈Ed\Ed,m

{Qℓ→k = 0}.

Hence we have the following expression:

Px[Qm→j = 1|K(Vd,Ed), G
′
m−1]

=
Px[Qm→j = 1|K(Vd,Ed)<m, G

′
m−1]Px[K(Vd,Ed)⩾m|Qm→j = 1,K(Vd,Ed)<m, G

′
m−1]

Px[K(Vd,Ed)⩾m|K(Vd,Ed)<m, G′
m−1]

.

It is straightforward to see that for j ̸∈ Vd,

Px[Qm→j = 1|K(Vd,Ed)<m, G
′
m−1] =

D
(in)
m−1,j + xj

Tm−1 +m− 2
.

Using the PA rules and simplifying, we can compute

Px[K(Vd,Ed)⩾m|K(Vd,Ed)<m, G
′
m−1]

Px[K(Vd,Ed)⩾m|Qm→j = 1,K(Vd,Ed)<m, G′
m−1]

=
Tm−1 +m− 1−

∑
k∈Vd,m

xk − |Ed,m|
Tm−1 +m− 2

.

Combining the last equations completes the proof. □

The following lemma is applied in the proof of Lemma 20, which is a slight modifi-

cation of Lemma 4.1 in [33] and Theorem 2.1 of [29].

Lemma 22. Retaining the notations in Lemma 20, let k, ℓ and m be positive integers

such that k ⩽ ℓ ⩽ m, then

Ex[D
(in)
m,k + xk|G′

ℓ] = (D
(in)
ℓ,k + xk)

m−1∏
j=ℓ

Tj + j

Tj + j − 1
.

Proof. At attachment step m > k, D
(in)
m,k either increases by exactly one or stays the
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same, and D
(in)
m+1,k = D

(in)
m,k + 1 w.p. proportional to D

(in)
m,k + xk. Hence,

Ex[D
(in)
m,k + xk|G′

m−1]

=
D

(in)
m−1,k + xk

Tm−1 +m− 2
(D

(in)
m−1,k + 1 + xk) +

(
1−

D
(in)
m−1,k + xk

Tm−1 +m− 2

)
(D

(in)
m−1,k + xk)

=
Tm−1 +m− 1

Tm−1 +m− 2
(D

(in)
m−1,k + xk).

The lemma follows from iterating the result above. □

10.2.2. The model construction Assume that Vd and Ed are such that (△) holds, with

Vd ∪ Vs ⊂ [n]. Let I be as in (10.4), and Gn(I ) be a graph that is distributed as

Seq(x)n conditional on I , where Seq(x)n is as in Definition 1. Lemma 20 and 21

imply that the random variables D
(in)
n,j (I ) := (D

(in)
n,j |I ) can be generated as follows,

and has a similar flavour as the construction in [36]. Let u
(o)
d and u

(o)
s be as in (10.3).

Initially, we generate G
u
(o)
s −1

(I ) using the usual attachment rules. At step u
(o)
s , add

the vertices u
(o)
s and u

(o)
d to G

u
(o)
s −1

(I ), such that u
(o)
s receives an incoming edge from

u
(o)
d . Then, the recipient j ∈ [u

(o)
s − 1] of the outgoing edge of u

(o)
s is chosen w.p.

proportional to D
(in)

u
(o)
s −1,j

(I ) + xj . After the attachment step, assign vertex u
(o)
s the

initial attractiveness x
u
(o)
s
, and set D

(in)

u
(o)
s ,u

(o)
s

(I ) = 1. At step u
(o)
s < m < u

(o)
d , vertex

m sends an outgoing edge to vertex j ∈ [m− 1], w.p.

D
(in)
m−1,j(I ) + xj

Tm−1 +m− 1
,

and we equip vertex m with the initial attractiveness xm. In step u
(o)
d , assign vertex

u
(o)
d the initial attractiveness x

u
(o)
d

. At step m ∈ {u(o)d + 1, . . . , n} \ (Vs ∪ Vd), vertex

m sends an outgoing edge to vertex j ∈ [m− 1] \Vd,m w.p.

D
(in)
m−1,j(I ) + xj

Tm−1 +m− 1−
∑
k∈Vd,m

xk − |Ed,m|
.

At stepsm such that {j,m} ∈ Ed\{u(o)s ,u
(o)
d }, we draw an edge directed from vertexm

to j, and set the initial attractiveness of vertex m as xm.
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10.2.3. The urn representation Using an urn argument analogous to that of Theorem

3, below we give an alternative definition of Gn(I ) that has conditionally independent

edges. To simplify notation, we drop x in the definitions of the variables below, which

depend on the sequence of initial attractiveness.

Definition 11. ((x,I , n)-Pólya urn tree.) Given the sequence x, and that Vd and Ed

are such that (△) holds, with Vd∪Vs ⊂ [n]. Let I be as in (10.4), and (Bj(I ), j ∈ [n])

be conditionally independent random variables such that B1(I ) := 1, Bj(I ) := 0 if

j ∈ Vd, and for j ̸∈ Vd,

Bj(I ) ∼


Beta(xj + 1[j = u

(o)
s ], Tj−1 + j − 1), 2 ⩽ j ⩽ u

(o)
s ;

Beta(xj , Tj−1 + j), u
(o)
s < j < u

(o)
d ;

Beta(xj , Tj−1 + j −
∑
k∈Vd,j

xk − |Ed,j |), u
(o)
d < j ⩽ n.

Furthermore, let S0,n(I ) := 0, Sn,n(I ) := 1 and

Sn,j(I ) :=

n∏
i=j+1

(1−Bi(I )) for 1 ⩽ j ⩽ n− 1.

Starting with n vertices and the edges in Ed, we connect the vertices as follows. Let

Ij = [Sn,j−1(I ), Sn,j(I )) for j ∈ [n] \ Vd. Conditionally on (Sn,j(I ), j ∈ [n − 1]),

we generate Uj ∼ U[0, Sn,j−1(I )] for j ∈ {2, ..., n} \ (Vd ∪ Vs \ {u(o)s }). If j < k and

Uk ∈ Ij , we attach vertex k to j. We say that the resulting graph is an (x,I , n)-Pólya

urn graph.

Theorem 4. Assume that Vd and Ed are such that (△) holds. If G̃n(I ) is an

(x,I , n)-Pólya urn tree, it has the same distribution as Seq(x)n conditional on I .

The proof of Theorem 4 is similar to that of Theorem 3. Firstly, we need notation

analogous to those in Lemma 18. Let Gn(I ) and D
(in)
n,k (I ) be as in Section 10.2.2.

Define the total weight of the vertices [k] \ Vd,k and the weight of vertex k ̸∈ Vd in

Gm(I ) as

M ′
k(m) =

∑
j∈[k]\Vd,k

(xi +D
(in)
m,j (I )), U ′

k(m) =M ′
k(m)−M ′

k−1(m),
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and for k ∈ Vd, U
′
k(m) = U ′

k(m− 1) + 1 if and only if {k,m} ∈ Ed.

For the discussion and the proof below, suppose that m ̸∈ Vd ∪ Vs \ {u(o)s }. It is

clear from the construction of Gm(I ) that we can obtain an analogue of Lemma 18 for

U ′
k(m). The differences here are that we have to use the adjusted total vertex weights,

and vertex m can only attach to a vertex in [m− 1] \Vd,m. If m− 1 ̸∈ Vd, arguing as

for Lemma 18, we have U ′
m−1(m) ∼ Polya(b, w; 1), where w = xm−1 + 1[m = u

(o)
s + 1]

and b is the total weight of the vertices [m− 1] \Vd,m−1 with

b = Tm−2 +m− 2 if m ⩽ u(o)s ,

b = Tm−2 +m− 2 + 1[m ̸= u(o)s + 1] if u(o)s < m < u
(o)
d ,

b = Tm−2 +m− 1−
∑

j∈Vd,m−1

xj − |Ed,m−1| if u
(o)
d < m ⩽ n and (m− 1) ̸∈ Vd.

Let k ∈ [m − 1] \ Vd,m. Conditional on M ′
k(m) and the event that vertex m does

not attach to any vertex in {k + 1, ...,m − 1} \ Vd,m−1, ({U ′
j(m) = U ′

j(m − 1)}, j ∈

{k+1, ...,m−1}\Vd,m−1), we have U
′
k(m) ∼ Polya(b′, w′; q′), where q′ =M ′

k(m)−b′−w′

is the number of draws in the Pólya urn. The parameters are w′ = xk + 1[k = u
(o)
s ],

b′ = Tk−1 + k − 1, q′ =M ′
k(m)− Tk − k + 1, for m ⩽ u(o)s ;

b′ = Tk−1 + k − 1 + 1[k > u(o)s ], q′ =M ′
k(m)− Tk − k + 1− 1[k ⩾ u(o)s ], for u(o)s < m < u

(o)
d ;

and for m > u
(o)
d ,

b′ = Tk−1 + k − 1−
∑

j∈Vd,k

xj − |Ed,k|+ 1[k > u(o)s ],

q′ =M ′
k(m)− Tk − k + 1 +

∑
j∈Vd,k

xj + |Ed,k| − 1[k ⩾ u(o)s ].

Proof of Theorem 4. We only consider the attachment step m ̸∈ Vd ∪ Vs \ {u(o)s },

because step m ∈ Vd∪Vs \{u(o)s } is deterministic under the assumption (△). To prove

the theorem, we replace Uk(n) in the proof of Theorem 3 by U ′
k(n) for k ̸∈ Vd and

argue similarly. Note that for k ∈ Vd and m ̸∈ Vd ∪ Vs \ {u(o)s }, U ′
k(m) = U ′

k(m − 1)

is reflected by Bk(I ) = 0 in the construction of the (x,I , n)-Pólya urn graph. □
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With these preparations, it is now possible to prove Lemma 5 and 6.

Proof of Lemma 5 and 6. Apply Theorem 3 for t = 1. For t ⩾ 2, take Vd, Vs, u
(o)
d

and u
(o)
s in Theorem 4 respectively as Pt−1, At−1, v

(op)[t] and v(oa)[t] in Definition 6,

and Ed as Et−1, which is the set of edges joining the vertices in Pt−1 and At−1. □

11. Supplementary proofs

In this section, we prove some of the lemmas in Section 5 and 6, as well as Theorem

2. Recall that the subscript x in Px and Ex indicates the conditioning on X = x.

11.1. Proof of Lemma 9

In preparation, we use the probabilities P̂j→v[1] in (5.6) to construct a Bernoulli

sequence and a Poisson sequence that appear in the intermediate coupling steps below.

Recall that U0 ∼ U[0, 1], v[1] := k
(u)
0 = ⌈nU0⌉ is the uniformly chosen vertex in the

(x, n)-Pólya urn tree (Definition 4), a
(i)
0 = Uχ0 is the age of vertex 0 in the intermediate

Pólya point tree (Tx,n, 0) (Definition 8), Zj [1] and Z̃j [1] are the gamma variables in

(3.6). Define ζ0 := Zv[1][1] and

Ξx := (U0, ((Zj [1], Z̃j [1]), 2 ⩽ j ⩽ n)); (11.1)

noting that the event
⋂3
j=1 F1,j ∩ H1,0, defined in (5.2) and (5.5), is measurable with

respect to Ξx.

Definition 12. Given a
(i)
0 , v[1] and ζ0, let Ŷj→v[1], v[1] + 1 ⩽ j ⩽ n, be conditionally

independent Bernoulli variables, each with parameter P̂j→v[1]. Define a Bernoulli

sequence by the random vector

Ŷ
(v[1],n)
Be := (Ŷ(v[1]+1)→v[1], Ŷ(v[1]+2)→v[1], ..., Ŷn→v[1]).

Definition 13. Given a
(i)
0 , v[1] and ζ0, let V̂j→v[1], v[1] + 1 ⩽ j ⩽ n, be conditionally

independent Poisson random variables, each with parameter P̂j→v[1]. Define a Poisson

sequence by the random vector

V̂
(v[1],n)
Po := (V̂(v[1]+1)→v[1], V̂(v[1]+2)→v[1], ..., V̂n→v[1]).
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We also require two lemmas for our proofs. The first is a simple result that turns

the problem of coupling two random vectors into the problem of coupling two random

variables. The proof is an easy application of the union bound.

Lemma 23. Given a positive integer d, let V = (V1, . . . , Vd) and W = (W1, ...,Wd)

be vectors of independent random variables. Let (Ṽi, W̃i) be a coupling of Vi and Wi,

where (Ṽi, W̃i) is independent of (Ṽj , W̃j) for any i ̸= j. Denote Ṽ = (Ṽ1, ..., Ṽd) and

W̃ = (W̃1, ..., W̃d), so that (Ṽ,W̃) is a coupling of V and W. Then,

P[Ṽ ̸= W̃] = P
[ d⋃
i=1

{Ṽi ̸= W̃i}
]
⩽

d∑
i=1

P[Ṽi ̸= W̃i].

The next lemma shows that for three random vectors, it is enough to consider the

pairwise couplings, and is easily extended to the more general cases.

Lemma 24. Let X, Y and Z be random vectors taking values in Rd for some positive

integer d. Suppose that there is a coupling (X̃, Ỹ) of X and Y, and a coupling (Ŷ, Ẑ)

of Y and Z. Then there is a coupling (X′,Y′,Z′) of X, Y and Z such that

P[X′ ̸= Z′] ⩽ P[X̃ ̸= Ỹ] + P[Ŷ ̸= Ẑ].

Proof. We construct the coupling (X′,Y′,Z′) as follows. Let (X ′, Y ′) be the same

coupling as (X̃, Ỹ ). Due to the existence of regular conditional probability measures

[14, Theorem 4.1.18, p. 186], we may define L (Z′|Y′,X′) = L (Ẑ|Ŷ), so that Z′ is

independent of X′ when given Y′. Then, by a union bound,

P[X′ ̸= Z′] = P[{X′ ̸= Y′} ∪ {Y′ ̸= Z′}] (11.2)

⩽ P[X′ ̸= Y′] + P[Y′ ̸= Z′] (11.3)

= P[X̃ ̸= Ỹ] + P[Ŷ ̸= Ẑ]. (11.4)

□

The proof of Lemma 9 consists of two main components. The first is to use

Lemma 23 and standard techniques to couple (Y
(v[1],n)
Be , Ŷ

(v[1],n)
Be ), (Ŷ

(v[1],n)
Be , V̂

(v[1],n)
Po )

and (V̂
(v[1],n)
Po ,V

(v[1],n)
Po ) under the event

⋂3
i=1 F1,i ∩H1,0, where Y

(v[1],n)
Be and V

(v[1],n)
Po
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are as in Definition 7 and 9. These results are given in the next three lemmas. The

second is to combine them using Lemma 24.

Lemma 25. Let Y
(v[1],n)
Be and Ŷ

(v[1],n)
Be be as in Definition 7 and 12, and the events

H1,0, F1,i, i = 1, 2, 3 and Ξx be as in (5.1), (5.5) and (11.1). We can couple the random

vectors so that on the event
⋂3
i=1 F1,i∩H1,0, there is a positive constant C := C(x1, µ)

such that

Px

[
Y

(v[1],n)
Be ̸= Ŷ

(v[1],n)
Be

∣∣Ξx

]
⩽ Cζ0n

−γ(log log n)1−χ for all n ⩾ 3. (11.5)

Proof. We first show that on the event
⋂3
i=1 F1,i ∩H1,0, there is a positive constant

C := C(x1, µ) such that for j > v[1],

(1− Cn−γ)P̂j→v[1] ⩽ Pj→v[1] ⩽ (1 + Cn−γ)P̂j→v[1], (11.6)

and then couple the random vectors. We only prove the upper bound in (11.6),

as the lower bound follows from a similar calculation. Pick n large enough so that

C∗n−χ/12(log log n)χ < 1/2, where C∗ is the constant in the event F1,1. Since v[1] >

n(log log n)−1 on the event H1,0, for j ⩾ v[1],

Sn,v[1][1]

Sn,j [1]
⩽

{(
v[1]

n

)χ
+ C∗n−χ/12

}{(
j

n

)χ
− C∗n−χ/12

}−1

⩽

(
n

j

)χ{(
v[1]

n

)χ
+ C∗n−χ/12

}{
1− C∗n−χ/12(log log n)χ

}−1

⩽

{(
v[1]

j

)χ
+ C∗n−χ/12(log log n)χ

}∑
i⩾0

(C∗n−χ/12(log log n)χ)i

⩽

{(
v[1]

j

)χ
+ C∗n−χ/12(log log n)χ

}
{1 + 2C∗n−χ/12(log log n)χ}

on the event F1,1 ∩ H1,0, where we have used (n/j)χ ⩽ (n/v[1])χ < (log log n)χ and

the geometric series. Thus, there is a positive constant C ′ := C ′(x1, µ) such that

Sn,v[1][1]

Sn,j−1[1]
⩽

(
v[1]

j

)χ
+ C ′n−

χ
12 (log log n)χ for v[1] < j ⩽ n.
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Hence, on the event
⋂3
j=1 F1,j ∩H1,0, we can bound Pj→v[1] in terms of P̂j→v[1]:

Pj→v[1] ⩽

[
ζ0

(µ+ 1)v[1]
+

ζ0n
−γ

(µ+ 1)v[1]

] [(
v[1]

j

)χ
+ C ′n−

χ
12 (log log n)χ

]
= P̂j→v[1]

[
1 + n−γ +

(
j

v[1]

)χ
C ′(log log n)χ(n−γ−

χ
12 + n−

χ
12 )

]
. (11.7)

Using (j/v[1])χ ⩽ (n/v[1])χ ⩽ (log log n)χ and 0 < γ < χ/12, we deduce that there is

a constant C := C(x1, µ) such that

Pj→v[1] ⩽ P̂j→v[1](1 + n−γ + C ′n−γ−
χ
12 (log log n)3χ + C ′n−

χ
12 (log log n)3χ)

= P̂j→v[1](1 + Cn−γ).

For the coupling, we use independent, standard uniform variables Uj , v[1] + 1 ⩽ j ⩽ n

to define

Yj→v[1] = 1[Uj ⩽ Pj→v[1]] and Ŷj→v[1] = 1[Uj ⩽ P̂j→v[1]].

It follows that on the event
⋂3
j=1 F1,j ∩H1,0,

Px

[
Yj→v[1] ̸= Ŷj→v[1]

∣∣Ξx

]
⩽ Cn−γP̂j→v[1].

By Lemma 23, we have

Px

[
Y

(v[1],n)
Be ̸= Ŷ

(v[1],n)
Be

∣∣Ξx

]
⩽ Cn−γ

n∑
j=v[1]+1

P̂j→v[1]

on the event
⋂3
j=1 F1,j ∩ H1,0. To bound the sum above, we use v[1] > n(log log n)−1

and an integral comparison to get

1

[ 3⋂
i=1

F1,i ∩H1,0

] n∑
j=v[1]+1

P̂j→v[1] = 1

[ 3⋂
i=1

F1,i ∩H1,0

]
ζ0

(µ+ 1)k1−χ0

n∑
j=v[1]+1

j−χ

⩽
ζ0

(µ+ 1)

[
log log n

n

]1−χ ∫ n

n(log logn)−1

y−χdy

⩽ ζ0(log log n)
1−χ. (11.8)
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Combining the last two inequalities gives (11.5). □

Lemma 26. Let Ŷ
(v[1],n)
Be and V̂

(v[1],n)
Po be as in Definition 12 and 13, and the events

H1,0, F1,i, i = 1, 2, 3 and Ξx be as in (5.1), (5.5) and (11.1). We can couple the

random vectors so that on the event
⋂3
i=1 F1,i ∩H1,0,

Px

[
Ŷ

(v[1],n)
Be ̸= V̂

(v[1],n)
Po

∣∣Ξx

]
⩽
ζ20 (log log n)

2−χ

(µ+ 1)n
for all n ⩾ 3.

Proof. First, we use the standard Poisson-Bernoulli coupling [24, equation (1.11),

p. 5] to couple Yj→v[1] and Ŷj→v[1]. Then, applying Lemma 23 and (v[1]/j)χ ⩽ 1, we

obtain

Px

[
Ŷ

(v[1],n)
Be ̸= V̂

(v[1],n)
Po

∣∣Ξx

]
⩽

n∑
j=v[1]+1

P̂ 2
j→v[1] ⩽

ζ0
(µ+ 1)v[1]

n∑
j=v[1]+1

P̂j→v[1],

so the lemma follows from applying (11.8) to the sum above, and noting that v[1] >

n(log log n)−1 on the event H1,0. □

Lemma 27. Let V
(v[1],n)
Po and V̂

(v[1],n)
Po be as in Definition 9 and 13, and the events

H1,0, F1,i, i = 1, 2, 3 and Ξx be as in (5.1), (5.5) and (11.1). We can couple the random

vectors so that on the event
⋂3
i=1 F1,i ∩ H1,0, there is a positive constant C := C(µ)

such that

Px

[
V

(v[1],n)
Po ̸= V̂

(v[1],n)
Po

∣∣Ξx

]
⩽
C log log n

n
ζ0 for all n ⩾ 3.

Proof. We use the monotone coupling to couple Vj→v[1] and V̂j→v[1] for each j,

with the convention that the value zero is a Poisson variable with mean zero. Let

νj := λ
[1]
j ∧ P̂j→v[1] and

V ′
j→v[1] ∼ Po(νj), V ′′

j→v[1] ∼ Po(|λ[1]j − P̂j→v[1]|), V ′′′
j→v[1] = V ′

j→v[1] + V ′′
j→v[1],

where V ′
j→v[1] is conditionally independent of V ′′

j→v[1]. Define Vj→v[1] = V ′
j→v[1] and

V̂j→v[1] = V ′′′
j→v[1] if λ

[1]
j ⩽ P̂j→v[1]; and vice versa if λ

[1]
j > P̂j→v[1]. Then, a moment
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of thought shows that

Px

[
V̂j→v[1] ̸= Vj→v[1]

∣∣Ξx

]
= P[V ′′

j→v[1] ⩾ 1
∣∣Ξx] ⩽ |λ[1]j − P̂j→v[1]|,

where the last inequality follows from 1− e−x ⩽ x. Once again by Lemma 23,

Px

[
V

(v[1],n)
Po ̸= V̂

(v[1],n)
Po

∣∣Ξx

]
⩽

n∑
j=v[1]+1

|λ[1]j − P̂j→v[1]|. (11.9)

We now bound the sum in (11.9) on the event H1,0. First, we swap (a
(i)
0 )−1/µ in λ

[1]
j

for (v[1]/n)−χ/µ at a small cost, and then proceed to bound the difference between λ
[1]
j

and P̂j→v[1]. Recalling that a
(i)
0 = Uχ0 and v[1] = ⌈nU0⌉, we have

(a
(i)
0 )−1/µ −

(
v[1]

n

)−χ/µ

⩽ U
−χ/µ
0

[
1−

(
1 +

1

n

)−χ/µ ]
.

Since χ/µ = 1−χ and (1+ n−1)χ−1 =
∑
j⩾0

(
χ−1
j

)
(1/n)j , there is a constant Cµ such

that

(a
(i)
0 )−1/µ − (v[1]/n)−χ/µ ⩽ Cµn

−1U
−χ/µ
0 . (11.10)

Because U0 ⩾ (log log n)−1 on the event H1,0, it follows that

1[H1,0]
{
(a

(i)
0 )−1/µ − (v[1]/n)−χ/µ

}
⩽ Cµn

−1(log log n)1−χ =: ηn. (11.11)

For j = v[1] + 2, ..., n, we use (11.11) to compute

λ
[1]
j =

∫ (j/n)χ

((j−1)/n)χ

ζ0

µ(a
(i)
0 )1/µ

y1/µ−1dy = ζ0(a
(i)
0 )−1/µ

[(
j

n

)1−χ

−
(
j − 1

n

)1−χ
]

⩽ ζ0

(
j

n

)1−χ
[
1−

(
1− 1

j

)1−χ
][(

v[1]

n

)χ−1

+ ηn

]
.

Since (1− 1/j)1−χ =
∑
h⩾0

(
1−χ
h

)
(−1/j)h = 1− {(µ+ 1)j}−1 +O(j−2),

λ
[1]
j ⩽ ζ0

[
1

(µ+ 1)j
+O(j−2)

] [(
j

v[1]

)1−χ

+ ηn

(
j

n

)1−χ
]
;
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and expanding the terms above we obtain

λ
[1]
j ⩽ P̂j→v[1] +

ηnζ0
n1−χ

1

jχ(µ+ 1)
+ Cζ0j

−1−χ[ηnn
χ−1 + (v[1])χ−1],

where C := C(µ) is a constant. Below, we allow the constants C := C(µ) and C ′ :=

C ′(µ) to vary from line to line. Repeating the calculation above for a lower bound on

λ
[1]
k , we deduce that on the event H1,0,

|λ[1]j − P̂j→v[1]| ⩽
Cζ0ηn
n1−χ

j−χ + C ′ζ0(v[1])
χ−1j−1−χ. (11.12)

On the event H1,0, Cn
χ−1ηnζ0

∑n
j=v[1]+2 j

−χ ⩽ C(µ+ 1)ζ0ηn because

1[H1,0]

n∑
j=v[1]+2

j−χ ⩽
n∑

j=⌈n(log logn)−1⌉+2

j−χ ⩽
∫ n

n(log logn)−1+1

y−χdy ⩽ (µ+ 1)n1−χ;

and similarly, C ′ζ0(v[1])
χ−1

∑n
j=v[1]+1 j

−1−χ ⩽ C ′χ−1ζ0n
−1(log log n). Hence,

1[H1,0]

n∑
j=v[1]+2

|λ[1]j − P̂j→v[1]| ⩽
C log log n

n
ζ0.

Finally, we can use (11.11) and a similar calculation to show that

1[H1,0]|λ[1]v[1]+1 − P̂v[1]+1→v[1]| ⩽
C ′ log log n

n
ζ0.

Applying the last two displays to (11.9) gives the desired result. □

We now use Lemma 25, 26 and 27 to prove Lemma 9.

Proof of Lemma 9. Applying Lemma 25, 26 and 27 to Lemma 24, we can couple

Y
(v[1],n)
Be and V

(v[1],n)
Po so that on the event

⋂3
i=1 F1,i∩H1,0, there are positive constants

C := C(x1, µ) and c := c(µ) such that

Px[Y
(v[1],n)
Be ̸= V

(v[1],n)
Po

∣∣Ξx] ⩽
Cζ0(log log n)

1−χ

nγ
+
ζ20 (log log n)

2−χ

(µ+ 1)n
+
cζ0 log log n

n

for all n ⩾ 3. Taking expectation with respect to ζ0 on (0,∞) proves the lemma, since

Ex[ζ0|U0] = xv[1] and Ex[ζ
2
0 |U0] = xv[1](xv[1] +1); and on the event H1,0, v[1] > 1 and
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xv[1] ⩽ κ. □

11.2. Proof of Lemma 10

Proof. Recall that a
(i)
0 = Uχ0 , ζ0 ∼ Gamma(xv[1], 1) and R

(i)
0 ∼ Po(ζ0{(a(i)0 )−1/µ −

1}), where U0 is a standard uniform variable and R
(i)
0 is as in (4.1). On the eventH1,0 =

{U0 > (log log n)−1}, R(i)
0 is stochastically dominated by ξ ∼ Po(ζ0(log log n)

1−χ).

Hence,

Px

[ 2⋂
i=0

H1,i ∩Hc
1,3

]
⩽ Px[H1,0 ∩ {ξ ⩾ (log n)1/r}]

⩽ Ex

[
1[H1,0]Px

[
ξ ⩾ (log n)1/r|ζ0, U0

]]
. (11.13)

To apply Chebyshev’s inequality, let (ξ̃)k := ξ̃(ξ̃−1) · · · (ξ̃−k+1) for any non-negative

integer k. By [19, equation (6.10), p. 262], we have ξ̃p =
∑p
j=0

{
p
j

}
(ξ̃)k, where

{
p
j

}
is

the Stirling number of the second kind (with
{
0
0

}
= 1 and

{
p
0

}
= 0 for positive integer

p). If ξ̃ ∼ Po(θ), then E[(ξ̃)k] = θk. So for such ξ̃ and θ ⩾ 1, taking expectation on

both sides of the identity gives

Eξ̃p =

p∑
k=0

{
p

k

}
E[(ξ̃)k] ⩽ Cpθ

p,

where Cp is the sum of the Stirling numbers. By Chebyshev’s inequality and the

moment bound above,

Px[ξ ⩾ (log n)1/r|ζ0, U0] ⩽ (log n)−p/rEx[ξ|ζ0, U0] = Cpζ
p
0 (log n)

−p/r(log log n)p(1−χ).

The lemma follows from applying the above to (11.13); noting that on the event H1,0,

there is a positive constant C := C(p) such that Ex[ζ
p
0 |U0] =

∏p−1
ℓ=0 (xv[1] + ℓ) ⩽ Cκp,

because v[1] ⩾ 2 and xi ⩽ κ for i ⩾ 2. □

11.3. Proof of Lemma 13

We first recall the notation in Section 6 that frequently appears in the proof below.

The random variable τ [q] is the time we probe the type L child in ∂Bq := Bq(Gn, k
(u)
0 )\

Bq−1(Gn, k
(u)
0 ), and L[q] = (0, 1, ..., 1) with |L[q]| = q + 1, so that v[τ [q]] = k

(u)
L[q], with
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k
(u)
L[q] as in the beginning of Section 3.2. Moreover, ζq := Zv[τ [q]][τ [q]] is the gamma

variable in (3.7) with t = τ [q], ML[q] and M̃L[q] are as in (6.6) and (6.8).

To prepare for the intermediate coupling steps, we construct a Bernoulli sequence

and a Poisson sequence using the means P̂j→v[τ [q]] in (6.12) and in Table 1.

Definition 14. Given v[τ [q]], a
(i)
L[q] and ζq, let Ŷj→v[τ [q]], M̃L[q] ⩽ j ⩽ n, be condition-

ally independent Bernoulli variables, each with parameter P̂j→v[τ [q]] given in (6.12) and

in Table 1. Define this Bernoulli sequence by the random vector

Ŷ
(v[τ [q]],n)
Be :=

(
Ŷ
M̃L[q]→v[τ [q]]

, Ŷ
(M̃L[q]+1)→v[τ [q]]

, ..., Ŷn→v[τ [q]]

)
.

Definition 15. Given v[τ [q]], a
(i)
L[q] and ζq, let V̂j→v[τ [q]], M̃L[q] ⩽ j ⩽ n, be condi-

tionally independent Poisson random variables, each with parameter P̂j→v[τ [q]] given

in (6.12) and in Table 1. Define this Poisson sequence by the random vector

V̂
(v[τ [q]],n)
Po :=

(
V̂
M̃L[q]→v[τ [q]]

, V̂
(M̃L[q]+1)→v[τ [q]]

, ..., V̂n→v[τ [q]]

)
.

As we assume that the graphs are already coupled such that (Bq(Gn, v[1]), v[1]) ∼=

(Bq(Tx,n, 0), 0), it is enough to condition on the following collection of random variables

in the sequel,

Ξx :=
(
(k

(u)
w̄ , k

(i)
w̄ , a

(i)
w̄ )kw̄∈Aτ[q]−1∪Pτ[q]−1

, (R
(u)
w̄ , R

(i)
w̄ )kw̄∈Pτ[q]−1

, (Zj [τ [q]], Z̃j [τ [q]])j∈[n]\({1}∪Pτ[q]−1
)
)
,

(11.14)

where R
(u)
w̄ and R

(i)
w̄ are as in (3.4) and (4.1), and Zi[τ [q]] and Z̃i[τ [q]] are the gamma

variables in (3.7) and (3.8). Note also Pτ [q]−1 = V (Bq−1(Gn, v[1])) and Aτ [q]−1 = ∂Bq.

Given l ⩾ 1, we define

J :=

3⋂
i=1

Fτ [q],i ∩
( 3⋂
i=1

Hq,i

)
∩ {|∂Bq| = l}, (11.15)

where Hq,i and Fτ [q],i, i = 1, 2, 3 are as in (6.1) and (6.11), and we omit l in the
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notation for simplicity. To prove Lemma 13, observe that on the event Hq,1 ∩Hq,2,

v[τ [q]] ⩾ n(log log n)−(q+1) − Cqn
1−βq/χ and ML[q] ⩾ n(log log n)−(q+1), (11.16)

where Cq := Cq(x1, µ) is the positive constant in Hq,2.

We are now ready to prove the lemma. As in the case of Lemma 9, we first couple

the pairs

(
Y

(v[τ [q]],n)
Be , Ŷ

(v[τ [q]],n)
Be

)
,
(
Ŷ

(v[τ [q]],n)
Be , V̂

(v[τ [q]],n)
Po

)
and

(
V̂

(v[τ [q]],n)
Po ,V

(v[τ [q]],n)
Po

)
on the event J , and then apply Lemma 24.

Lemma 28. Let Y
(v[τ [q]],n)
Be and Ŷ

(v[τ [q]],n)
Be be as in (6.7) and Definition 14, and Ξx

and J be as in (11.14) and (11.15). We can couple the random vectors so that on the

event J , there are positive constants C := C(x1, µ, q) and C
′ := C ′(µ, q) such that

Px

[
Y

(v[τ [q]],n)
Be ̸= Ŷ

(v[τ [q]],n)
Be

∣∣Ξx

]
⩽ (log log n)(1−χ)(q+1)

{
Cζqn

−γ +
C ′ζq(log n)

q/r

(µ+ 1)n1−χ

}
for all n ⩾ 3.

Proof. We prove the cases ML[q] ⩽ v[τ [q]] and ML[q] ⩾ v[τ [q]] + 1 separately. Below

we only consider the case ML[q] ⩽ v[τ [q]] in detail, as the argument for ML[q] ⩾

v[τ [q]] + 1 is the same.

Since Pj→v[τ [q]] = P̂j→v[τ [q]] = 0 for ML[q] ⩽ j ⩽ v[τ [q]], Yj→v[τ [q]] = Ŷj→v[τ [q]] = 0;

whereas for v[τ [q]] + 1 ⩽ j ⩽ n, we couple Yj→v[τ [q]] and Ŷj→v[τ [q]] as follows. Firstly,

we use a similar calculation as for (11.6) to show that there is a positive constant

C := C(x1, µ, q) such that on the event J ,

(1− Cn−γ)P̂j→v[τ [q]] ⩽ Pj→v[τ [q]] ⩽ (1 + Cn−γ)P̂j→v[τ [q]]

for j ∈ Nτ [q]−1 ∩ {v[τ [q]] + 1, ..., n}. For such j, we couple Yj→v[τ [q]] and Ŷj→v[τ [q]] as

in Lemma 25, such that on the event J ,

Px

[
Yj→v[τ [q]] ̸= Ŷj→v[τ [q]]

∣∣Ξx

]
⩽ Cn−γP̂j→v[τ [q]].
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For j ∈ (Aτ [q]−1 ∪ Pτ [q]−1) ∩ {v[τ [q]] + 1, ..., n}, we have

Px

[
Yj→v[τ [q]] ̸= Ŷj→v[τ [q]]

∣∣Ξx

]
⩽ P̂j→v[τ [q]];

noting that Yj→v[τ [q]] = 0 for such j. Following from Lemma 23,

Px

[
Y

(v[τ [q]],n)
Be ̸= Ŷ

(v[τ [q]],n)
Be

∣∣Ξx

]
⩽ Cn−γ

n∑
j=v[τ [q]]+1;
j∈Nτ[q]−1

P̂j→v[τ [q]] +

n∑
j=v[τ [q]]+1;

j∈Aτ[q]−1∪Pτ[q]−1

P̂j→v[τ [q]]. (11.17)

For the first sum in (11.17), we use n(log log n)−(q+1) ⩽ML[q] ⩽ v[τ [q]] to obtain

Cn−γ
n∑

j=v[τ [q]]+1;
j∈Nτ[q]−1

P̂j→v[τ [q]] ⩽
Cn−γζq

(µ+ 1){v[τ [q]]}1−χ
n∑

j=v[τ [q]]+1

j−χ

⩽
Cn−γζq

(µ+ 1){v[τ [q]]}1−χ

∫ n

v[τ [q]]

y−χdy

⩽ Cζqn
−γ(log log n)(1−χ)(q+1). (11.18)

To bound the second sum in (11.17), note that by a calculation similar to (6.13),

|Aτ [q]−1|+ |Pτ [q]−1| = |V (Bq(Gn, v[1]))| ⩽ 1 + q + q2(log n)q/r

on the event Hq,3, where v[1] is the uniformly chosen vertex. So combining the last

display, the lower bound on v[τ [q]] and j−χ ⩽ 1 for j ⩾ 1, we get that on the event J ,

there is a constant C ′ := C ′(µ, q) such that

∑
j∈Aτ[q]−1∪Pτ[q]−1

P̂j→v[τ [q]] =
ζq

(µ+ 1)[v[τ [q]]]1−χ

∑
j∈Aτ[q]−1∪Pτ[q]−1

j−χ

⩽
C ′ζq(log log n)

(q+1)(1−χ)

n1−χ
(log n)q/r. (11.19)

Applying (11.18) and (11.19) to (11.17) proves the lemma for ML[q] ⩽ v[τ [q]]. □

Lemma 29. Let Ŷ
(v[τ [q]],n)
Be and V̂

(v[τ [q]],n)
Po be as in Definition 14 and 15, and Ξx and

J be as in (11.14) and (11.15). We can couple the random vectors so that on the event
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J , there is a positive constant C := C(x1, µ, q) such that

Px

[
Ŷ

(v[τ [q]],n)
Be ̸= V̂

(v[τ [q]],n)
Po

∣∣Ξx

]
⩽
Cζ2q (log log n)

(2−χ)(q+1)

n
for all n ⩾ 3.

Proof. Since the argument for the case ML[q] ⩾ v[τ [q]] + 1 is similar, we only prove

the case ML[q] ⩽ v[τ [q]] in detail. For ML[q] ⩽ j ⩽ v[τ [q]], we have Ŷj→v[τ [q]] =

V̂j→v[τ [q]] = 0 because Pj→v[τ [q]] = P̂j→v[τ [q]] = 0. Hence, we only need to couple

Ŷj→v[τ [q]] and V̂j→v[τ [q]] for v[τ [q]] + 1 ⩽ j ⩽ n. By the standard Poisson-Bernoulli

coupling [24, equation (1.11), p. 5], Lemma 23 and the inequality (v[τ [q]]/j)χ ⩽ 1,

Px

[
Ŷ

(v[τ [q]],n)
Be ̸= V̂

(v[τ [q]],n)
Po

∣∣Ξx

]
⩽

n∑
j=v[τ [q]]+1

P̂ 2
j→v[τ [q]] ⩽

ζq
(µ+ 1)v[τ [q]]

n∑
j=v[τ [q]]+1

P̂j→v[τ [q]],

and bounding the sum using (11.18) proves the lemma for ML[q] ⩽ v[τ [q]]. □

Lemma 30. Let V
(v[τ [q]],n)
Po and V̂

(v[τ [q]],n)
Po be as in Definition 10 and 15, and Ξx and

J be as in (11.14) and (11.15). We can couple the random vectors so that on the event

J , there is a positive constant C := C(x1, µ, q) such that

Px

[
V

(v[τ [q]],n)
Po ̸= V̂

(v[τ [q]],n)
Po

∣∣Ξx

]
⩽ Cζqn

−βq (log log n)q+1 for all n ⩾ 3.

Proof. Separately considering the cases ML[q] ⩽ v[τ [q]] and ML[q] ⩾ v[τ [q]] + 1,

we apply the monotone coupling in Lemma 27 to each case. Below, we let λ
[τ [q]]
j and

P̂j→v[τ [q]] be as in (6.9) and (6.12) for any j. By comparing the Poisson means in Table

1, and applying Lemma 23, we have

Px

[
V

(v[τ [q]],n)
Po ̸= V̂

(v[τ [q]],n)
Po

∣∣Ξx

]

⩽


∑v[τ [q]]
j=ML[q]

λ
[τ [q]]
j +

∑n
j=v[τ [q]]+1

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣, ML[q] ⩽ v[τ [q]];∑n
j=v[τ [q]]+1

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣, ML[q] = v[τ [q]] + 1;∑ML[q]

j=v[τ [q]]+1 P̂j→v[τ [q]] +
∑n
j=ML[q]

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣, ML[q] ⩾ v[τ [q]] + 2.

(11.20)

We first handle the sum of absolute mean differences in all three cases in (11.20). When
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ML[q] ⩽ v[τ [q]] + 1, clearly

n∑
j=v[τ [q]]+1

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣ ⩽ n∑
j=ML[q]

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣,
so it is enough to consider the sum from ML[q] to n in all three cases. On the event

Hq,2, |a(i)L(q)− (v[τ [q]]/n)χ| ⩽ Cqn
−βq , so a computation similar to that of (11.11) gives

∣∣(a(i)L[q])− 1
µ − (v[τ [q]]/n)−

χ
µ

∣∣ ⩽ cµn
−βq (log log n)1+q =: ηn, (11.21)

where cµ := cµ(q, x1, µ). Using (11.21) and the second inequality in (11.16), we can

repeat the calculation of (11.12) to obtain

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣ ⩽ Cζqηn
n1−χ

j−χ + C ′ζq(log log n)
(1−χ)(q+1)j−2, (11.22)

where C := C(x1, µ) and C
′ := C ′(µ). Again using the second inequality in (11.16), a

straightforward computation shows that on the event J ,
∑n
j=ML[q]

j−χ ⩽ (µ+ 1)n1−χ

and
∑n
j=ML[q]

j−2 ⩽ 2n−1(log log n)q+1. Hence, summing (11.22) over j, we get that

there is a constant C := C(x1, µ, q) such that

n∑
j=ML[q]

∣∣λ[τ [q]]j − P̂j→v[τ [q]]

∣∣ ⩽ Cζqn
−βq (log log n)q+1. (11.23)

Next, we bound the remaining sums appearing in (11.20). When ML[q] ⩽ v[τ [q]],

v[τ [q]]∑
j=ML[q]

λ
[τ [q]]
j =

∫ ( v[τ[q]]n )
χ

a
(i)

L[q]

ζq

µ(a
(i)
L[q])

1/µ
y

1
µ−1dy = ζq

[(
v[τ [q]]

n

)χ
µ

(a
(i)
L[q])

− 1
µ − 1

]
.

Choose n large enough such that Cqn
−βq (log log n)χ(q+1) < 1, where Cq is the constant

in Hq,2. Using (v[τ [q]]/n)χ ⩽ a
(i)
L[q] +Cqn

−βq and the first inequality in (11.16), a little

calculation shows that on the event J ,

(
v[τ [q]]

n

)χ
µ

(a
(i)
L[q])

− 1
µ − 1 ⩽ (a

(i)
L[q])

− 1
µ

{
a
(i)
L[q] + Cqn

−βq
} 1
µ − 1

⩽ {1 + Cqn
−βq (log log n)(q+1)χ}

1
µ − 1
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⩽ Cn−βq (log log n)(q+1)χ

for some constant C := C(x1, µ, q). Hence, on the same event,

v[τ [q]]∑
j=ML[q]

λ
[τ [q]]
j ⩽ Cζqn

−βq (log log n)(q+1)χ. (11.24)

WhenML[q] ⩾ v[τ [q]]+2, we need an upper bound onML[q] to control
∑ML[q]

j=v[τ [q]]+1 P̂j→v[τ [q]].

Since ((ML[q] − 1)/n)χ ⩽ a
(i)
L[q] by definition of ML[q], we have ML[q] ⩽ n(a

(i)
L[q])

1/χ+1.

Let

bn := ⌊n(a(i)L[q])
1/χ − Cqn

1−βq/χ⌋ and cn := n(a
(i)
L[q])

1/χ + 1,

so that v[τ [q]] ⩾ bn and ML[q] ⩽ cn on the event J . Pick n large enough so that

en := (log log n)q+1(Cqn
−βq/χ + n−1) < 1. On the event J , we use (a

(i)
L[q])

−1/χ ⩽

(log log n)q+1 and the first inequality in (11.16) to obtain

ML[q]∑
j=v[τ [q]]+1

P̂j→v[τ [q]] ⩽
ζq

(µ+ 1)(v[τ [q]])1−χ

∫ cn

bn

y−χdy

⩽
ζqn

1−χ(a
(i)
L[q])

1
µ

(v[τ [q]])1−χ

{[
1 + n−1(a

(i)
L[q])

− 1
χ

]1−χ
−
[
1− Cq(a

(i)
L[q])

− 1
χn−

βq
χ − n−1(a

(i)
L[q])

− 1
χ

]1−χ}
⩽ Cζq(log log n)

q+1
[
{1 + n−1(log log n))q+1}1−χ − {1− en}1−χ

]
⩽ C ′ζqn

− βq
χ (log log n)2(q+1) (11.25)

for some constants C := C(x1, µ, q) and C ′ := C ′(x1, µ, q). The proof follows from

applying (11.23), (11.24) and (11.25) to (11.20). □

Next, we apply Lemma 28, 29 and 30 to prove Lemma 13.

Proof of Lemma 13. By applying Lemma 28, 29 and 30 to Lemma 24, we can couple

Y
(v[τ [q]],n)
Be and V

(v[τ [q]],n)
Po so that on the event J , there are positive constants C :=

C(x1, µ, q), C
′ := C ′(x1, µ), C

′′ := C ′′(x1, µ, q) and C
′′′ := C ′′′(x1, µ, q) such that

Px

[
Y

(v[τ [q]],n)
Be ̸= V

(v[τ [q]],n)
Po

∣∣Ξx

]
⩽
Cζq(log log n)

(1−χ)(q+1)

nγ
+
C ′ζq(log log n)

(q+1)(1−χ)

(µ+ 1)n1−χ
(log n)q/r
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+
C ′′ζ2q (log log n)

(2−χ)(q+1)

(µ+ 1)n
+
C ′′′ζq(log log n)

q+1

nβq
(11.26)

for all n ⩾ 3. The lemma follows from taking expectation with respect to Ξx, since on

the event J (in particular Hq,1 ∩ Hq,2), Ex{ζq|v[τ [q]]} ⩽ κ + 1 and Ex{ζ2q |v[τ [q]]} ⩽

(κ+ 2)(κ+ 1). □

11.4. Proof of Theorem 2

The proof is similar to that of Theorem 1 for r = 1; but to improve the convergence

rate, the key is to choose a suitable threshold nψ, and then construct a coupling for

each fixed vertex ⌈nψ⌉ ⩽ j ⩽ n in the (x, n)-Pólya urn tree (Definition 4). The rate

follows from randomising over the uniformly chosen vertex v[1], and taking expectation

with respect to the fitness sequence X.

Proof. Given p > 4, choose α such that 1/2 + 1/p < α < 3/4, and let Aα,n be

as in (2.1). In preparation for the coupling, define ψ > max{1 − (1 − α)/8, χ} and

γ′ < min{ψ, χ(3 − 4α)/4}. Let Ξx := ((Zj [1], Z̃j [1]), 2 ⩽ j ⩽ n), (Sn,j [1], 1 ⩽ j ⩽ n)

and the events F1,j , j = 1, 2, 3 be as in (3.7), (3.8), (3.10) and (5.5). Furthermore, let

U0 ∼ U[0, 1], a0 = Uχ0 and v[1] = ⌈nU0⌉, with the random vectors Y
(v[1],n)
Be , V

(v[1],n)
Po ,

Ŷ
(v[1],n)
Be and V̂

(v[1],n)
Po as in Definition 7, 9, 12 and 13.

Assume that the realisation of the fitness sequence x is such that Aα,n holds (denoted

abusively as x ∈ Aα,n), and U0 ∈ ((j − 1)/n, j/n] for some positive integer ⌈nψ⌉ ⩽

j ⩽ n, so that the uniformly chosen vertex is v[1] = j. We start by coupling Y
(j,n)
Be

and Ŷ
(j,n)
Be . We first show that, on the event

⋂3
i=1 F1,i, there is a positive constant

C := C(x1, µ) such that

(1− Cn−γ
′
)P̂h→j ⩽ Ph→j ⩽ (1 + Cn−γ

′
)P̂h→j , (11.27)

where Ph→j and P̂h→j are as in (3.11) and (5.6), with v[1] replaced by j. Note that

we need ψ > χ in order to apply Lemma 2 and 3, but to see why ψ > 1 − (1 − α)/8

is needed, we sketch the calculation of the upper bound in (11.27). Arguing the same

way as for (11.6), there is a constant C ′ := C ′(x1, µ) such that

Sn,j [1]

Sh−1,n[1]
⩽

(
j

h

)χ
+ C ′n(1−ψ−(1−α)/4)χ for j < h ⩽ n;
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noting that C ′n(1−ψ−(1−α)/4)χ → 0 as n→ ∞ due to our choice of ψ. Letting ε = n−γ
′

in (2.3) of Lemma 3 and ϕn := C ′n(1−ψ−(1−α)/4)χ, we can repeat the same calculation

as for (11.7) to deduce that

Ph→j ⩽ P̂h→j

{
1 + n−γ

′
+ ϕn

(h
j

)χ
+ ϕnn

−γ′
(h
j

)χ}
⩽ P̂h→j

{
1 + n−γ

′
+ ϕnn

(1−ψ)χ + ϕnn
−γ′+(1−ψ)χ

}
.

It is easy to check that ϕnn
(1−ψ)χ → 0 as n→ ∞, if ψ > 1−(1−α)/8. This implies the

upper bound in (11.27). The lower bound can be deduced in a similar way. Therefore,

using the same argument as for Lemma 25, on the event
⋂3
i=1 F1,i,

Px

[
Y

(j,n)
Be ̸= Ŷ

(j,n)
Be

∣∣Ξx

]
=
Cn−γ

′Zj [1]
(µ+ 1)j1−χ

n∑
h=j+1

h−χ ⩽
Cn1−χ−γ

′Zj [1]
j1−χ

. (11.28)

The coupling of Ŷ
(j,n)
Be and V̂

(j,n)
Po is entirely similar to Lemma 26, yielding

Px[Ŷ
(j,n)
Be ̸= V̂

(j,n)
Po |Ξx] ⩽

Z2
j [1]n

1−χ

(µ+ 1)j2−χ
. (11.29)

Next, we couple V̂
(j,n)
Po and V

(j,n)
Po as in the proof of Lemma 27. To bound the sum of

the absolute differences of the Poisson means, we apply (11.10) to obtain (a
(i)
0 )−1/µ −

(j/n)−χ/µ ⩽ c′′n−χjχ−1, where c′′ := c′′(µ). Using the bound to continue as for

(11.12), and then adding the absolute differences over j + 1, ..., n, there are constants

c′ := c′(µ) and c′′ := c′′(µ) such that

Px

[
V

(j,n)
Po ̸= V̂

(j,n)
Po

∣∣Ξx

]
⩽ Zj [1]{c′n−χ

2

jχ−1 + c′′j−2}. (11.30)

Applying the arguments for proving Lemma 9, this time with the bounds (11.28),

(11.29) and (11.30), it follows that

Px

[ 3⋂
i=1

F1,i ∩ {Y(j,n)
Be ̸= V

(j,n)
Po }

]

⩽
cn1−χ−γ

′
xj

j1−χ
+
xj(xj + 1)n1−χ

(µ+ 1)j2−χ
+
c′xjn

−χ2

j1−χ
+
c′′xj
j2

. (11.31)
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To conclude the proof using (11.31), we note that

P
[
Y

(v[1],n)
Be ̸= V

(v[1],n)
Po

]
⩽ E

[
1[Aα,n]Px

[
Y

(v[1],n)
Be ̸= V

(v[1],n)
Po

]]
+ P[Acα,n], (11.32)

where for the first term, we write

Px

[
Y

(v[1],n)
Be ̸= V

(v[1],n)
Po

]
=

1

n

n∑
j=1

Px

[
Y

(j,n)
Be ̸= V

(j,n)
Po

]
⩽

⌈nψ⌉ − 1

n
+

1

n

n∑
j=⌈nψ⌉

Px

[
Y

(j,n)
Be ̸= V

(j,n)
Po

]

⩽ nψ−1 +
1

n

n∑
j=⌈nψ⌉

Px

[ 3⋂
i=1

F1,i ∩ {Y(j,n)
Be ̸= V

(j,n)
Po }

]
+ Px

[( 3⋂
i=1

F1,i

)c]

⩽ nψ−1 +
1

n

n∑
j=⌈nψ⌉

Px

[ 3⋂
i=1

F1,i ∩ {Y(j,n)
Be ̸= V

(j,n)
Po }

]
+

3∑
i=1

Px[F
c
1,i]. (11.33)

When x ∈ Aα,n, we can bound Px[F
c
1,i] using Lemma 2 and (2.4) and (2.5) of Lemma 3.

Note that the bound in (2.5) is of order n−χ, due to our moment assumption on the

fitness sequence. The probability P[Acα,n] can be bounded by Lemma 1. Applying

these bounds, (11.33) and (11.31) to (11.32), and then taking expectation with respect

to X, P
[
Y

(v[1],n)
Be ̸= V

(v[1],n)
Po

]
is at most

C ′n−b +
n∑

j=⌈nψ⌉

{
cµn−χ−γ

′

j1−χ
+

(EX2
2 + µ)n−χ

(µ+ 1)j2−χ
+
c′µn−1−χ2

j1−χ
+
c′′µn−1

j2

}
,

where b = min{χ[p(α−1/2)−1], χ(1−α)/2, χ(3−4α)−4γ′, 1−ψ} and C ′ := C ′(x1, µ, p).

By an integral comparison, the sum above is bounded by C ′′n−min{γ′,ψ(1−χ)+χ,1+χ2−χ}

for some C ′′ := C ′′(x1, µ). Choosing d = min{b, γ′, ψ(1 − χ) + χ, 1 + χ2 − χ} and

C = 2max{C ′, C ′′} in the statement of the theorem, and noting that χ(1 − α)/2 <

χ(1/4− 1/(2p)) concludes the proof. □

Acknowledgements

The author is grateful to the referees and Nathan Ross for their careful reading

of the manuscript and numerous helpful suggestions; and to Tejas Iyer for pointing



Local weak limit of PA trees with additive fitness 83

out the connection to the work [18]. This research is supported by an Australian

Government Research Training Program scholarship, and partially by ACEMS and

the David Lachlan Hay Memorial Fund.

References

[1] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial

optimization and local weak convergence. In Probability on Discrete Structures. vol. 110 of

Encyclopaedia Math. Sci. Springer, Berlin pp. 1–72.

[2] Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science

286, 509–512.

[3] Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar

graphs. Electronic Journal of Probability 6, 1–13.

[4] Berger, N., Borgs, C., Chayes, J. T. and Saberi, A. (2014). Asymptotic behavior and

distributional limits of preferential attachment graphs. Annals of Probability 42, 1–40.

[5] Bhamidi, S. (2007). Universal techniques to analyze preferential attachment trees: Global and

local analysis. In preparation.

[6] Bloem-Reddy, B. and Orbanz, P. (2017). Preferential attachment and vertex arrival times.

Preprint https://arxiv.org/pdf/1710.02159.pdf.

[7] Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001). The degree sequence of a
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[29] Móri, T. F. (2005). The maximum degree of the barabási-albert random tree. Combinatorics,

Probability and Computing 14, 339–348.

https://arxiv.org/abs/2212.05551


Local weak limit of PA trees with additive fitness 85

[30] Pain, M. and Sénizergues, D. (2022). Correction terms for the height of weighted recursive

trees. Annals of Applied Probability 32, 3027–3059.
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