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This appendix is organized as follows. Section 1 discusses in greater detail the coding of bilateral
cooperation agreements and the various covariates. Section 2 provides a formal exposition of the
stochastic actor-oriented model of network evolution. Section 3 presents results for numerous ro-
bustness checks—employing both alternative codings of bilateral agreements and alternative model
specifications—and also extends the analysis to additional issue areas. Section 4 explores the topo-
logical properties of the network, particularly with regard to scale-freeness and clustering. Sections
5 and 6 list Correlates of War country codes and Rohn’s treaty codes, respectively.

1 Data Sources and Operationalization

The source for data on bilateral cooperation agreements is the World Treaty Index (WTI) (Rohn
1984). The WTI is the most comprehensive database for international treaties. While legal schol-
ars often draw on the United Nations Treaty Series (UNTS),1 around half of international agree-
ments are never registered with the UNTS or are registered only after substantial delay. Bilateral
agreements, in particular, are least likely to be reported.2 Such missing data are problematic for
inferential network analysis; due to the interdependencies present in network data, exclusion of just
a few observations can substantially affect statistical inferences.3 The WTI provides coverage of
virtually all known agreements—including UNTS agreements and tens of thousands of unregistered
agreements—and thus largely avoids missingness problems.

Even so, the unique characteristics of bilateral agreements mean that, within the WTI, data cov-
erage for recent years is often quite sparse. This sparseness of coverage is due primarily to two
factors. First, as mentioned above, even when countries register agreements with the UNTS, they
often wait years or decades to do so.4 Consequently, data sets that incorporate the UNTS as a
source—as well as, of course, the UNTS itself—generally provide better coverage further back in
time, while coverage deteriorates for more recent years. Second, for agreements unreported to the
UNTS, scholars must rely on country publications. Individual countries vary substantially in the
frequency and reliability with which they publish treaty lists. Some publish annual lists of treaties
in force, while others publish such lists only every few decades or not at all. For these reasons,
completeness of coverage for the current version of the WTI is extremely high up until the late 1970s

1 See United Nations Treaty Collection (2012).

2 See Rohn (1984). The UN Charter stipulates that “every treaty and every international agreement entered into
by any Member of the United Nations after the present charter comes into force shall as soon as possible be
registered with the Secretariat and published by it.” However, this stipulation is routinely ignored.

3 On consequences of missing network data, see Gile and Handcock (2006); Kossinets (2006); Robins, Pattison, and
Woolcock (2004).

4 Further, the period between a treaty’s registration and its eventual publication in the UNTS may last an additional
five to ten years (Rohn 1984)—though EIF dates of recently registered treaties suggest this gap is closing.
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but deteriorates after 1980. Although the database is continually updated (see, e.g., Bommarito,
Katz, and Poast 2012; Pearson 2001), post-1980 updates rely heavily on the UNTS and therefore
inherit its coverage problems. I opt for the more conservative approach and restrict the analysis
to the post-World War II period ending in 1980, for which data coverage is maximally complete.5

(The first year of the temporal sample varies between 1940 and 1949, depending on the coding of
the dependent variable; e.g., the models in the main paper are estimated on data for the 1947–1980
period.) Analysis of more recent data will become possible as countries publish updated treaty
lists and/or improve reporting of treaties to the UNTS. In any case, this temporal sample provides
an excellent testing ground for the hypotheses, as the decades immediately following World War
II are precisely the period during which bilateral agreements initially proliferated. Furthermore,
Section 3 shows that, even with less complete data coverage, the main empirical findings apply to
the entire 1950–2000 period.

In choosing the treaty categories for the analysis—commodities, military, sciences, and fisheries—I
relied upon five criteria. First, the selected issue areas must involve major fields of international
relations and enjoy some salience in IR scholarship. The selected issues represent the larger cat-
egories of economic relations, security relations, cultural relations, and environmental relations,
respectively. Second, the issues must entail potentially confounding coordination and collaboration
dilemmas, i.e., there must exist a nontrivial risk of cooperation failure. This excludes various ad-
ministrative and aid agreements that are overtly asymmetric or merely procedural—and thus not
representative of a typical cooperation problem. Third, for the sake of drawing comparisons across
categories, the issue areas must be comparable in terms of the number of agreements involved.
The selected categories range in size from 335 to 486 treaties, which is a relatively small variance.
This criterion excludes agreement categories that number well into the thousands (e.g., general
trade and cultural exchange agreements), as well as numerous smaller categories that number only
in the tens. Fourth, agreements should not be limited only to specific segments of the temporal
period. This criterion excludes, among others, economic agreements of more recent vintage, such
as BITs and PTAs. Finally, the issue areas must attract some degree of attention from leaders,
policymakers, or domestic audiences. In short, they should be politically relevant, such that we
might reasonably expect a leader from one country to be influenced by the agreements entered into
force by others. The selected issue areas satisfy each of these criteria. Even so, as shown in Section
3 of this appendix, network influences are apparent in numerous additional issue areas.

Coding of the dependent network variable presents novel challenges. Most commonly, dichotomous
network ties are coded as either present or absent, such that yij = 1 for all periods in which a
network tie exists between i and j, and equals zero otherwise. In the case of bilateral agreements,
such a coding would require precise information on the duration of each agreement. However,
because relatively few countries publicly report the expiration of their agreements, and because
bilateral agreements do not attract the same outside scrutiny as do multilateral agreements, the
details of their intended duration and current legal status are often known only to member states
and relevant third parties. Indeed, many countries do not publish treaty instruments themselves,
but publish only such basic information as title, entry-into-force date, and membership status.
Nonetheless, a random sample of 100 available treaty instruments revealed that the median agreed
treaty length is 10 years. Approximately 40% of agreements are indefinite, while only about 8%
last less than three years. In general, then, the τ = 3 coding used in the main paper creates a

5 The only other large-scale study of bilateral agreements of which I am aware, by Garriga (2009), limits analysis
to the 1950–1979 period for the same reason.
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stronger test of the hypotheses, as it ignores agreements that continue to exercise influence beyond
the three-year mark. At the same time, the historical evidence discussed in the main paper suggests
that network influences are most apparent within the first few years of a treaty’s entry into force,
which means that the τ = 3 criterion captures network effects when they are most likely to be
influential. Sensitivity analyses conducted in Section 3 of this appendix show that using a different
criterion—such as τ = 1, τ = 5, τ = 10, etc.—does not substantively change the main results.

The data coding follows a few basic rules. First, I exclude agreements that involve nonstate
actors (e.g., the IAEA) or political units that lack legal sovereignty (e.g., Hong Kong). Second,
I code the creation of a network tie based on the agreement’s entry-into-force (EIF) date. Date
of signature—i.e., “formalization”—is an alternative criterion;6 however, given that most of the
agreements I analyze don’t require ratification, EIF and signature dates are often identical or very
close together. In any case, using date of signature in place of EIF makes little difference in the
results. Third, if a country experienced a regime change in the interim since an agreement’s EIF
date, I code that agreement as no longer in effect. For this purpose, “regime change” is defined as
a change in Polity score of at least ±5 points on the 21-point Polity scale. Dropping this criterion
or changing the definition of regime change does not substantively change the results. Fourth, if
a dyad signs multiple agreements in a single issue area, I code ties of three years in duration for
each agreement. E.g., if i and j, over a nine-year period, sign agreements at t1, t4, and t7, they
will be coded as having a network tie for the entire period. In practice, given the specificity of
the issue areas under study, such redundant agreements are typically confined to isolated pairs
of highly cooperative states (e.g., France and Germany, United States and Canada, etc.); in such
cases, the coding of a continuous network tie for the entire period accurately reflects the high level
of cooperation between these countries.

As noted in Section 2, these coding restrictions necessitate corresponding restrictions in the network
model. The empirical results are nonetheless robust to alternative codings, as I show in Section
3. An especially important alternative is to code network ties as enduring indefinitely from the
observation moment in which they are created. That is, once i and j sign an agreement, their
network tie remains in place for the duration of the temporal sample.7 This coding builds on
two insights. First, although bilateral agreements are, in the aggregate, virtually universal, within
specific issue areas they are often quite limited; e.g., the number of bilateral commodities or fisheries
agreements currently in place is far smaller than the number of dyads that could potentially create
such agreements. Thus, the move from a state of no agreement to a state of bilateral cooperation is
far more significant than are minor gradations in levels of cooperation. Second, the random sample
of treaty instruments shows that a large number of agreements, about 40%, are in fact indefinite,
or are at least intended to be so. And finite agreements are often renewed or reinstated, further
extending their duration. This coding thus allows us to determine whether the initial onset of
bilateral cooperation between states is conditional on network influences, regardless of the number
of agreements those states subsequently create. This approach is similar in spirit (though not in its
formal properties) to survival or hazard models, where instead of modeling the time to an event,
we model the changes in the network that presage that event—specifically, the structure of the
network for which i and j are most likely to accede to their first bilateral cooperation agreement.8

6 Garriga (2009) uses date of formalization rather than EIF dates.

7 This restriction assumes monotonicity in network ties. See Ripley, Snijders, and Preciado (2012).

8 To more closely approximate a survival scenario, the dependent network variable may also be coded “in reverse,”
where a given ij dyad is assumed to be present only while i and j lack a network tie, and the dyad subsequently
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I present results for this alternative coding in Section 3.

Exogenous Covariates

To account for the numerous possible external influences on bilateral cooperation, I include controls
across security, economic, political, and geographic issue areas (as well as additional controls in
the robustness checks in Section 3 of this appendix).9 The baseline model includes five dyadic
covariates. Distance, measured as the natural log of the distance between i and j’s capital cities
(Gleditsch and Ward 2001), controls for the fact that, ceteris paribus, distant states cooperate less.
Further, because shared borders play a fundamental role in both conflict and cooperation, I include
Contiguity, a dummy variable that equals one if i and j share a border or are separated by
less than 400 miles of water, zero otherwise (Correlates of War Project 2006). IGOs indicates the
number of shared IGO memberships between i and j (Pevehouse, Nordstrom, and Warnke 2004).
States who share many IGO memberships may find it easier to cooperate (Russett, Oneal, and
Davis 1998); or, conversely, IGOs may substitute for bilateral agreements and thus decrease the
need for bilateral cooperation (Small and Singer 1973). Trade is log-transformed trade dependence
between i and j in year 2000 dollars (Barbieri and Keshk 2012). In accordance with the “weak link”
specification, this measure is operationalized as the lower of i or j’s trade dependence on the other.10

Because international institutions are often designed to “manage economic interdependence among
their members” (Russett and Oneal 2001: 213), higher levels of trade should promote cooperation.
Finally, Alliance is a dummy variable that equals one if i and j share a defense treaty, neutrality
pact, or entente, zero otherwise (Leeds et al. 2002). Alliances indicate both ex ante trust and
similarity in foreign policy preferences (cf. Bueno de Mesquita 1975; Kydd 2001), either of which
may improve conditions for cooperation.

I also include three monadic covariates. Democracy measures regime type using the 21-point
Polity IV index, rescaled such that 20 indicates a fully democratic regime and 0 indicates a fully au-
tocratic regime (Gleditsch 2007; Jaggers and Gurr 1995). Capabilities measures military strength
using Correlates of War CINC scores, which are based on state-level energy consumption, iron and
steel production, military expenditures, military personnel, total population, and urban population
(Singer 1987; Singer, Bremer, and Stuckey 1972). Development measures economic development
using per-capita gross domestic product in year 2000 dollars, log transformed (Gleditsch 2002).
These covariates control for the unilateral preference of states for partners who are highly demo-
cratic, militarily powerful, and/or economically developed. For each monadic covariate I also in-
clude a dyadic ij interaction, which controls for the tendency of states that are mutually democratic,
mutually powerful, and/or mutually wealthy to cooperate more.

drops out of the network or “dies” once a tie is initially created. The results from this estimation are comparable
to those from a model that assumes upward monotonicity.

9 I do not control for variations in ratification procedures across states because the vast majority of bilateral
agreements do not require ratification.

10 An alternative approach is to include total dyadic trade rather than trade dependence. This specification also
consistently yielded significant and substantively large estimates.
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2 Model of Network Evolution

This section summarizes the formal properties of the stochastic actor-oriented model (SAOM) of
network evolution.11 I first exposit the standard specification of the SAOM, and I then discuss the
variant of the model employed in the main analyses, which accommodates nondirected network ties
and emphasizes tie creation over maintenance or dissolution.

Assume a network, represented as the n × n matrix Y, where the yij entries define undirected ij
ties (i, j = 1, . . . , n). Y is observed at m points in time, resulting in a time series Y(tm) of network
observations, where m ≥ 2 and t1 < t2 < . . . < tm. χ defines the set of all Y over m, and y = Y(t).
Each observation is assumed to represent a discrete moment in an unobserved continuous process
of network evolution (Snijders 1996). Between observation moments, the network is assumed to
change incrementally, one tie at a time. Each incremental change constitutes a “ministep.” In
standard specification of the SAOM, actors may either extend new ties, retract existing ties, or
maintain the status quo. The evolution of this network is thus described by (1) the opportunity
for an actor to change its outgoing ties and (2) the actual change or ministep made by that actor
(Snijders 2005: 224).

A given i’s opportunity for change is stochastically determined by a rate function, λi(y), assumed
to follow an exponential model (Snijders 2005: 224). The actual change made by i is defined by an
objective function, fi(y). The objective function is the heart of the model. Given the opportunity,
i changes its network ties so as to maximize the fi(y) function (Snijders 2001: 367). Thus, fi(y)
represents i’s preference distribution over χ, or, put differently, fi(y) represents the utility that
i derives from various network configurations. (As detailed below, in symmetric networks, the
objective function also applies to any j partner with whom i wishes to form an agreement.)

Let y(i → j) represent the network that results from y when i changes its tie to j, either by
creating a new tie or dissolving an existing one. Then fi(y) is the value that i attaches to particular
network configuration y, and fi(y(i → j)) is the value that i attaches to the alternative network
configuration y(i→ j). Let Uij be a random variable that contains the residual part of the tendency
of i toward j (i.e., a random error term). In choosing to change a tie, i follows a decision rule such
that it will change its tie to whichever j (j 6= i) maximizes the function fi(y(i → j) + Uij). This
is considered a “myopic stochastic optimization rule” (Snijders 2005: 225). In short, actors choose
network ties that generate the most utility.

If we assume that Uij is drawn from a type I extreme value distribution,12 we can then specify the
probability that i makes a change to a particular yij tie, given that i does in fact make a change of
some kind in its network ties, as

pij(y) =
exp(fi(y(i→ j)))
n∑
k=1
k 6=i,j

exp(fi(y(i→ k)))

, (j 6= i), (1)

which is the same probability function used in multinomial logistic regression (Maddala 1983). In

11 This summary draws heavily on Snijders (1996, 2001) and especially Snijders (2005).

12 This is a common assumption in random utility models. See Snijders (2001: 368).
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short, i evaluates the network and considers the utility of changing its tie to j, relative to the
utility of changing its tie to k other actors (i.e., the remaining actors in the network), and chooses
to change its tie to whichever j maximizes that value.

Together, the rate and objective functions define a continuous-time Markov chain over the space χ
on the set of n actors in the network, with an intensity matrix defined as:13

qij(y) = lim
dt↓0

1

dt
P{Y(t+ dt) = y(i→ j)|Y(t) = y}

= λi(y)pij(y). (2)

The continuous-time Markov Chain reflects the above-stated assumption that network evolution
occurs as a series of incremental changes or ministeps by actors in their network ties, of which
we only observe the accumulation at discrete moments in time (Snijders 2001: 366). The qij(y)
intensity matrix is thus the rate at which an actor takes ministeps—i.e., the probability that i will
take a ministep in the short interval (t, t+ dt)—multiplied by the probability that, if i does take a
ministep, it makes a change to the yij tie (Snijders 2005: 227).

The rate and objective functions must be filled in with a specific model. They depend on unknown
parameters ρ and β, estimated from available data (Snijders 2001: 372). ρ = (ρ1, . . . , ρm−1) is a
vector of length m− 1 that describes the rate of change from one observation moment to the next,
assuming that this rate is the same for all actors.14 The estimated ρ parameters, which are always
positive and significant, indicate the rate at which actors are given opportunities to change their
ties between observation moments.15

The other parameter, β = (β1, . . . , βL), is a vector of weights (i.e., coefficients) that assigns value
to different aspects of the network. This parameterization allows the objective function to be
represented as a weighted sum,

fi(β,y) =

L∑
h=1

βhsih(y), (3)

where the functions sih(y) are L meaningful aspects of the network to which i assigns value ac-
cording to β = (β1, . . . , βL). Importantly, these functions, in addition to including network effects
like preferential attachment and triadic closure, can also include monadic and dyadic covariates
(Snijders 2005: 228). Thus, when an actor changes its network ties, it is influenced by both struc-
tural network effects and exogenous monadic and dyadic effects. Estimating the probability of
i→ j collaboration is a matter of estimating the m− 1 parameters of the rate function and the L
parameters of the objective function. Importantly, the first observation moment (t1) is not itself

13 See Snijders (2005: 225).

14 The assumption that the rate of change is equal for all actors simplifies the model but is not essential. It may
be possible, for example, that the rate at which actors change their outgoing ties varies according to monadic
properties, such as wealth, democracy, or capabilities. These possibilities, however, are beyond the scope of this
paper and must be reserved for future research.

15 Since the rate parameters are substantively uninteresting, they are not reported in the tables.
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modeled, but is instead taken as the “starting point” for network evolution (Snijders, van de Bunt,
and Steglich 2010: 46).

To capture the data generating process underlying bilateral agreements, this standard model must
be adjusted in two ways. First, because bilateral agreements require mutual consent, a given i
cannot simply change ties at will; the intended target, j, must also concede to the agreement. We
thus assume that i proposes a tie to whichever j maximizes the fi(β,y) objective function, and the
tie is created only if j agrees. Specifically, if y+(i, j) represents the network with the proposed ij
tie, and y−(i, j) represents the network without the ij tie, then the probability of j confirming i’s
proposal is given by16

p
(j)
ij (y) =

exp(fj(β,y
+(i, j)))

exp(fj(β,y−(i, j))) + exp(fj(β,y+(i, j)))
. (4)

In other words, the more utility j derives from a particular ij tie, as determined by applying
the objective function to j, the greater the probability of the tie being created. This particular
method of modeling symmetric ties is known as “unilateral initiative and reciprocal confirmation”
(Ripley, Snijders, and Preciado 2012). While it is not the only means of imposing symmetry
on the network,17 it well represents real-world processes of bilateral treaty formation, where states
condition their cooperative endeavors on mutual gains. Manger, Pickup, and Snijders (2012) employ
this assumption to model preferential trade agreements, and Warren (2010) uses it to model military
alliances.

Second, in the standard specification, actors maximize the objective function by either creating or
terminating a tie. In this sense, the objective function can be defined as an “evaluation function”
(Snijders 2005), where actors evaluate the current state of the network and change their ties so
as to generate the most utility, and the estimated β parameters necessarily apply equally to tie
creation and termination. However, the theory advanced in the main paper offers no theoretical
expectations regarding termination of bilateral agreements. As well, the operationalization of the
dependent network variable determines tie duration exogenously. The goal of the analysis is to
assess the effect of network influences on tie creation. I thus incorporate into the model a so-
called “endowment function,” denoted gi(γ,y), which allows actors to respond differently to tie
termination than tie creation. Specifically, for the termination of network ties, the endowment
function is defined as

gi(γ,y) =

L∑
h=1

γhsih(y), (5)

while for the creation of network ties, gi(γ,y) = 0. The objective function of the model is then
given as the sum of the evaluation and endowment effects,

fi(β,y) + gi(γ,y), (6)

16 See Snijders (2008).

17 See Snijders (2008) and Ripley, Snijders, and Preciado (2012) for discussion of other methods.
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which is a more general specification of Eq. 3, where parameters are allowed to differ according to
creation or termination.18 The estimated γh parameters then indicate whether the network effects
and/or covariates act differently on termination than on creation. More importantly, inclusion
of the endowment function means that the β parameters of the evaluation function now capture
the impact of network influences and covariates only on creation of new ties.19 In this context,
the endowment function is only meant to improve inferences regarding network tie creation. As
such, the γh estimates themselves are simply artifacts of the coding scheme and are substantively
uninteresting (and they are not reported in the tables).20

Identification of the SAOM derives from the key assumption that when i takes a ministep (i.e.,
creates a new network tie), it does so independently of all other actors, conditional on the cur-
rent structure of the network and exogenous covariates (Snijders 2005: 224–225). That is, the
model assumes that simultaneous influences are not actually “instantaneous” (cf. Hays, Kachi, and
Franzese Jr 2010: 413). Rather, causality rests on temporal sequencing, wherein an actor first takes
account of the structure of the network, and then changes its network tie accordingly (Snijders,
Steglich, and Schweinberger 2007). That change then becomes part of the network and thus influ-
ences the ministeps of subsequent actors. The total network change between observation moments
is simply the accumulation of these ministeps. In this way, the model allows statistical inferences
to be drawn even from ties that appear to emerge in a single observation moment (e.g., an ikj triad
that is null at t1 but fully complete at t2). This ability to model seemingly simultaneous outcomes
is an important distinction between the SAOM and models that incorporate only lagged network
variables.

Because this model is too complex for direct calculation of probabilities, it is most commonly
estimated through simulation (Snijders 2001). The principle of estimation utilized here is method
of moments, which determines parameters by minimizing the difference between the expected and
observed values of the sih(y) network functions. The observed values are, of course, given by
the data. The expected values are not known ex ante and are thus drawn from simulations of
the Markov chain. Let yobs(tm),m = 1, . . . ,M denote the observed networks. Starting from a
given yobs(tm) network, larger values of the βh parameters should result in larger values of the
associated sih network statistic at observation moment tm+1. The goal of simulation is to locate
those βh parameter values that, when a given sh network statistic is summed over all i and m
in the network, yields an expected value of sh equal to the observed value (Snijders 2005: 235).
Specifically, for a given sh function, the “target value,” based on the observed data, is

18 Alternatively, the evaluation function may be dropped altogether, and a “creation function,” denoted ci(ζ,y),
incorporated alongside the endowment function. ci(ζ,y) is defined analogously to gi(γ,y), except that ci(ζ,y) = 0
for termination of ties, whereas gi(γ,y) = 0 for creation of ties. The objective function is then given as the sum
of the creation and endowment effects. Indeed, the objective function defined in Eq. 3 represents the special
case where ζh = γh = βh (Ripley, Snijders, and Preciado 2012). Nonetheless, although this specification requires
the γh estimates of the endowment function to be interpreted differently than in Eq. 6, the ζh estimates of the
creation function are in fact equivalent to the βh estimates of Eq. 6. See Snijders (2001); Snijders, Steglich, and
Schweinberger (2007).

19 For further discussion, see Ripley, Snijders, and Preciado (2012); Snijders (2001); Snijders, Steglich, and Schwein-
berger (2007).

20 I also estimated models that included only the ci(ζ,y) creation function (see fn. 18) and altogether excluded the
gi(γ,y) function, such that the fi(β,y) objective function is defined entirely by tie creation. The ζh parameter
estimates from this model are comparable to those reported in the main paper, though somewhat diminished in
magnitude. According to Snijders (2001: 385), this approach is less desirable than including endowment effects
alongside either creation or evaluation effects.
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sobs
h =

M−1∑
m=1

n∑
i=1

sih(yobs(tm+1)), (h = 1, . . . L). (7)

Consider the simple case where M = 2. In general, the “distance” between two networks, x and y,
is defined as

‖x− y‖ =
∑
i,j

|xij − yij |. (8)

Applying the same principle, the observed distance between our m = 2 networks, denoted v1, is

v1 = ‖yobs(t2)− yobs(t1)‖. (9)

The simulation would in this case proceed by taking the initial observed network, yobs(t1), and
simulating the Markov chain described in Eq. 2 until the first time point, R1, where

‖Y(R1)− yobs(t1)‖ = v1. (10)

The relevant sh statistics can then be calculated from this Y(R1) simulated network in the same
manner as for the observed network (i.e., according to Eq. 7). The estimation uses a Robbins-Monro
Markov-chain Monte Carlo (MCMC) algorithm to search the parameter space and locate the vector
β̂ for which the observed and expected values of these statistics are equal.21 Finally, the estimation
holds β constant at β̂ and performs additional simulations to estimate the covariance matrix, covβ̂,
using a likelihood ratio / score function variant of the delta method, which Schweinberger and
Snijders (2007) show to be unbiased, N-consistent, and much less computationally intensive than,
e.g., bootstrapping or resampling.22 Taking the square roots of the diagonal elements of covβ̂ yields
the standard errors of β̂ (Snijders 2005: 237). Since the estimates of βh generated by the simulation
are approximately normally distributed (Snijders, van de Bunt, and Steglich 2010), null hypotheses

can be tested with a simple t-statistic, th =
β̂h

s.e.(β̂h)
, in the standard normal distribution (Snijders

2005: 238).

3 Robustness Checks and Additional Issue Areas

This section provides sensitivity analyses for the various alternative codings of the dependent
network variable discussed in Section 1, as well as robustness checks for a variety of additional

21 See Snijders (2005: 236–237). The algorithm typically converges in 1,000–2,500 iterations, depending on the
complexity of the model, number of nodes, number of ties, and number of observation moments. I report these
iterations at the bottom of the tables.

22 Ripley, Snijders, and Preciado (2012) recommend 2,000–4,000 additional iterations to estimate s.e.(β). I typically
use 5,000 iterations, as reported in the tables.
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control variables. I also extend the analysis beyond the four issue areas covered in the main paper.

Robustness Checks and Sensitivity Analyses

I first extend the analysis from the 1950–1980 period to the entire 1950–2000 period.23 The results
of these estimations are shown in Table 1. Although data coverage for the post-1980 period is
relatively less complete than for earlier periods, the main results hold not only for the aggregate
Agreement category, but also for each of the four constituent categories. Indeed, in some cases, the
estimates for the 1950–2000 model are more precise than the estimates from the main paper. These
results confirm that network influences are not merely Cold War artifacts but are instead an ever-
present feature of bilateral cooperation. Interestingly, some of the exogenous covariates produce
substantially different estimates in the post-Cold War period. For example, the democracy controls,
which proved insignificant in the main model, are now positive and significant, which suggests that
the 1980–2000 period witnessed an increase in cooperation by and between democratic regimes—
though this trend appears to have had no dampening effect on the network influences.

I next conduct a sensitivity analysis using alternate codings of the dependent network variables. The
first three columns of Table 2 show the results for varying the τ = 3 restriction, where agreements
are presumed to endure and exercise influence for just one year (τ = 1), five years (τ = 5), or
ten years (τ = 10). The results from these alternate codings generally mirror those from the main
paper. Interestingly, while the substantive effects of triadic closure and degree centrality differ little
between the τ = 1 and τ = 5 codings, they are noticeably smaller for the τ = 10 coding, which
reinforces the assumption that network influences are most apparent within the first few years of
an agreement’s formation. More generally, the estimates confirm that the results reported in the
main paper are not artifacts of the coding scheme.

The remaining columns of Table 2 explore the coding discussed at the end of Section 1, wherein
network ties, once created, are assumed to endure indefinitely. This data construction bears sim-
ilarities to dynamic synthetic networks, often studied by network physicists, wherein the network
continuously expands in size and network ties, once created, are permanent (e.g., Barabási and
Albert 1999). To accommodate this restriction, the model incorporates an “up only” monotonicity
constraint, such that ties are only permitted to move in an upward direction and cannot be retracted
(Ripley, Snijders, and Preciado 2012).24 The results show that, in most cases, network influences
are strongly apparent. TriadClosure remains significantly positive in the aggregate coding and
each of the constituent categories, with the exception, interestingly, of commodity agreements. The
Degree effect remains significantly positive in all categories.

Table 3 shows the results for additional robustness checks to the main network model. First, to
control for sociocultural influences on cooperation, I include dummy variables that capture shared
religion, shared language, or shared ethnicity (Gartzke and Gleditsch 2006). Of the three, only
Language significantly affects the probability of bilateral cooperation—though in a negative,
rather than a positive, direction. At the same time, none of the estimates for network influence

23 Note that, because the WTI lists no new commodities agreements past 1996, the Commodity model covers only
the 1950–1996 period.

24 Since the Density effect defines the balance between “up only” and “down only” probabilities, it is formally
undefined for these models. I simply fix the effect to zero or exclude it altogether.

10



Table 1: Effect of Network Influence on Creation of Bilateral Agreements (1950–2000)

Agreement Military Commodity† Sciences Fisheries

Density −2.332∗∗∗ −3.135∗∗∗ −3.052∗∗∗ −2.752∗∗∗ −3.016∗∗∗

(0.043) (0.109) (0.121) (0.069) (0.106)

TriadClosure 0.505∗∗∗ 0.48∗∗ 0.431∗ 0.718∗∗∗ 0.884∗∗

(0.048) (0.151) (0.197) (0.126) (0.311)

PrefAttachment 0.06∗∗∗ 0.186∗∗∗ 0.177∗∗∗ 0.145∗∗∗ 0.258∗∗∗

(0.005) (0.021) (0.025) (0.013) (0.032)

Distance 0.002 0.029∗∗∗ 0.000 0.015∗∗ −0.006

(0.003) (0.006) (0.006) (0.005) (0.006)

Contiguity 0.715∗∗∗ 0.535∗∗∗ 0.486∗∗∗ 0.43∗∗∗ 1.277∗∗∗

(0.075) (0.132) (0.144) (0.117) (0.133)

IGOs 0.013∗∗∗ 0.024∗∗∗ 0.037∗∗∗ 0.017∗∗∗ 0.01

(0.003) (0.005) (0.006) (0.004) (0.005)

Alliance 0.021 0.394∗∗∗ −0.344∗∗ 0.028 0.139

(0.068) (0.112) (0.13) (0.094) (0.123)

Trade 0.184∗∗∗ 0.235∗∗∗ 0.207∗∗∗ 0.212∗∗∗ 0.116∗∗∗

(0.011) (0.025) (0.023) (0.016) (0.019)

Democracy 0.01∗ 0.05∗∗∗ 0.013 −0.027∗∗∗ 0.009

(0.005) (0.01) (0.01) (0.007) (0.009)

Dem × Dem 0.001∗∗ 0.000 0.000 0.002∗∗∗ 0.000

(0.000) (0.001) (0.001) (0.001) (0.001)

Capabilities 3.099∗∗∗ 0.568 3.508∗∗∗ 3.415∗∗∗ 2.97∗∗∗

(0.236) (0.506) (0.384) (0.348) (0.486)

Cap × Cap −1.884 1.834 −2.005 −1.123 −2.619

(1.515) (1.817) (2.007) (1.737) (2.699)

Development 0.135∗∗∗ 0.2∗ −0.081 0.086 0.379∗∗∗

(0.036) (0.081) (0.073) (0.05) (0.074)

Dev × Dev −0.03 −0.006 −0.026 −0.029 −0.06

(0.019) (0.046) (0.04) (0.026) (0.044)

Iterations β 1,361 1,685 1,136 1,529 1,359

Iterations s.e.(β) 5,000 5,000 5,000 5,000 5,000
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. Standard errors in parentheses. N1950 = 75;
N2000 = 170. † 1950–1996 period only. Estimates indicate effect on network tie creation,
based on stochastic actor-oriented model of network evolution. All t-ratios for deviations
from targeted values < 0.1 (excellent convergence).

is affected by these controls. I also add a control for shared preferences or “affinity.” Developed
by Gartzke (1998), this measure uses voting in the United Nations General Assembly to infer
(dis)similarities in the foreign policy preferences of states. Intuitively, we might expect that bilateral
cooperation is greatest between countries that share preferences. However, the Affinity estimate
is significantly negative rather than positive. The network influences, on the other hand, remain
positive and highly significant. To account for hegemony effects and Cold War dynamics, I include
dummy variables for the United States and the Soviet Union, which capture the preference of states
for ties to the US and USSR, respectively. Given the high degree centrality of both the US and
USSR, we might expect that when either state is the prospective target of a tie, the probability
of tie creation increases. In a simple “covariates only” specification, where network influences are
excluded, the estimates for both effects (not shown) are insignificant. However, after introducing
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Table 3: Additional Robustness Checks (1950–1980)

Agreement Agreement Agreement Agreement Agreement Agreement

Density −2.138∗∗∗ −2.146∗∗∗ −2.135∗∗∗ −2.134∗∗∗ −2.135∗∗∗ −2.112∗∗∗

(0.052) (0.052) (0.053) (0.053) (0.056) (0.053)

TriadClosure 0.556∗∗∗ 0.558∗∗∗ 0.555∗∗∗ 0.573∗∗∗ 0.473∗∗∗ 0.551∗∗∗

(0.059) (0.058) (0.058) (0.059) (0.064) (0.062)

PrefAttachment 0.051∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.046∗∗∗ 0.083∗∗∗ 0.054∗∗∗

(0.005) (0.005) (0.005) (0.006) (0.007) (0.006)

Distance −0.004 −0.004 −0.004 −0.004 −0.001 −0.004

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Contiguity 0.73∗∗∗ 0.762∗∗∗ 0.742∗∗∗ 0.746∗∗∗ 0.667∗∗∗ 0.704∗∗∗

(0.094) (0.096) (0.094) (0.095) (0.095) (0.093)

IGOs 0.021∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.022∗∗∗ 0.02∗∗∗ 0.023∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Alliance −0.079 −0.009 −0.039 −0.007 0.09 −0.06

(0.083) (0.088) (0.084) (0.086) (0.085) (0.083)

Trade 0.184∗∗∗ 0.189∗∗∗ 0.184∗∗∗ 0.181∗∗∗ 0.184∗∗∗ 0.182∗∗∗

(0.013) (0.014) (0.014) (0.013) (0.014) (0.013)

Democracy 0.003 0.001 0.003 0.002 0.014∗ 0.007

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Dem × Dem 0.001 0.001 0.001 0.001∗ 0.001 0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Capabilities 3.288∗∗∗ 3.216∗∗∗ 3.3∗∗∗ 3.267∗∗∗ 4.753∗∗∗ 2.993∗∗∗

(0.265) (0.262) (0.263) (0.259) (0.281) (0.299)

Cap × Cap −1.614 −1.507 −1.681 −1.757 −2.828 −1.76

(1.611) (1.618) (1.637) (1.676) (1.905) (1.72)

Development 0.144∗∗ 0.15∗∗∗ 0.146∗∗ 0.137∗∗ 0.135∗∗ 0.138∗∗

(0.046) (0.045) (0.046) (0.048) (0.048) (0.047)

Dev × Dev −0.053∗ −0.056∗ −0.052∗ −0.044 −0.048 −0.053∗

(0.024) (0.025) (0.024) (0.024) (0.026) (0.024)

Religion −0.005

(0.066)

Language −0.342∗∗

(0.119)

Ethnicity −0.255

(0.132)

Affinity −0.311∗∗

(0.115)

USA −2.361∗∗∗

(0.237)

USSR 0.472∗

(0.219)

Iterations β 1,994 2,102 2,053 2,126 2,101 1,963

Iterations s.e.(β) 5,000 5,000 5,000 5,000 5,000 5,000
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. Standard errors in parentheses. N1950 = 75; N1980 = 150. Estimates
indicate effect on network tie creation, based on stochastic actor-oriented model of network evolution. All t-ratios
for deviations from targeted values < 0.1 (excellent convergence).

network influences, as shown in the last two columns of Table 3, the estimate for USA becomes
strongly negative. States do not prefer ties to the US. Rather, they prefer ties to high-degree
partners. Controlling for degree centrality reveals that prospective partners in fact avoid the United
States. The estimate for USSR, on the other hand, is weakly positive, suggesting that, at least for
the 1950–1980 period, the USSR did indeed attract cooperative partners beyond its high degree
centrality. Most importantly, for both hegemony effects, the estimates of network influence remain
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Figure 1: Effects of Triadic Closure and Degree Centrality across Treaty Categories
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Note: Dots are point estimates. Lines are 95% confidence intervals. Models include same covariates as Model

2 of main paper (estimates not shown).“Gap” panel shows estimates for PrefAttachment subtracted from

TriadClosure. See Section 6 of this SI for treaty codes.

substantively unchanged; nodal heterogeneity clearly matters, but it does not appear to undermine
the network influences. As a final consideration, I also estimated a simplified “rule of three” model
(Achen 2002), which includes only the network influences. The estimates of network effects in
this specification (not shown) were even larger and more precise than in the full model. I also
estimated separate models for each one of the network effects (i.e., with either of TriadClosure
or PrefAttachment excluded) and again obtained larger, more precise estimates.

Testing Additional Issue Areas

While the four issue areas discussed in the main paper—commodities, military, science, and
fisheries—represent key areas of bilateral cooperation, they are by no means exhaustive. Rohn
(1984) identified over 90 distinct categories. Many of these contain too few agreements to ob-
tain reliable network estimates, while others concern issues—such as relief/rescue missions and
humanitarian aid—that are highly asymmetric or do not involve traditional cooperation problems.
I nonetheless obtained good estimates for 24 additional categories. Notably, some of these cate-
gories, such as telecommunications and postal services, have been previously identified by scholars
as key areas of of coordination (e.g., Krasner 1991; Morrow 1994).
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The estimated coefficients and standard errors for TriadClosure and PrefAttachment (la-
beled as “Degree”) are shown in Figure 1. The estimate for TriadClosure is positive in all
categories and statistically significant at p < .05 in 17 of the categories, including agreements in
taxation and fiscal evasion (3TAXAT), patents and copyrights (3PATEN), general nonspecific trade
(3TRADE), air and water transport (5AIR, 5WATER), mass media (6MEDIA), postal services
(6POST), telecommunications (6TELCO), cultural and artistic exchange (7CULT), administrative
and legal areas (9CONSU, 9LEGAL, 9VISAS), and others. Degree effects are even more consis-
tently significant; no matter the issue, states prefer to cooperate with high-degree partners. The
difference in significance between the two effects may be due to the fact that less active states—of
which there are many in the bilateral cooperation network—generally have few opportunities for
triadic closure, as they have few “friends of friends” connections to draw upon. In such cases,
the degree centrality of potential targets becomes a more important consideration; since there are
nearly always some high-degree states to look toward, preferential attachment should be more ap-
parent across a wider variety of networks.25 At the same time, as indicated by the third panel
in Figure 1—and consistent with my expectation from Hypothesis 2—the substantive impact of
triadic closure is nearly always greater than the impact of degree centrality, regardless of issue
area; while degree centrality attracts partners, states especially prefer agreements with countries
that have ties to their existing partners.

4 Topology of the Bilateral Cooperation Network

As with other network models, such as exponential random graph models (Robins et al. 2007), the
SAOM connects local interdependent processes—e.g., triadic closure, preferential attachment—to
global network structures. Yet, as an “actor-oriented” model, the SAOM especially emphasizes
individual initiative; network interdependencies are a direct consequence of utility maximization
by individual actors (Snijders, van de Bunt, and Steglich 2010). This feature of the model makes it
especially attractive for the study of international relations, where actors often possess substantial
agency. Nonetheless, a large body of work in network analysis focuses instead on the large-scale
statistical properties of networks.26 These approaches emphasize network topology, or the macro-
level arrangement of nodes and ties.

Much of this recent literature explores so-called “scale-free” networks.27 The key consideration
in identifying a scale-free network is the “nodal degree” of the individual actors, i.e., the number
of network ties possessed by each node. If a network is scale free, the probability distribution of
nodal degrees follows a power law, such that the network has a small number of very high-degree
or “popular” nodes and a large number of much less popular nodes. A second commonly studied
topological feature of networks is clustering, perhaps best known from the “small world” model
developed by Watts and Strogatz (1998), where most nodes are not connected to one another
directly but can be reached in a small number of steps via mutual acquaintances.28 More generally,

25 An important area for future research is to explore how the substance and significance of triadic closure varies
according to the density of the network.

26 For overviews, see Albert and Barabási (2002); Newman (2003b); Newman, Barabási, and Watts (2006).

27 Studies of scale-free networks are far too numerous to summarize here. See Barabási and Albert (1999) for the
seminal contribution.

28 Specifically, a small-world network is one in which the average distance between nodes is proportional to the
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clustering refers to the extent of transitivity or closure in a network, defined in terms of the number
of fully closed triangles of actors (Holland and Leinhardt 1970).

The analysis in the main paper focuses on local processes of network selection—rather than emer-
gent network properties—for two reasons. First, much of our current understanding of emergent
properties is based on extremely large networks, such as internet router systems (Faloutsos, Falout-
sos, and Faloutsos 1999), electrical power grids (Albert, Albert, and Nakarado 2004), the world
wide web (Barabási and Albert 1999), cellular and metabolic networks (Jeong et al. 2000), academic
coauthorships (Newman 2001), and so on. Such networks typically consist of thousands, millions, or
even billions of nodes, and they may have no upper limit on growth. Ease of observation in many of
these networks results in thousands of unique cross sections of data, yielding a massive, fine-grained
time series of observations. As well, the nodes themselves are typically “like units,” functionally
undifferentiated or otherwise highly homogenous, making the inclusion of covariates largely unnec-
essary. In contrast, the bilateral cooperation network is small, consisting of, at most, 150 nodes,
which limits the ability of analysts to tease out distinctive network topologies.29 Yet, despite their
smaller number, these nodes are heterogeneous, necessitating consideration of covariates; if these
covariates compete for influence with network effects, then the distinctive topologies associated
with particular selection processes may not emerge.30 For example, Fowler, Dawes, and Christakis
(2009) find that nearly half of the indegree of individuals can be explained by genetic variation,
and de Blasio, Seierstad, and Aalen (2011) similarly find that unit heterogeneity overwhelms pref-
erential attachment. In short, given the characteristics of the bilateral cooperation network, any
evidence drawn from the topology of that network should be interpreted with caution.31

Second, current standards of inquiry in political science privilege causal mechanisms. Taken alone,
network topologies reveal little about the underlying mechanisms that produced those topologies.
Indeed, “the mere fact that a nodal degree distribution follows a power law actually implies nothing
either about the mechanism giving rise to it or about its particular architecture” (Keller 2005:
1061).32 While scale-free networks are often linked to preferential attachment processes, scholars
have identified numerous alternative selection processes that yield comparable degree distributions
(e.g., Dangalchev 2004; Li et al. 2005; Newman 2005). Similarly, extensive network clustering
clearly reflects a tendency toward closure in social relations, but a variety of distinctive closure
mechanisms could be responsible for such an outcome (Newman, Barabási, and Watts 2006; Watts
1999; Watts and Strogatz 1998). More generally, inferring micro-level mechanisms from macro-level
structural properties commits the classic ecological fallacy. By focusing the analysis on how local
structural forces impact network selection, I keep causal mechanisms at the forefront while still

logarithm of the number of nodes in the network (Watts and Strogatz 1998).

29 In reference to a network of 306 nodes (more than twice as many as my largest network), Barabási and Albert
(1999) state that “the relatively small size of the system [...] severely limits the data quality.”

30 On a related point, Snijders (2011: 503) notes that, “For most types of networks between human individuals this
[the scale-free property] does not seem realistic because various constraints will limit the frequency of occurrence
of very high degrees.”

31 Note, however, that this argument in no way implies that network influences are not apparent in bilateral coop-
eration. It simply means that these influences may not generate distinctive topological properties. In fact, the
cooperation network more closely resembles traditional small-scale social networks (e.g., classes of schoolchildren,
interlocking corporate directorates, etc.), which have for decades been studied as interdependent systems, even if
their topologies aren’t particularly interesting.

32 This fact was readily recognized by the earliest analysts of power-law distributions, such as Yule (1925), Simon
(1955), and Merton (1968).
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incorporating important structural features of the network.

With these caveats in mind, I explore the topological properties of the bilateral cooperation network,
focusing on the aggregate Agreement coding. Figures 2 and 3 illustrate the structure of the
network at two points in time. I argue in the main paper that triadic closure and preferential
attachment drive selection of bilateral partners. Each of these processes carries implications for the
overall topology of the network. As discussed above, under ideal conditions, preferential attachment
leads to a scale-free network.33 We have many reasons to suspect that IR networks stray far from
these ideal conditions. Finding evidence of a scale-free architecture despite these inhospitable
conditions thus bodes well for Hypothesis 2—especially in combination with the SAOM’s strong
evidence for preferential attachment. Triadic closure, on the other hand, represents a form of
homophily, where similarities between nodes are defined in terms of shared partners rather than
shared nodal attributes (Newman 2002, 2003a). Under ideal conditions, homophily should lead to
clustering beyond that which we’d expect to see in a random network.

Taken separately, scale-free and clustered networks—and the corresponding attachment and closure
processes—might appear contradictory. This is not the case, however. Clustering in scale-free
graphs is in fact so pervasive as to be nearly universal.34 As observed by Ravasz and Barabási
(2003):“The scale-free property and clustering are not exclusive: for a large number of real networks,
including metabolic networks, the protein interaction network, the World Wide Web, and even some
social networks, the scale-free topology and high clustering coexist.”35 In short, an enormous array
of real-world networks exhibit both a power-law degree distribution and nontrivial amounts of
clustering. The goal of the present analysis is to determine if these features also characterize the
bilateral cooperation network.

I first examine the network for evidence of scale-free topology. Such networks are characterized by
the degree distribution

p(x) ∝ x−α, (11)

where x indicates nodal degree (i.e., each individual actor’s number of network ties) and α is a
scaling parameter. Typically, though not always, α lies in the range 2 < α < 3. As Newman (2005:
325) notes, “Identifying power-law behavior in either natural or manmade systems can be tricky.”
I employ the method of Clauset, Shalizi, and Newman (2009), which estimates the α parameter
using maximum likelihood techniques while also estimating the minimum x value for which the
power-law distribution accurately describes the data.36 This is currently the most reliable method

33 The archetypical Barabási-Albert model assumes both preferential attachment and growth. As the network grows
in size, new nodes attach to existing nodes in proportion to their degree centrality. Without growth, the network
becomes saturated and the nodal degree distribution tends toward a Gaussian rather than a power law. (But
see Xie, Zhou, and Wang (2008) for exceptions.) Additionally, the model assumes that the network never loses
actors, and network ties, once established, never disappear. See Barabási and Albert (1999).

34 More specifically, the scale-free topology conflicts with clustering only if the rules of network formation stipulate
that actors follow a preferential attachment strategy to the exclusion of all other strategies. In that case, clustering
declines with the size of the network. But this result is simply an artifact of the model. Indeed, the inability of
the Barabási-Albert model to produce a level of network clustering similar to that seen in real-world networks is
a widely recognized weakness (Klemm and Eguiluz 2002b).

35 This intriguing feature of complex networks has prompted a substantial body of research. This literature is far
too large to exhaustively summarize, but examples include Chen and Chen (2007); Dell’Amico (2006); Holme and
Kim (2002); Jacob and Mörters (2012); Klemm and Eguiluz (2002a,b); Ravasz and Barabási (2003).

36 Empirical network data typically only follow a power law in the tail of the degree distribution, where x is some
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Figure 2: Full Network, Agreement Coding, 1960
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Note: Nodes are countries. Lines indicate bilateral cooperation agreements. Isolates not shown.

of estimating power-law distributions. This approach also incorporates a goodness-of-fit test in the
form of a modified “p-value,” 0 ≤ p ≤ 1, generated by comparing the observed network data to
synthetic data drawn from a hypothesized underlying power-law distribution. If the observed data
systematically differ from the synthetic data, indicated by a p-value close to zero (the minimum),
the model is not a plausible fit to the data. On the other hand, p-values closer to one (the
maximum) indicate good fit. (Note that, contrary to the p-values typically used for hypothesis
testing, large values are desirable here.) Clauset, Shalizi, and Newman (2009) recommend p ≤ 0.1
as the threshold for rejecting the power-law hypothesis. Thus, p-values greater than this threshold
leave a reasonable probability of the data having been drawn from a power-law distribution.

value greater than one (Clauset, Shalizi, and Newman 2009).
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Figure 3: Full Network, Agreement Coding, 1980
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The log-log plot in the left-hand panel of Figure 4 illustrates the probability distribution of nodal
degrees in the bilateral cooperation network, expressed as the log ratio of nodes in the network that
have x connections to other nodes. The estimated α = 2.18 clearly falls within the 2 < α < 3 range
commonly found in scale-free networks. As well, the p-value greatly exceeds the recommended 0.10
threshold. The estimated min(x) = 2 indicates that this power-law relationship holds for nodal
degrees of 2 or greater. In short, despite its relatively small size, the bilateral cooperation network
shows clear evidence of a scale-free topology, further corroborating the hypothesized preferential
attachment process.

I next measure the extent of triadic closure within the network using a global clustering coefficient,
CG, which calculates the ratio of transitive triads to potentially intransitive triads. As a ratio,
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Figure 4: Scale-Freeness and Clustering in the Bilateral Cooperation Network
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0 ≤ CG ≤ 1, where larger values of CG indicate more extensive triadic closure throughout the
network. There is no particular threshold value of CG beyond which a graph is clustered rather
than unclustered. Instead, we must determine whether the network exhibits more clustering than
would be expected by random chance. To accomplish this comparison, I employ random graph
simulations. For each annual t observation of the network, I generate 100 random Bernoulli graphs,
where the p(yij) probability of a given network tie in year t is equal to the density of the observed
network at year t. I derive the mean clustering coefficient and 95% confidence intervals across all
100 graphs, which together provide, for each year of analysis, an expectation of how much clustering
should exist by random chance. The right-hand panel of Figure 4 plots the random graph clustering
coefficients (dashed line) against the CG statistics derived from the observed networks (solid line).
For all years of analysis, the network contains nontrivial amounts of clustering. Indeed, aside from
a few anomalous years in the early 1950s, the clustering coefficients in the observed network are
typically an order of magnitude or more larger than what we’d expect by random chance.

I reemphasize that, given the relatively small size of the network, these results should be interpreted
with caution. Nonetheless, they show clear evidence that the topology of the bilateral coopera-
tion network exhibits characteristics consistent with the proposed local network processes, further
corroborating the importance of network influences. Taken as a whole, the results show that (1)
states preferentially seek ties to highly popular targets, and this preference manifests itself at the
macro level with a small number of highly popular states and a large number of peripheral states,
and that (2) states also seek ties to partners of partners, and this tendency manifests itself at the
macro level with more closed triads than would be expected by random chance.
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5 Correlates of War Country Acronyms

Afghanistan (AFG); Albania (ALB); Algeria (ALG); Angola (ANG); Argentina (ARG); Australia
(AUL); Austria (AUS); Bahamas (BHM); Bahrain (BAH); Bangladesh (BNG); Barbados (BAR);
Belgium (BEL); Belize (BLZ); Benin (BEN); Bhutan (BHU); Bolivia (BOL); Bosnia and Herze-
govina (BOS); Botswana (BOT); Brazil (BRA); Brunei (BRU); Bulgaria (BUL); Burkina Faso
(BFO); Burundi (BUI); Cambodia (CAM); Cameroon (CAO); Canada (CAN); Cape Verde (CAP);
Central African Republic (CEN); Chad (CHA); Chile (CHL); China (CHN); Colombia (COL);
Comoros (COM); Congo (CON); Costa Rica (COS); Cuba (CUB); Cyprus (CYP); Czechoslo-
vakia (CZE); Democratic Republic of the Congo (DRC); Denmark (DEN); Djibouti (DJI); Do-
minican Republic (DOM); Ecuador (ECU); Egypt (EGY); El Salvador (SAL); Equatorial Guinea
(EQG); Eritrea (ERI); Ethiopia (ETH); Fiji (FIJ); Finland (FIN); France (FRN); Gabon (GAB);
Gambia (GAM); German Democratic Republic (GDR); German Federal Republic (GFR); Ghana
(GHA); Greece (GRC); Guatemala (GUA); Guinea (GUI); Guinea-Bissau (GNB); Guyana (GUY);
Haiti (HAI); Honduras (HON); Hungary (HUN); Iceland (ICE); India (IND); Indonesia (INS);
Iran (IRN); Iraq (IRQ); Ireland (IRE); Israel (ISR); Italy (ITA); Ivory Coast (CDI); Jamaica
(JAM); Japan (JPN); Jordan (JOR); Kenya (KEN); Kuwait (KUW); Laos (LAO); Lebanon (LEB);
Lesotho (LES); Liberia (LBR); Libya (LIB); Luxembourg (LUX); Madagascar (MAG); Malawi
(MAW); Malaysia (MAL); Maldives (MAD); Mali (MLI); Malta (MLT); Mauritania (MAA); Mau-
ritius (MAS); Mexico (MEX); Mongolia (MON); Morocco (MOR); Mozambique (MZM); Myanmar
(MYA); Namibia (NAM); Nepal (NEP); Netherlands (NTH); New Zealand (NEW); Nicaragua
(NIC); Niger (NIR); Nigeria (NIG); North Korea (PRK); Norway (NOR); Oman (OMA); Pak-
istan (PAK); Panama (PAN); Papua New Guinea (PNG); Paraguay (PAR); Peru (PER); Philip-
pines (PHI); Poland (POL); Portugal (POR); Qatar (QAT); Republic of Vietnam (RVN); Ro-
mania (ROM); Russia (RUS); Rwanda (RWA); Saudi Arabia (SAU); Senegal (SEN); Sierra Leone
(SIE); Singapore (SIN); Solomon Islands (SOL); Somalia (SOM); South Africa (SAF); South Korea
(ROK); Spain (SPN); Sri Lanka (SRI); Sudan (SUD); Suriname (SUR); Swaziland (SWA); Swe-
den (SWD); Switzerland (SWZ); Syria (SYR); Taiwan (TAW); Tanzania (TAZ); Thailand (THI);
Togo (TOG); Trinidad and Tobago (TRI); Tunisia (TUN); Turkey (TUR); Uganda (UGA); United
Arab Emirates (UAE); United Kingdom (UKG); United States of America (USA); Uruguay (URU);
Venezuela (VEN); Vietnam (DRV); Yemen Arab Republic (YAR); Yemen People’s Republic (YPR);
Yugoslavia (YUG); Zambia (ZAM); Zimbabwe (ZIM).

6 Rohn’s Treaty Codes

Friendship and amity (1AMITY); diplomacy/recognition (1RECOG); human health (2SANIT);
claims, debts, and assets (3CLAIM); payments and currency (3PAYMT); customs duties (3CUSTO);
taxation (3TAXAT); general trade (3TRADE); investment guarantee (3INVES); technical coop-
eration (economic) (3TECH); trade and payments (3TRAPA); unspecified aid (4AID); air trans-
port (5AIR); water transport (5WATER); mass media communications (6MEDIA); postal ser-
vices (6POST); telecommunications (6TELCO); cultural exchange (7CULT); educational exchange
(7EDUC); energy (8ENERG); foreign consulates (9CONSU); legal procedures (9LEGAL); visas
and passports (9VISAS); general administration (9ADMIN).
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