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Proof of Lemma 1

Let vt = i. Take any j ∈ L and consider profile (j, v−t). Since t is neither majority-pivotal

nor median pivotal, k(j, v−t) = k(v), and, thus, ph(j, v−t) = ph(v) for every h ∈ L. Moreover,

k(v) is a majority party in (j, v−t) if and only if it is so in v.

Suppose vt is not strategically sincere for t in v. There exists j ∈ L \ {i} such that

u(pj(v); t) > u(pi(v); t). Take any ϵ ∈ (0, 1). From the discussion in the previous paragraph,

we conclude that

U(j, v−t; t|ϵ)− U(vt, v−t; t|ϵ) ≥
ϵ

n
[u(pj(v); t)− u(pi(v); t)] > 0,

which implies that vt is not a robust best response to v−t.

Suppose vt is strategically sincere for t in v. Then, for every j ∈ L, u(pi(v); t) ≥

u(pj(v); t). Thus,

U(vt, v−t; t|ϵ)− U(j, v−t; t|ϵ) ≥
ϵ

n
[u(pi(v); t)− u(pj(v); t)] ≥ 0

for every j ∈ L and every ϵ ∈ [0, 1). Hence, vt is a robust best response to v−t. �
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Proof of Proposition 1

1. Suppose |Xm| > M . Define the voting profile v by the following:

vt =


m if t ∈ Xm,

min

(
argmax

{
u(θi; t)

∣∣∣∣ i ∈ argmax{u(smj ; t)|j ∈ L}
})

otherwise.
(9)

Since vt = m for every t ∈ Xm, bm(v) > M . Thus, k(v) = m, and no voter is majority-

or median-pivotal. By construction, v is strategically sincere. Lemma 1 then implies that

v ∈ V (T, θ, q).

2. Let v ∈ V (T, θ, q) and bk(v)(v) > M . Since bk(v)(v) > M , no voter is majority- or

median-pivotal. By Lemma 1, v is strategically sincere. Suppose k(v) < m. Then tM > yk

which implies Tk(v)(v) ⊆ {t1, . . . , tM−1}, contradicting bk(v)(v) > M . Suppose k(v) > m.

Then tM−1 < y
k(v)

, which implies Tk(v)(v) ⊆ {tM , . . . , tℓ}, contradicting bk(v)(v) > M . Thus,

k(v) = m. Since v is strategically sincere, Tm(v) ⊆ Xm. Hence, |Xm| > M . �

Proof of Proposition 2

Suppose |Xm| < M − 1 and {tM−1, tM , tM+1} ⊆ Xm. Let v be as defined in (9). Note that,

by definition of Xm, m ∈ argmax{u(smi ; t)|i ∈ L} if and only if t ∈ Xm. Thus, Tm(v) = Xm,

implying Tm(v) < M − 1. Also, for every t with vt ̸= m, either t < y
m

or t > ym. If

t < y
m
, then t < θm < smi for every i > m. Thus, there is no i ∈ L such that i > m and

i ∈ argmax{u(smj ; t)|j ∈ L}. Therefore, vt < m. Similarly, if t > ym, then vt > m. Then

since y
m

≤ tM−1 < tM+1 ≤ ym,
∑m−1

i=1 bi(v) < M − 1 and
∑ℓ

i=m+1 bi(v) < M − 1. This

implies that k(v) = m and no voter is majority- or median-pivotal. Then, by construction,

v is strategically sincere, and, by Lemma 1, v ∈ V (T, θ, q). �
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Proof of Proposition 3

1. Assume |Xm| = M . Define the voting profile v as in (9). By construction, Tm(v) = Xm

and T ∗(v) = T . We just have to show that v ∈ V (T, θ, q). For any t ∈ T \Xm, t is neither

majority-pivotal, nor median-pivotal. Thus, by Lemma 1, vt is a robust best response. Take

any t ∈ Xm and take any ϵ ∈ [0, 1]. Since m is the majority party in v,

U(v; t|ϵ) = (1− ϵ)u(θm; t) +
ϵ

n

Mu(θm; t) +
∑

i∈L\{m}

bi(v)u(s
m
i ; t)

 . (10)

Consider voter t’s deviation by voting for some j ̸= m and let v′ = (j, v−t). Since tM−1 ∈ Xm,∑m−1
i=1 bi(v) < M − 1. Since tM+1 ∈ Xm,

∑ℓ
i=m+1 bi(v) < M − 1. Thus, k(v′) = m, implying

pi(v
′) = pi(v) = smi for every i ∈ L. Since m is not a majority party in v′,

U(v′; t|ϵ) = 1

n

(M − 1)u(θm; t) +
∑

i∈L\{m}

bi(v)u(s
m
i ; t) + u(smj ; t)

 . (11)

Subtracting (11) from (10), we obtain

U(v; t|ϵ)− U(v′; t|ϵ) =
1− ϵ

n

(M − 1)u(θm; t)−
∑

i∈L\{m}

bi(v)u(s
m
i ; t)


+
1

n
[u(θm; t)− u(smj ; t)].

Since t ∈ Xm, u(θm; t) ≥ u(smi ; t) for every i ∈ L. Also,
∑

i∈L\{m} bi(v) = M − 1. Hence,

U(v; t|ϵ) ≥ U(v′; t|ϵ). Therefore, v is a robust equilibrium.

2. Assume |Xm| = M−1. If m = 1, then t1 ∈ Xm, implying tM+1 /∈ Xm, a contradiction.

If m = ℓ, then tn ∈ Xm, implying tM−1 /∈ Xm, a contradiction. Thus, 2 ≤ m ≤ ℓ − 1. Let
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rm = n−1
2n

. For each i ∈ L \ {m}, let

ri =
1

n

∣∣∣∣∣
{
t ∈ T \Xm

∣∣∣∣ i = min

(
argmax

{
u(θi; t)

∣∣∣∣ i ∈ argmax{u(smj ; t)|j ∈ L}
})} ∣∣∣∣∣.

Note that
∑

i∈L ri = 1. Either
∑

i∈L ris
m
i ≥ θm or

∑
i∈L ris

m
i < θm. If the former is true,

then let t∗ = max{t ∈ T |t < y
m
}. If the latter is true, then let t∗ = min{t ∈ T |t > ym}.

Note that t∗ /∈ Xm. Define the voting profile v by the following:

vt =


m if t ∈ Xm ∪ {t∗},

min

(
argmax

{
u(θi; t)

∣∣∣∣ i ∈ argmax{u(smj ; t)|j ∈ L}
})

otherwise.

(12)

Note that Tm(v) = Xm∪{t∗} and so |Tm(v)| = M . By construction, for every t ∈ T \{t∗},

vt is strategically sincere in v. For any t ∈ T \Tm(v), t is neither majority-pivotal, nor median-

pivotal. So, vt is a robust best response by Lemma 1. For every t ∈ Xm, the argument in the

proof of the first statement of Proposition 3 holds true. Lastly, consider voter t∗’s deviation

by voting for some j ̸= m, and let v′ = (j, v−t∗). Since k(v′) = m, pi(v
′) = pi(v) = smi for

every i ∈ L. Let

i∗ = min

(
argmax

{
u(θi; t

∗)

∣∣∣∣ i ∈ argmax{u(smi ; t∗)|i ∈ L}
})

.

Note that if j = i∗, then Ti(v
′) = nri for every i ∈ L; and that if j ̸= i∗, then Ti(v

′) = nri

for every i ∈ L \ {j, i∗}, Tj(v
′) = nrj + 1, and Ti∗(v) = nri∗ − 1. Take any ϵ ∈ [0, 1). Then,

∑
i∈L

riu(s
m
i ; t

∗)− U(v′; t∗|ϵ) = 1

n
[u(smi∗ ; t

∗)− u(smj ; t
∗)] ≥ 0 (13)

since u(smi∗ ; t
∗) = max{u(smi ; t∗)|i ∈ L}. Note that, by construction, either t∗ < θm ≤∑

i∈L ris
m
i or

∑
i∈L ris

m
i < θm < t∗. Then, since f is strictly concave, u(θm; t

∗) >
∑

i∈L riu(s
m
i ; t

∗).
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Then, from (13), we conclude that u(θm; t
∗) > U(v′; t∗|ϵ). Then, for sufficiently small ϵ,

U(v; t∗|ϵ)−U(v′; t∗|ϵ) = (1−ϵ)[u(θm; t
∗)−U(v′; t∗|ϵ)]+ϵ

[∑
i∈L

bi(v)

n
u(smi ; t

∗)− U(v′; t∗|ϵ)

]
> 0.

Thus, v is a robust equilibrium of G(T, θ, q, 0). �

Proof of Proposition 4

Assume {tM−1, tM , tM+1} * Xm. For each t ∈ T , let

α(t) = min

(
argmax

{
u(θi; t)

∣∣∣∣∣i ∈ argmax

{
u(sm+1

j ; t)

∣∣∣∣j ∈ argmax{u(smh ; t)|h ∈ L}
}})

,

and define voting profile v̂ by the following.

v̂t =

 m if t ∈ [y
m
, tM ],

α(t) otherwise;
(14)

Recall that θ1 < tM < θℓ and θm ≤ tM . This implies that m ≤ ℓ − 1. For every t >

max{tM , ym}, v̂t = α(t) ≥ m + 1. If m = 1, then y
m

= t1, so {t1, . . . , tM} ⊆ Tm(v̂).

Otherwise, for every t < y
m
, v̂t = α(t) ≤ m− 1. Thus, when m = 1, party m is the majority

party, and when m > 1, party m is the median party. Then, for every i ∈ L, pi(v̂) = smi .

For every ϵ ∈ [0, 1] and every t ∈ T ,

U(v̂; t|ϵ) = (1− ϵ)u(θ1; t) +
ϵ

n

∑
i∈L

bi(v̂)u(s
m
i ; t) (15)

if m = 1; and

U(v̂; t|ϵ) = 1

n

∑
i∈L

bi(v̂)u(s
m
i ; t) (16)

if m > 1.
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The proof will include a series of lemmas. The first lemma shows that, for voters who

vote for the median party or any party to the right of the median in profile v̂, a deviation

by voting for any party to the left of the median is not profitable.

Lemma 3 Assume m > 1. For every t ≥ y
m

and every j ≤ m− 1, there exists ϵ̄ > 0 such

that U(v̂; t|ϵ) ≥ U(j, v̂−t; t|ϵ) for every ϵ ∈ [0, ϵ̄].

Proof: Take any t ≥ y
m

and let h = v̂t. Note that h ≥ m. Take any j ≤ m − 1. First,

suppose tM−1 ≥ y
m
. Then

∑m−1
i=1 bi(v̂) < M − 1, implying k(j, v̂−t) = m. Then, for every

ϵ ∈ [0, 1],

U(v̂; t|ϵ)− U(j, v̂−t; t|ϵ) =
1

n
[u(smh ; t)− u(smj ; t)]. (17)

If t ≥ tM+1, then h = α(t) ∈ argmax{u(smi ; t)|i ∈ L}. So, u(smh ; t) ≥ u(smj ; t), implying (17)

is nonnegative. If t ∈ [y
m
, tM ], then h = m. Since t ≥ y

m
=

smm−1+smm
2

, u(smm; t) ≥ u(smj ; t).

Thus, (17) is nonnegative.

Now suppose tM−1 < y
m
. Then,

∑m−1
i=1 bi(v̂) = M − 1. A1 implies that, for each

i = 2, . . . , ℓ, ( θi−1+θi
2

, θi) ∩ T ̸= ∅. Since tM ≥ θm, it must be that tM−1 > θm−1+θm
2

.

Since y
m

> tM−1, y
m

> θm−1+θm
2

, which implies xm(q) > θm−1. Then, it must be that

q > θm−1. Since tM−1 ∈ ( θm−1+θm
2

, y
m
), α(tM−1) = m − 1, so bm−1(v̂) > 0. This implies

that k(j, v̂−t) = m − 1, and, so, pi(j, v̂−t) = sm−1
i for every i ∈ L. We consider two cases

separately: m > 2 and m = 2.

First, suppose m > 2. Since t1 < θ1, α(t1) = 1. So, b1(v̂) > 0, implying bm−1(j, v̂−t) < M .

Then, for every ϵ ∈ [0, 1],

U(j, v̂−t; t|ϵ) =
1

n

(∑
i∈L

bi(v̂)u(s
m−1
i ; t) + [u(sm−1

j ; t)− u(sm−1
h ; t)]

)
. (18)

Suppose q > θm, i.e., xm(q) = 2θm − q. Then, A(j, v̂−t) = [2θm−1 − q, q]. Since xm(q) ∈

(θm−1, θm), for every i ≥ m, smi = sm−1
i . For every i ≤ m − 1, smi = 2θm − q > sm−1

i . Since

t ≥ tM > 2θm − q, u(2θm − q; t) > u(sm−1
i ; t) for every i ≤ m − 1. Also, since t > θm,
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sm−1
j < 2θm − q, and sm−1

h ∈ [θm, q], it must be the case that u(sm−1
h ; t) > u(sm−1

j ; t). Then,

U(v̂; t|ϵ)− U(j, v̂−t; t|ϵ) =
1

n

(
m−1∑
i=1

bi(v̂)[u(2θm − q; t)− u(sm−1
i ; t)] + [u(sm−1

h ; t)− u(sm−1
j ; t)]

)
> 0

for every ϵ ∈ [0, 1]. Suppose q ∈ (θm−1, θm). Then, for every i ≥ m, sm−1
i = q, and, for every

i ≤ m− 1, smi = q. Thus, for every ϵ ∈ [0, 1],

U(v̂; t|ϵ)− U(j, v̂−t; t|ϵ) =
1

n

(
m−1∑
i=1

bi(v̂)[u(q; t)− u(sm−1
i ; t)] (19)

+
ℓ∑

i=m

bi(v̂)[u(s
m
i ; t)− u(q; t)] + [u(q; t)− u(sm−1

j ; t)]

)

Since sm−1
i < q < t, u(q; t) > u(sm−1

i ; t) for every i ≤ m− 1 (including j). Since t > θm and

smi ∈ [θm, 2θm − q], u(smi ; t) > u(q; t) for every i ≥ m. Thus, (19) is positive.

Now suppose m = 2. Then, b1(v̂) = M − 1 and j = 1. Thus, party 1 is the majority

party in (j, v̂−t). Let C(t) = 1
n

∑
i∈L bi(v̂)u(s

m
i ; t)− u(θ1; t) and let

G(t) =
1

n

(∑
i∈L

bi(v̂)u(s
m
i ; t)−

∑
i∈L

bi(j, v̂−t)u(s
m−1
i ; t)

)
.

Then, for every ϵ ∈ [0, 1],

U(v̂; t|ϵ)− U(j, v̂−t; t|ϵ) = (1− ϵ)C(t) + ϵG(t). (20)

Note that t > θm, s
m
i ∈ [xm(q), xm(q)], and θ1 < xm(q). This implies that u(smi ; t) > u(θ1; t)

for every i ∈ L. Hence, C(t) > 0. If G(t) ≥ 0, then (20) is positive for every ϵ ∈ [0, 1]. If

G(t) < 0, then let ϵ̄ = C(t)
C(t)−G(t)

. Then, for every ϵ ∈ [0, ϵ̄], U(v̂; t|ϵ) ≥ U(j, v̂−t; t|ϵ), which

completes the proof of the lemma.
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We are ready to prove the first statement of the proposition. Suppose tM+1 ∈ Xm. Since

θm ≤ tM < tM+1 ≤ ym, tM ∈ Xm. Then, it must be the case that tM−1 < y
m
, implying m >

1. Note that [y
m
, tM ] ∩ T = {tM}. Since tM ∈ Xm, v̂tM = m ∈ argmax{u(smi ; tM)|i ∈ L}.

Also, by construction, v̂t = α(t) ∈ argmax{u(smi ; t)|i ∈ L} for every t ∈ T \ {tM}. Thus, v̂

is strategically sincere, i.e., T ∗(v̂) = T .

I now will show that v̂ ∈ V (T, θ, q). Since tM+1 ∈ Xm, v̂tM+1
= α(tM+1) = m. This

implies that
∑ℓ

i=m+1 bi(v̂) < M − 1. Then, for every t ≤ tM−1, voter t is neither majority-

pivotal nor median-pivotal. Thus, by Lemma 1, v̂t is a robust best response to v̂−t for every

t ≤ tM−1. Take any t ≥ tM , and consider voter t’s deviation by voting for any j ̸= v̂t. If

j ≥ tM , the deviation would not change the median party, i.e., k(j, v̂−t) = m. Then, for every

i ∈ L, pi(j, v̂−t) = smi = pi(v̂). Since v̂t ∈ argmax{u(smi ; t)|i ∈ L}, U(v̂; t|ϵ) ≥ U(j, v̂−t; t|ϵ)

for every ϵ ∈ [0, 1]. Suppose j ≤ m − 1. By Lemma 3, there exists ϵ̄ > 0 such that

U(v̂; t|ϵ) ≥ U(j, v̂−t; t|ϵ) for every ϵ ∈ [0, ϵ̄]. Thus, v̂ ∈ V (T, θ, q), which completes the proof

of the first statement in Proposition 4.

To prove the second statement, assume tM+1 /∈ Xm. Let

β(t) = min

(
argmax

{
u(θi; t)

∣∣∣∣∣i ∈ argmax

{
u(smj ; t)

∣∣∣∣j ∈ argmax{u(sm+1
h ; t)|h ∈ L}

}})
.

Define voting profile ṽ by

ṽt =

 m+ 1 if t ∈ [tM , ym+1],

β(t) otherwise.
(21)

I will prove that either v̂ or ṽ is a robust voting equilibrium of G(T, θ, q, 0). Define voting

profiles v̂′ and ṽ′ by the following.

v̂′t =

 m+ 1 if t = tM ,

v̂t otherwise;
(22)
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and

ṽ′t =

 m if t = tM ,

ṽt otherwise.
(23)

That is, v̂′ is the voting profile in which the median voter unilaterally deviates from v̂ by

voting for m+1, and ṽ′ is the voting profile in which the median voter unilaterally deviates

from ṽ by voting for m. For each t ∈ T and each ϵ ∈ [0, 1], let ∆̂(t|ϵ) = U(v̂; t|ϵ)− U(v̂′; t|ϵ)

and ∆̃(t|ϵ) = U(ṽ; t|ϵ)− U(ṽ′; t|ϵ).

Note that, for every t ≤ y
m
, α(t) ≤ m. Also, since tM+1 ≥ ym, for every t ≥ tM+1,

α(t) ≥ m+ 1. Thus,
m∑
i=1

bi(v̂) = M and
m∑
i=1

bi(v̂
′) = M − 1. (24)

Since tM−1 <
θm+θm+1

2
≤ sm+1

m +sm+1
m+1

2
, β(t) ≤ m for every t ≤ tM−1. Clearly, for every t ≥ ym+1,

β(t) ≥ m+ 1. Hence,

m∑
i=1

bi(ṽ) = M − 1 and
m∑
i=1

bi(ṽ
′) = M. (25)

An implication of (24) and (25) is that k(v̂) = k(ṽ′) = m and k(v̂′) = k(ṽ) = m + 1. Thus,

for every i ∈ L, pi(v̂) = pi(ṽ
′) = smi and pi(v̂

′) = pi(ṽ) = sm+1
i . I now present a series of

lemmas.

Lemma 4 For each given ϵ ∈ [0, 1], ∆̂(t|ϵ) is decreasing in t and ∆̃(t|ϵ) is increasing in t.

Proof: For each t ∈ T , let

D̂(t) =
1

n

[∑
i∈L

bi(v̂)u(s
m
i ; t)−

∑
i∈L

bi(v̂
′)u(sm+1

i ; t)

]
(26)
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and

D̃(t) =
1

n

[∑
i∈L

bi(ṽ)u(s
m+1
i ; t)−

∑
i∈L

bi(ṽ
′)u(smi ; t)

]
(27)

I first claim D̂ is decreasing and D̃ is increasing in t. Since v̂ and v̂′ differ only in that

v̂tM = m and v̂′tM = m+ 1, we write

D̂(t) =
1

n

(∑
i∈L

bi(v̂)[u(s
m
i ; t)− u(sm+1

i ; t)] + [u(sm+1
m ; t)− u(sm+1

m+1; t)]

)

=
1

n

(∑
i∈L

bi(v̂)[f(|smi − t|)− f(|sm+1
i − t|)] + [f(|sm+1

m − t|)− f(|sm+1
m+1 − t|)]

)
.(28)

Note that, for each i ∈ L, smi ≤ sm+1
i and sm+1

m ≤ sm+1
m+1. Then, since f is decreasing and

concave, for each i ∈ L, f(|smi − t|) − f(|sm+1
i − t|) is decreasing in t and f(|sm+1

m − t|) −

f(|sm+1
m+1 − t|) is decreasing in t. Hence D̂ is decreasing in t. A symmetric argument proves

that D̃ is increasing in t.

Let ϵ ∈ [0, 1]. First, suppose that bm(v̂) < M and bm+1(v̂
′) < M . Then, ∆̂(t|ϵ) = D̂(t),

implying ∆̂(t|ϵ) is decreasing in t. Second, suppose bm(v̂) = M . Since t1 < θ1, v̂t1 = 1. This,

together with (24), implies that m = 1. Since tn ≥ θℓ, v̂tn = ℓ, implying bm+1(v̂
′) < M .

Then,

∆̂(t|ϵ) = (1− ϵ)

[
u(θ1; t)−

1

n

∑
i∈L

bi(v̂
′)u(sm+1

i ; t)

]
+ ϵD̂(t).

But since θ1 ≤ sm+1
i for every i ∈ L, the expression in the square bracket is decreasing in t.

Thus, ∆̂(t|ϵ) is decreasing in t. Lastly, suppose bm+1(v̂
′) = M . Again since v̂tn = v̂′tn = ℓ, it

must be the case that m+ 1 = ℓ. Then since v̂t1 = 1, bm(v̂) < M − 1. Then,

∆̂(t|ϵ) = (1− ϵ)

[
1

n

∑
i∈L

bi(v̂)u(s
m
i ; t)− u(θℓ; t)

]
+ ϵD̂(t).

But since smi ≤ θℓ for every i ∈ L, the expression in the square bracket is decreasing in t.

Thus, ∆̂(t|ϵ) is decreasing in t. A symmetric argument proves ∆̃(t|ϵ) is increasing in t.
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Lemma 5 The following is true.

1. If ∆̂(tM |0) > 0, then v̂ is a robust equilibrium of G(T, θ, q, 0).

2. If ∆̃(tM |0) > 0, then ṽ is a robust equilibrium of G(T, θ, q, 0).

3. If ∆̂(tM |0) = ∆̃(tM |0) = 0, then either v̂ or ṽ is a robust equilibrium of G(T, θ, q, 0).

Proof: 1. Suppose ∆̂(tM) > 0. Take any t ∈ T , and let h = v̂t. Assume t ≥ tM+1 and

notice that v̂t ≥ m + 1. Consider voter t’s deviation by voting for j. Suppose j ≥ m.

Then the deviation does not change the majority or the median status of party m. Since

h ∈ argmax{u(smi ; t)|i ∈ L}, U(v̂; t|ϵ) ≥ U(j, v̂−t; t|ϵ) for every ϵ ∈ [0, 1]. Suppose j ≤ m−1.

Then, by Lemma 3, U(v̂; t|ϵ) ≥ U(j, v̂−t; t|ϵ) for sufficiently small ϵ. Thus, v̂t is a robust best

response to v̂−t.

Assume t ≤ tM . Again, consider voter t’s deviation from v̂ by voting for any j ̸= h, i.e.,

we consider the profile (j, v̂−t). If j ≤ m, then the deviation would not change the identity

of the median or majority party. So, k(j, v̂−t) = k(v̂) = m, and, for every i ∈ L, pi(j, v̂−t) =

pi(v̂) = smi And since, by construction, h ∈ argmax{u(smi ; t)|i ≤ m}, U(j, v̂−t; t|ϵ) ≤ U(v̂; t|ϵ)

for every ϵ ∈ [0, 1].

Now suppose j ≥ m + 1. Then k(j, v̂−t) = m + 1 and pi(j, v̂−t) = sm+1
i for every i ∈ L.

Note that the only possible difference between v̂′ and (j, v̂−t) is that, in (j, v̂−t), one vote

for h in v̂ is transferred to j, and, in v̂′, one vote for m is transferred to m + 1. I claim

U(v̂′; t|ϵ) ≥ U(j, v̂−t; t|ϵ) for every ϵ ∈ [0, 1]. To see this, first, suppose m < ℓ − 1. Then,

there is no majority party in v̂′ or (j, v̂−t). So, for every ϵ ∈ [0, 1],

U(v̂′; t|ϵ)− U(j, v̂−t; t|ϵ) =
1

n

(
[u(sm+1

m+1; t)− u(sm+1
j ; t)] + [u(sm+1

h ; t)− u(sm+1
m ; t)]

)
.

Since t ≤ tM and m + 1 ≤ j, we have t < θm+1 = sm+1
m+1 ≤ sm+1

j , implying u(sm+1
m+1; t) ≥

u(sm+1
j ; t). If h = m, then clearly u(sm+1

h ; t) = u(sm+1
m ; t). Suppose h < m. Then, since
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h = α(t), t ≤ smh +θm
2

. But since smh ≤ sm+1
h ≤ sm+1

m and θm ≤ sm+1
m ,

smh +θm
2

≤ sm+1
h +sm+1

m

2
,

implying u(sm+1
h ; t) ≥ u(sm+1

m ; t). Therefore, U(v̂′; t|ϵ) ≥ U(j, v̂−t; t|ϵ). Second, suppose

m = ℓ− 1. Then, m+ 1 is the majority party in v̂′ and (j, v̂−t), and j = m+ 1 = ℓ. Then,

U(v̂′; t|ϵ)− U(j, v̂−t; t|ϵ) =
ϵ

n
[u(sm+1

h ; t)− u(sm+1
m ; t)] ≥ 0.

Hence, the claim is true. This implies that, if U(v̂; t|ϵ) ≥ U(v̂′; t|ϵ) for sufficiently small

ϵ, then v̂t is a robust best response to v̂−t. Thus, it suffices to show that ∆̂(t|ϵ) ≥ 0 for

sufficiently small ϵ. But since t ≤ tM and ∆̂(t|ϵ) is decreasing in t by Lemma 4, it suffices to

show ∆̂(tM |ϵ) ≥ 0 for sufficiently small ϵ. Suppose 1 < m < ℓ− 1. Then, for every ϵ ∈ [0, 1],

∆̂(tM |ϵ) = ∆̂(tM |0) > 0. Suppose m = 1 or m = ℓ− 1. Then,

∆̂(tM |ϵ) = (1− ϵ)∆̂(tM |0) + ϵD̂(tM). (29)

If D̂(tM) is nonnegative, then ∆̂(tM |ϵ) ≥ 0 for every ϵ ∈ [0, 1]. If D̂(tM) < 0, then ∆̂(tM |ϵ) ≥

0 for every ϵ ∈ [0, ∆̂(tM |0)
∆̂(tM |0)−D̂(tM )

]. Therefore, v̂ ∈ V (T, θ, q).

2. A symmetric argument proves the second statement.

3. Suppose ∆̂(tM |0) = ∆̃(tM |0) = 0. Again, note that, if ∆̂(tM |ϵ) ≥ 0 for sufficiently

small ϵ, then v̂ is a robust equilibrium, and that, if ∆̃(tM |ϵ) ≥ 0 for sufficiently small ϵ, then

ṽ is a robust equilibrium. If 1 < m < ℓ− 1, then ∆̂(tM |ϵ) = ∆̂(tM |0) = 0 for every ϵ ∈ [0, 1].

Thus, v̂ is a robust equilibrium. Suppose m = 1. Since ∆̂(tM |0) = 0, we obtain from (29)

that ∆̂(tM |ϵ) = ϵD̂(tM). Similarly, because ∆̃(tM |0) = 0, ∆̃(tM |ϵ) = ϵD̃(tM). So, it suffices

to prove that either D̂(tM) ≥ 0 or D̃(tM) ≥ 0.

Note that

∆̂(tM |0) = u(θ1; tM)− 1

n

∑
i∈L

bi(v̂
′)u(s2i ; tM) (30)
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and

∆̃(tM |0) = 1

n

∑
i∈L

bi(ṽ)u(s
2
i ; tM)− u(θ1; tM). (31)

Since ∆̂(tM |0) = ∆̃(tM |0) = 0, we have

1

n

∑
i∈L

bi(v̂
′)u(s2i ; tM) =

1

n

∑
i∈L

bi(ṽ)u(s
2
i ; tM) = u(θ1; tM).

Then, from (26) and (27), we obtain that

D̂(tM) =
1

n

∑
i∈L

bi(v̂)u(s
1
i ; tM)− u(θ1; tM) (32)

and

D̃(tM) = u(θ1; tM)− 1

n

∑
i∈L

bi(ṽ
′)u(s1i ; tM). (33)

Since tM ≤ θ1+θ2
2

, u(θ1; tM) ≥ u(s22; tM) and, for every i ≥ 3, u(θ1; tM) > u(s2i ; tM).

Then since ∆̂(tM |0) = 0, (30) implies u(θ1; tM) < u(s21; tM). Then, it must be that s21 =

x2(q) ∈ (θ1, θ2). Suppose x2(q) = q. Then, for every i ≥ 2, s1i = q. And since u(q; tM) >

u(θ1; tM), we conclude D̂(tM) > 0 from (32). This implies ∆̂(tM |ϵ) ≥ 0 for every ϵ ∈ [0, 1].

Hence, v̂ ∈ V (T, θ, q). Now suppose x2(q) = 2θ2 − q. This implies q > θ2. Comparing the

definitions of v̂ and ṽ′, we first conclude that T1(v̂) = T1(ṽ
′) = {t1, . . . , tM}. Note that,

since q > θ2, x1(q) = x2(q) = q, which implied that, for every i ≥ 2, s1i = s2i . Consider

a voter t ∈ [tM+1, y2]. By the definition of ṽ′, ṽ′t = 2. Since t ≥ tM+1 > y1 = θ1+θ2
2

,

u(s11; t) = u(θ1; t) < u(θ2; t) = u(s12; t). Since t ≤ y2, u(s
1
2; t) = u(s22; t) ≥ u(s23; t) = u(s13; t).

Thus, v̂t = α(t) = 2 as well. Since s1i = s2i for every i ≥ 3, α(t) = β(t) for every t > y2.

Thus, we conclude that v̂t = ṽ′t for every t ∈ T , which implies bi(v̂) = bi(ṽ
′) for every i ∈ L.

Then, from (32) and (33), we conclude that either D̂(tM) ≥ 0 or D̃(tM) ≥ 0. Thus, either v̂

or ṽ is a robust equilibrium. A symmetric argument proves the statement for the case that

m = ℓ− 1.
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Lemma 6 ∆̂(tM |0) + ∆̃(tM |0) ≥ 0.

Proof: We consider three mutually exclusive and jointly exhaustive cases.

CASE 1: Assume m = 1.

Note that party 1 is the majority party in v̂ and ṽ′, and party 2 is the median party in

v̂′ and ṽ. Then, by definition,

∆̂(tM |0) = u(θ1; tM)− 1

n

∑
i∈L

bi(v̂
′)u(s2i ; tM) (34)

and

∆̃(tM |0) = 1

n

∑
i∈L

bi(ṽ)u(s
2
i ; tM)− u(θ1; tM). (35)

By adding (34) and (35), we write

∆̂(tM |0) + ∆̃(tM |0) = 1

n

∑
i∈L

[bi(ṽ)− bi(v̂
′)]u(s2i ; tM). (36)

From (21), we write

ṽt =

 2 if t ∈ [tM , y2],

β(t) otherwise.
(37)

Also, from (14) and (22), we write

v̂′t =


1 if t ≤ tM−1

2 if t = tM

α(t) otherwise.

(38)

Since tM−1 < θ1+θ2
2

and θ1 ≤ s21 < s22 = θ2, for every t ≤ tM−1, argmax{u(s2i ; t)|i ∈

L} = {1}. Thus, for every t ≤ tM−1, ṽt = β(t) = 1. For any t > y2, clearly β(t) ̸= 1.

Thus, T1(ṽ) = {t1, . . . , tM−1}. Also, since tM+1 > y1, for any t ≥ tM+1, α(t) ̸= 1. So,

14



T1(v̂
′) = {t1, . . . , tM−1}. Therefore, b1(ṽ) = b1(v̂

′). Then, (36) is reduced to

∆(tM |0) + ∆̃(tM |0) = 1

n

ℓ∑
i=2

[bi(ṽ)− bi(v̂
′)]u(s2i ; tM). (39)

First, suppose q < θ1. Let L− = {i ∈ L|θi < 2θ1 − q}. Suppose L− = L. Then,

s1i = s2i = θi for every i ∈ L. Then, α(t) = 2 if and only if t ∈ ( θ1+θ2
2

, θ2+θ3
2

] = (y1, y2].

Since tM+1 > y1, T2(ṽ) = T2(v̂
′). Also, since s1i = s2i = θi for every i ∈ L, α(t) = β(t) for

every t ∈ L. Hence, bi(ṽ) = bi(v̂
′) for every i = 2, . . . , ℓ. Therefore, ∆̂(tM |0) + ∆̃(tM |0) = 0.

Suppose L− ̸= L. Let j = maxL−.

Suppose j ≥ 2. For every t ≤ θj+2θ1−q

2
,

α(t) = β(t) = min

(
argmax{u(θi; t)|i = 1, . . . , j}

)
.

For every t >
θj+s2j+1

2
,

α(t) = β(t) = min

(
argmax

{
u(θi; t)|i ∈ argmax{u(s2j ; t)|j = j + 1, . . . , ℓ}

})
.

Let T̃ = {t ∈ T | θj+2θ1−q

2
< t ≤

θj+s2j+1

2
}. For every t ∈ T̃ , v̂′t = j + 1 and ṽt = j. Hence,

∆̂(tM |0) + ∆̃(tM |0) = |T̃ |
n

[u(θj; tM)− u(s2j+1; tM)] ≥ 0

because tM < θj < s2j+1.

Suppose j = 1. Then, for every t > tM ,

α(t) = β(t) = min

(
argmax

{
u(θi; t)|i ∈ argmax{u(s2j ; t)|j = 2, . . . , ℓ}

})
. (40)

This implies that T2(v̂
′) = {t ∈ T |t ∈ [tM , y2]}, and so b2(ṽ) = b2(v̂

′). Also, for every
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i = 3, . . . , ℓ, bi(v̂
′) = bi(ṽ). Thus, ∆̂(tM |0) + ∆̃(tM |0) = 0.

Suppose θ1 < q < θ2. Then, for every i = 2, . . . , ℓ, s1i = q, which implies that, for every

t > tM , (40) is true. Then, b2(ṽ) = b2(v̂)+ 1, and, for every i = 3, . . . , ℓ, bi(v̂) = bi(ṽ). Thus,

∆(tM |0) + ∆̃(tM |0) = 0.

Lastly, suppose q > θ2. Then, for every i = 2, . . . , ℓ, s1i = s2i . Then, again, for every

t > tM , (40) is true, implying ∆̂(tM |0) + ∆̃(tM |0) = 0.

CASE 2: Assume m = ℓ− 1. A symmetric argument can prove the statement for this case.

CASE 3: Assume 1 < m < ℓ− 1.

Party m is the median party in v̂ and ṽ′, and party m+ 1 is the median party in v̂′ and

ṽ. Then,

∆̂(tM |0) = 1

n

(∑
i∈L

bi(v̂)[u(s
m
i ; tM)− u(sm+1

i ; tM)] + u(sm+1
m ; tM)− u(sm+1

m+1; tM)

)
(41)

and

∆̃(tM |0) = 1

n

(∑
i∈L

bi(ṽ)[u(s
m+1
i ; tM)− u(smi ; tM)] + u(smm+1; tM)− u(smm; tM)

)
. (42)

By adding (41) and (42), we obtain

∆̂(tM |0) + ∆̃(tM |0) =
1

n

(∑
i∈L

[bi(v̂)− bi(ṽ)][u(s
m
i ; tM)− u(sm+1

i ; tM)] (43)

+u(sm+1
m ; tM)− u(sm+1

m+1; tM) + u(smm+1; tM)− u(smm; tM)

)
.

First, assume q < θm. Let L− = {i ∈ L|θi < 2θm − q}. Note that, for every i ∈ L−,

smi = sm+1
i . In particular, m ∈ L−. Also, if i /∈ L−, then smi = 2θm−q. Then, (43) is reduced
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to

∆̂(tM |0) + ∆̃(tM |0) =
1

n

( ∑
i∈L\L−

[bi(v̂)− bi(ṽ)][u(2θm − q; tM)− u(sm+1
i ; tM)] (44)

+u(smm+1; tM)− u(θm+1; tM).

)

Suppose L− = L. Then, smm+1 = θm+1, so ∆̂(tM |0) + ∆̃(tM |0) = 0. Suppose L− ̸= L. Let

j = maxL−. Suppose j ≥ m+ 1. If t ≤ θj+2θm−q

2
, then v̂t ∈ L− and ṽt ∈ L−. If t >

θj+sm+1
j+1

2
,

then

α(t) = β(t) = min

(
argmax

{
u(θi; t)|i ∈ argmax{u(sm+1

j ; t)|j = j + 1, . . . , ℓ}
})

,

so v̂t = ṽt. Let T̃ = {t ∈ T | θj+2θm−q

2
< t ≤

θj+sm+1
j+1

2
}. For every t ∈ T̃ , v̂t = j + 1 and ṽt = j.

This implies that for every i > j + 1, bi(v̂) = bi(ṽ), and bj+1(v̂)− bj+1(ṽ) = |T̃ |. Then, from

(44), we have

∆̂(tM |0) + ∆̃(tM |0) = |T̃ |
n

[
u(2θm − q; tM)− u(sm+1

j+1 ; tM)

]
≥ 0,

because tM < 2θm − q < sm+1
j+1 . Now suppose j = m. For every t ≤ θm+1+sm+1

m+2

2
, α(t) ≤ m+ 1

and β(t) ≤ m+ 1. For every t >
θm+1+sm+1

m+2

2
,

α(t) = β(t) = min

(
argmax

{
u(θi; t)|i ∈ argmax{u(sm+1

j ; t)|j = m+ 2, . . . , ℓ}
})

,

so v̂t = ṽt. This implies that for every t > m + 1, Ti(v̂) = Ti(ṽ), so bi(v̂) = bi(ṽ). Also,

from the strategies, Tm+1(v̂) = {t ∈ T |α(t) = m + 1} = {t ∈ T |tM+1 ≤ t ≤ ym+1}, and

Tm+1(ṽ) = {t ∈ T |tM ≤ t ≤ ym+1}, implying bm+1(v̂)− bm+1(ṽ) = −1. Then, from (44), we

conclude that ∆̂(tM |0) + ∆̃(tM |0) = 0.

Second, assume θm < q < θm+1. Then, for every i = 1, . . . ,m, sm+1
i = q, and, for every

17



i = m+ 1, . . . , ℓ, smi = q. Then from (43) we have

∆̂(tM |0) + ∆̃(tM |0) =
1

n

( m∑
i=1

[bi(v̂)− bi(ṽ)][ui(s
m
i ; tM)− ui(q; tM)]

+
ℓ∑

i=m+1

[bi(v̂)− bi(ṽ)][ui(q; tM)− ui(s
m+1
i ; tM)] (45)

+2u(q; tM)− u(θm; tM)− u(θm+1; tM)

)
.

For every t < y
m
,

α(t) = β(t) = min

(
argmax

{
u(θi; t)|i ∈ argmax{u(smj ; t)|j = 1, . . . ,m− 1}

})
.

For every t > ym+1,

α(t) = β(t) = min

(
argmax

{
u(θi; t)|i ∈ argmax{u(sm+1

j ; t)|j = m+ 2, . . . , ℓ}
})

.

Also, for every t ∈ [y
m
, ym+1], {v̂t, ṽt} = {m,m+1}. Therefore, for every i ∈ L\{m,m+1},

Ti(v̂) = Ti(ṽ), implying bi(v̂) = bi(ṽ). Note that tM+1 > ym. So, Tm(v̂) = {t ∈ T |t ∈

[y
m
, tM ]} and Tm(ṽ) = {t ∈ T |t ∈ [y

m
, tM−1]}. This implies bm(v̂) − bm(ṽ) = 1. Also,

Tm+1(v̂) = {t ∈ T |t ∈ [tm+1, ym+1]} and Tm+1(ṽ) = {t ∈ T |t ∈ [tM , ym+1]}, implying

bm+1(v̂) = bm+1(ṽ) = −1. Then, from (45), we conclude that ∆̂(tM |0) + ∆̃(tM |0) = 0.

Lastly, assume q > θm+1. Let L+ = {i ∈ L|θi > 2θm+1 − q}. Then, for every i ∈ L+,

smi = sm+1
i , and in particular m + 1 ∈ L+. For every i /∈ L+, sm+1

i = 2θm+1 − q. Then, we

have

∆̂(tM |0) + ∆̃(tM |0) =
1

n

( ∑
i∈L\L+

[bi(v̂)− bi(ṽ)][u(s
m
i ; tM)− u(2θm+1 − q; tM)] (46)

+u(sm+1
m ; tM)− u(θm; tM)

)
.
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First, if L+ = L, then clearly ∆̂(tM |0) + ∆̃(tM |0) = 0. Suppose L+ ̸= L. Let j = minL+.

Suppose j ≤ m. Then, if t ≤
θj+smj−1

2
, then α(t) = β(t) ≤ j−1. Let T̃ = {t ∈ T |

θj+smj−1

2
< t ≤

θj+2θm+1−q

2
}. If t ∈ T̃ , then v̂t = α(t) = j and ṽt = β(t) = j − 1. Then, for every i < j − 1,

bi(v̂)− bi(ṽ) = 0, and bj−1(v̂)− bj−1(ṽ) = −|T̃ |. Then, from (46), we have

∆̂(tM |0) + ∆̃(tM |0) = −|T̃ |
n

[
u(smj−1; tM)− u(2θm+1 − q; tM)

]
≥ 0

because smj−1 > 2θm+1 − q > θm > tM . Suppose j = m + 1. If t < y
m
, then α(t) = β(t).

Thus, for every i < m, bi(v̂)− bi(ṽ) = 0. From the strategies, Tm(v̂) = {t ∈ T |t ∈ [y
m
, tM ]}

and Tm(ṽ) = {t ∈ T |t ∈ [y
m
, tM+1]}. So, bm(v̂) − bm(ṽ) = 1. Then, clearly from (46)

∆̂(tM |0) + ∆̃(tM |0) = 0.

Lemma 6 implies that either ∆̂(tM |0) > 0, or ∆̃(tM |0) > 0, or ∆̂(tM |0) = ∆̃(tM |0) = 0.

Then, by Lemma 5, either v̂ or ṽ is a robust equilibrium of G(T, θ, q, 0).

Suppose v̂ ∈ V (T, θ, q). By construction, for every t /∈ [y
m
, tM ], v̂t = α(t), so v̂t is

strategically sincere in v̂. For any t ∈ [y
m
, tM ], v̂t = m, and m /∈ argmax{u(smi ; t)|i ∈ L}

if and only if t > ym. Therefore, T \ T ∗(v̂) = {t ∈ T |ym < t ≤ tM}. Suppose ṽ is a robust

equilibrium. By construction, for every t /∈ [tM , ym+1], ṽt = β(t), so ṽt is strategically sincere

in ṽ. For any t ∈ [tM , ym+1], ṽt = m+ 1, and m+ 1 /∈ argmax{u(sm+1
i ; t)|i ∈ L} if and only

if t < y
m+1

. Therefore, T \ T ∗(ṽ) = {t ∈ T |tM ≤ t < y
m+1

}. �

Proof of Proposition 5

Assume that v and v′ are strategically sincere robust equilibria of G(T, θ, q). By Proposition

6, k(v) = k(v′) = m. Then, since v and v′ are strategically sincere and A2 holds, bm(v) =

bm(v
′) = |Xm|. If |Xm| ≥ M , then λv = λv′ as both of them are the degenerate lottery on
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θm. Suppose |Xm| < M . Then, for each x ∈ R,

λv(x) =
1

n

∑
{i∈L|smi =x}

bi(v) and λv′(x) =
1

n

∑
{i∈L|smi =x}

bi(v
′).

Since A2 holds, and v and v′ are strategically sincere, for every x with {i ∈ L|smi = x} ≠ ∅,

1

n

∑
{i∈L|smi =x}

bi(v) =
1

n

∑
{i∈L|smi =x}

bi(v
′) =

∣∣∣∣{t ∈ T

∣∣∣∣u(x; t) = max{u(smj ; t)|j ∈ L}
}∣∣∣∣,

which completes the proof. �

Proof of Lemma 2

Let v ∈ V (T, θ, q) and let t ∈ T\T ∗(v). Let k = k(v) and i = vt. Then, i /∈ argmax{u(skh; t)|h ∈

L}. Suppose i ̸= k. Since L is finite, argmax{u(skh; t)|h ∈ L} ̸= ∅. Let j ∈ argmax{u(skh; t)|h ∈

L} and let v′ = (j, v−t). First, suppose k(v′) = k. Then, ph(v
′) = skh for every h ∈ L. If k is

not the majority party in both v and v′, then, for every ϵ ∈ [0, 1]

U(v; t|ϵ)− U(v′; t|ϵ) = 1

n
[u(ski ; t)− u(skj ; t)] < 0,

contradicting that v is a robust equilibrium. If k is the majority party in both v and v′,

then, for every ϵ ∈ (0, 1],

U(v; t|ϵ)− U(v′; t|ϵ) = ϵ

n
[u(ski ; t)− u(skj ; t)] < 0,

a contradiction. If k is not the majority party in v, but it is in v′, then it must be the case

that bk(v) = M − 1 and j = k. Then, for every ϵ ∈ [0, 1],

U(v; t|ϵ)− U(v′; t|ϵ) = (1− ϵ)

[∑
h∈L

bh(v)

n
u(skh; t)− u(skj ; t)

]
+

ϵ

n
[u(ski ; t)− u(skj ; t)] < 0,
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a contradiction.

Secondly, suppose k(v′) ̸= k. Suppose i < k. Then, it must be the case that
∑k

h=1 bh(v) =

M and j > k. Since j > k, t ≥ yk. Then, since ski < skk = θk < t, we have u(ski ; t) < u(skk; t).

I also claim that bk(v) < M−1. To see this, suppose bk(v) = M−1. Note that bi(v)+bk(v) =

M and t ̸= t1. This implies vt1 ≥ k > 1. But since t1 < θ1, u(s
k
1; t1) > u(svt1 ; t1). Also, party

k would remain as the median party even after voter t1’s deviation by voting for party 1.

Then, for every ϵ ∈ [0, 1), U(v; t1|ϵ) < U(1, v−t1 ; t1|ϵ), a contradiction that implies that the

claim is true. Then, for every ϵ ∈ [0, 1),

U(v; t|ϵ)− U(k, v−t; t|ϵ) =
1

n
[u(ski ; t)− u(skk; t)] < 0,

a contradiction. A symmetric argument will lead to a contradiction when i > k. �

Proof of Proposition 6

Let v be a strategically sincere robust equilibrium. Let k = k(v). Since v is strategically

sincere, for every t < y
k
, vt < k; and for every t > yk, vt > k. Then, for k to be decisive,

it must be that tM ∈ Xk. Since tM ∈ [θm,
θm+θm+1

2
], either k = m or k = m + 1. Suppose

k = m + 1. Then, tM = θm+θm+1

2
and xm+1(q) = θm. Since sm+1

m = θm and sm+1
m+1 = θm+1,

we have max{u(sm+1
i ; tM)|i ∈ L} = u(sm+1

m ; tM) = u(sm+1
m+1; t), contradicting A2. Thus,

k(v) = m. �

Proof of Proposition 7

Let v ∈ V (T, θ, q). Suppose v is strategically sincere and satisfies C1. Suppose vt is strategic.

Let j = vt and k = k(v). Suppose t ∈ (y
k
, yk), then j = k since v is strategically sincere.

By definition, θk−1+θk
2

≤ y
k
and yk ≤ θk+θk+1

2
. Then, argmax{u(θh; t)|h ∈ L} = {k},

contradicting that vt is strategic. Thus, either t ≤ y
k
or t ≥ yk.
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Suppose t ≤ y
k
. Since v is strategically sincere, j ≤ k − 1. I claim that pj(v) = xk(q).

Suppose not. Then pj(v) = θj > xk(q). Suppose t ≥ θj. Since j < k, pj+1(v) = θj+1. Since v

is strategically sincere, t ∈ [θj,
θj+θj+1

2
], implying vt is sincere, a contradiction. suppose t < θj.

If j = 1, clearly argmax{u(θh; t)|h ∈ L} = {1}. So, vt is sincere, a contradiction. So, j > 1.

Since v is strategically sincere, t ∈ [
pj−1(v)+θj

2
, θj). But pj−1(v) = max{θj−1, xk(q)} ≥ θj−1,

which implies t ∈ [
θj−1+θj

2
, θj). Thus, vt is sincere, a contradiction.

Thus, the claim is true, pj(v) = xk(q), which implies θj ≤ xk(q). I now claim that

θj+1 > xk(q). Suppose not. Then, pj(v) = pj+1(v) = xk(q). By C1, t ≤ θj+θj+1

2
. If j = 1,

then vt is sincere, a contradiction. If j ≥ 2, then pj−1(v) = xk(q). Then, C1 implies that

t ≥ θj−1+θj
2

. Thus, vt is sincere, a contradiction. Hence, the claim is true.

Since v is strategically sincere, t ≤ xk(q)+θj+1

2
. If t ≤ θj+θj+1

2
, then vt is sincere. Thus,

θj+θj+1

2
< t ≤ xk(q)+θj+1

2
< θj+1. Then, argmax{u(θh; t)|h ∈ L} = {j+1}. Thus, i(t) = j+1,

and we have θj < t < θi(t) ≤ θk.

I now prove that k ≥ m. Suppose k ≤ m−1. Since v is strategically sincere,
∪k

h=1 Th(v) ⊆

[t1, yk]. But since θm ≤ tM and k ≤ m − 1, tM > yk. Then
∑k

h=1 bh(v) < M , contradicting

k = k(v). Thus, k ≥ m. Therefore, θj < t < θi(t) ≤ θm. A symmetric argument will prove

that when t ≥ yk, then θm ≤ θi(t) < t < θj. �
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