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In this appendix, we derive the variational Expectation-Maximization (EM) algorithm for the
Bayesian ideal point models. For completeness, we begin by describing variational inference for the
standard ideal point model (Appendix [A) and the model with an ordinal outcome (Appendix [B]). In
Appendix [A] we also briefly explain variational inference in the context of the standard ideal point
model for the readers who are not familiar with it. We then derive the variational EM algorithms for
the dynamic and hierarchical ideal point models (Appendices [C| and @, which represent the main
contributions of the paper. Finally, we show derivations for of variational EM algorithms for the

generalized Wordfish and network models (Appendices |Ef and .

A Variational Inference for the Standard Ideal Point Model

We begin by deriving the variational EM algorithm for the standard ideal point model described.
The key idea of variational inference is to come up with the best approximation to the posterior
distribution under a certain factorization assumption. Under the standard ideal point model, we

consider the approximating distribution that satisfies the following independence relationship,

q(Y*v {Xi}g\ilv {léj}}lzl) = q(Y*) q(x1, S 7XN) Q(Bh s 7BJ)' (81)
Under this assumption, we find the optimal variational distribution that best approximates the true
posterior distribution. We do this by minimizing the following Kullback-Leibler divergence, which

is a measure of similarity of two distributions,

oY {xi} 0, {8} } (82)

KL = Egql 3
(q/lp) q { o8 p(Y* {xi} L, {8} | Y)

where the expectation is taken with respect to the approximating distribution g¢.
It is well known that minimizing the Kullback-Leibler divergence given in equation (82]) is equiv-
alent to maximizing the lower bound of the marginal log-likelihood function, which is called the

evidence lower bound in the literature. This can be shown by the following equality,

p(Y, Y*’ {Xi}z]'\il’ {BJ 3']:1) }
a(Y*, {xi}}Ls, {BJ }‘le)

evidence lower bound

logp(Y) = Eq llog{ + KL(qlp) (83)

Therefore, we can use the Expectation-Maximization (EM) algorithm of [Dempster, Laird and Rubin]
(1977) to maximize the evidence lower bound. It is important to note that the proposed algorithm

is derived without making an additional assumption other than the factorization assumption given

in equation . For example, we do not assume that g belongs to a certain family of distributions.
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Variational Distribution

We outline the proposed variational EM algorithm. As shown below, each step resembles the Gibbs
sampler algorithm used to estimate the standard Bayesian ideal point model. There are a total of
three steps in this EM algorithm (latent propensities, ideal points, and item parameters) and we

repeat these steps until convergence.

Latent Propensities. We expand the joint density given in equation and apply the logarithm

to the product. Collecting the terms that involve Y*, we obtain,
logq(Y*) = Eg, [logp(Y | Y") +logp(Y* | {x: )}, {B]}jzl)} + const.

N J
=2 [log (1{ys; > 031{yy; = 1} + L{yj; < 0}1{y;; = 0}) — % {yij - QyZE(ii)TE(Bj)}] + const.
i=1 j=1

We recognize this as the product of NV x J truncated Normal distributions, which is given as,

N J .
. . . TN (mi;,1,0,00) if yi; =1
q(Y") = HHQ(?JU) where q(yij) = )
i1 j=1 TN (mij,1,—00,0) if y;; =0
where m;; = E(X;)"E(3;). Abstention is treated as missing at random and so the variational

distribution in that case is q(yfj) = N(m;j,1). Given this result, we update the mean of Yy, as,

¢(mu)

E(y?,) Mg+ gy U =1
ij » .
mij — Ty i i =0

Ideal Points. For the ideal points, we have,

logq(xi,-..,xn) = Eg . llogp(Y* | {xi}y, {B;}/=1) + logp(xi, ..., xn)] + const.

N J J
= Z ZE@,@/S} [log ¢1(y;‘j;>~cjﬁj, 1)} + Zlog i (Xi; px, Xx) + const.
i=1 j=1 j=1

We apply the standard result of the Bayesian linear regression to obtain,
N
g(x1,...,xn) = [Jaba) where g(x)) = N(A 'a;, A7)
i=1

where A = 31 + Z}']=1 E(8;8]) and a; = . 'y + Z}'le E(B;)E(y;;) —E(Bjc;). Thus, we update

the required moments as E(x;) = A~ 'a;, and

1 aZ-TA_1
A’lai AflaiaiTAfl + A1
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Item Parameters. The derivation for item parameters proceeds as follows,

logq(B1,...,Bs) = Exy-llogp(Y* | {x:}L1,{B;}/=1) +logp(Bu,...,B,)] + const.
J N

J
= 33 Eur [log o1 (y5 | %{ Bj, 1)} + 3 logp(B;) + const.

j=1i=1 j=1

Again, using the standard Bayesian linear regression result, we obtain,
~ ~ J ~ ~
¢(Br,....8,) = [[alB)) where ¢(B;) = N(B 'b;, B™)
j=1

where B = Z LN Exix/) and b; = 2 N@ + 3N E( (%;)E(y;;). This variational distribution
implies the followmg required moments, i.e., E(B]) B~ 'b,, ]E(ﬂj,éj—r) = B_lbjb}—B_l—i—B_l whose
lower-right K x K block matrix and lower-left K dimensional column vector are equal to E(,B]ﬁjT)
and E(B8;q;), respectively.

Evidence Lower Bound

We can also derive the expression for the evidence lower bound, £(g) given in equation (83). This

lower bound can be decomposed as

Lig) = E |logp(Y. Y*, {x:}l1 {B}]0)| —E [long*,{xi}iil,{éj};’:l)}
N J

=>>E [logp(yu | i) + log p(y3; | x4, B) } +ZE log p(x) +ZE [logp(ﬁ])}
— 13 1 i=1 Jj=1
_ZZE ]ogq yzg ZE logq XZ ZE[Iqu Bj)}
=1 j=1

First, we need to compute the entropy for each variational distribution, which is given below,

) ()

. 1
Eflog q(v;;)] = 5 log(2me) + ;5 log ®(my;) + (1 — yi;) log @ (—myj) + <

K 1
E[logq(x;)] = flog(%e) - flog\A!

Ellog¢(3;)] = K* log(2ne) — 3 log [B

Second, we need to evaluate the expectation of log-likelihood and log prior density using the varia-
tional distribution. We begin by noting Eflog p(y;; | y;;)] = 0. For the log-likelihood, therefore, we

have,
E [logp(yf; | xi.B7)] = — 3 loa(2m) — 5 {E [(55,)°] — 265, Ex) TB(B) +E [(%] 5,)°]}

where E[(%] 8;)?] = E[tr(ilijéjﬁj)] = tr[E(izi:)E(Bj,é]T)] The expectation of the log prior
density is given by,

K 1 1
Eflog p(x;)] = —Elog(%r)—i\ﬁx\—g{ (x] B51x;) — 2] BB (x:) + pl S5 ux}

o1



where E [x;] 2:1x;] = tr{Z'E(x;x;) " }. Moreover,

- K+ -
Ellog(8;)] = — log(%)*f{ (B72518;) —2m) BB B) + ) 25 g |
where E(BTZ 'B)) = tr{E 1]E(,BJBT)} Finally, we note that E(x;x; ) = A 'a;a] A=t + A~! and
E(B;8]) = 1b jb; B! B L
B Variational Inference for the Model with an Ordinal Outcome

We derive the variational distribution for the ideal point with a three-category ordinal outcome. We

use the reparameterized model. The joint posterior of the reparameterized model is given by,

p(Z* {xi} il {7} B | Y)
N J

X HH 1{sz < 0}1{%] - 0} + 1{0 < ’21] < 1}1{2/23 - 1} + 1{sz = 1}1{ylj - 2}] ¢1( zg?x /BJ’
i=175=1

J
~ vy Sy
x [T oxr1Bjimp. 2p) G (72 — ) H(ﬁx X5 Hox D)
j=1
We derive the variational EM algorithm in a manner similar to the one used for the standard item

response model with a binary outcome variable. The key difference is that the current model has an

additional parameter ;.
Variational Distribution

Latent Propensities. We begin by deriving the variational distribution for the latent propensities

as follows,

10g Q( zg) - Eﬂ7 Xi,Tj [logp(ylj | Zi ) + logp( zj | Xln@a ] )] -+ const.
= log [1{z}; < 0}1{y;; = 1} + 1{0 < 2; < I}1{yyj = 2} + 1{2]; > 1}1{y;; = 3}]

- E(Tz){( )% = 22 (%) TE(B;) } + const.

J
We recognize this as the following truncated normal distribution,

2

N TN (m;j, w;Q, —00, 0) ify;; =0

q(Z*) = HHq(z;-"j) where ¢(z;) =  TN(myj, wj_2, 0, 1) ify;j =1
i=1j=1
! TN(mij, w-_2

fi ,1, OO) lfyw:2

where m;; = E(%;) TE(3;) and w? = E(T]-Q). We then update the mean of z7; as,

p(mijw;) 1
T=0(m ;) Wi

£y L dlmgw)—g((—mig)wy) 1 e
E(z) = {mij + gie e wy iy =1

mg; — if Yij = 0

P((A—mij)w;) . —1 : _
Mij + o (Tmiy ;) Vi if yij = 2

For abstention, we have q(2};) = N (m;;, wj_z) and hence E(z];) = mi;.
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Ideal Points. We expand the joint density p and apply the logarithm to the product.

logg(xi) = E,. 5., Zlogp 2 | %i,8;5,77) | +logp(x;) + const.

J
E( 7'- 1
- -3 TJ {X;FE (B;B;T) xi — 2817 (25 — a;)xi} -5 (ij;lxl —oulss xz) + const.
j=1
Since this is a normal distribution density, we have,

N
p(x1,.,xn) = [Jaxi) where g(x)) = N(A "a;, A7)

with A = S 407 E(r2)E (B}‘,@;T) and a; = 55 et Y7 E(r2) {E(@;)TE(Z;;) “E (5;%;) }
Given this result, we update the required moments, i.e., E(x;) = A~la; and E(x;x;) = A~! +
AflaiaZTA’l.

Item Parameters. For the item parameters, the variational distribution can be derived as follows,

N
logq(Bj) = Kz x1, [Zlogp(z* | xi,8,7) | +1logp(B)))] + const.
i=1

ErtH N (ar s . . -
- 2] ;{ﬂ;—E(XZXI)ﬁ 225X ;FB]} (ﬂ;—zélﬂj—ﬂgxélﬁj> + const.

This is another Normal distribution, which is given by,
~ ~ J ~ ~
4B, ..-.Bs) = [[a(B;) where ¢(B;) = N(B;'b;, B

where B; —Z —HE( 2) SN E(%;%; ) and b; —2 uﬁ—i—E( 2SN E(x) TE(2 ). We update
the required moment as E(BjﬁjT) = Bj + B b, bJTBj L

Variance Parameters. Finally, we derive the variational distribution for the variance parameters,

log q(7}) = B x 8 [Zlogp 25 | %6, 85, 77) | +logp(77) + const.

T5 N
- %k’g%‘? T Z [E(ijz) — 2B (2, E(X:) "E(B)) + tr{E(X:i%] )E(B;8 )}

i=1

2
J

2
57T
+ (ﬁ - 1) log 7]2 — —2L 4 const.

2 2
We recognize this as a Gamma distribution and thus the variational distribution is given by,
q(r, .. H q(rj) where q(1?) = G G 4
9 ] J 2 9 2

with ¢j = Nt and dj = s+ 3000, B(257) -2 3200 E(=5)E(%:) "E(8))+21, tr{E(XX]E(B;8])}-
The required moment is given by E(Tf) =c¢;/d;.
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Evidence Lower Bound

The lower bound is given by,

La) = E|logp(Y, 2% {xi} 0 {72, By} o) —E[logq(Z*,{xi}L,{T?,B- ;’:o}
N J J
=) M E [logp(ym | 25;) + log p(z; | xi, B, 7 } +ZElogp x;) +ZElogp B+ _Eflogp(r})]
=1 1 =1 1 =1
]\f‘7 J N J ~ J . ’
=Y ) Elogq(zj)] = > Eflogq(x:)] — > E [log Q(,@j)} — ) E[logq(r})]
=1 j=1 =1 7=1 7j=1

We begin by noting E[log p(yi; | 2;;)] = 0. Next, we compute the entropy of variational distribution

for the latent propensity as follows,

Ellog q(z};)]
= %{log(%e) log E(77)} + 1{yi; = 0}1log ® (m;;) + 1{yi; = 1} log{®(1ms;) — ®(m;)} + 1{ys; = 2} log B(—m;)

{yi;j=0} Hyij=1} , _ - =
. ~mj;é(my;) mi;o(ms;) — migd (i) (mij(p(qjlij))l{y 2}
20(m;;) 2{®(mij) — (mj;)} 20 (—mjj)

)

where mJ; = —E(%;) "E(8;)//E(r?) and ; = {1 — E(%;) "E(8;)}/,/E(7?). In addition, we have

the following entropies,

Ellogq(x;)] = 5log(27re)—110g|A|
Elloga(3))] = K* log(2re) — 3 log [B
s = -]+ (- 9) ()

where I'(+) and 9 (-) are the gamma and digamma functions, respectively.

Next, the expected log-likelihood can be calculated as,

E(r})

2

Ellogp(<]; | xi, 85,77 = — 5 {los(2m) ~ E(log?)} — — 2> {E{(=5,)%) — %E(=5)E(%:) TE(B;) + E(B] %% By))

where E(log 7']2) = 1(cj/2) —log(d;/2) and E(HTN NTB]) = tr{E(x;%; )E (ﬂj,@T)}
Finally, we compute the expected log-prior as follows,

K 1 _ _ -
Ellogp(x;)] = — - {log(2m) + log ||} — §{E(XZTEXIX@') — 2E(x;) " B e 4 i By}
N K+ 1 1A - T _
Ellogp(Bi)] = — —— {log(27) + log |} ~ %E(@-Tz;ﬂj) —2E(3)) '35 s+ g E5 g}
cj d c d;
E[logp(Tf)] = Ej log -2 5 - logT’ (5) + (Ej - ) E(log 7']2) - EJE(T;)

where E(x %) = tr{ S E(xx, 1)} and E(,@TE 1,6]) = tr{E IE(BJf@T)}
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C Variational Inference for the Dynamic Ideal Point Model

For the dynamic model, the joint posterior distribution is given by equation . We derive the

variational EM algorithm under the factorization assumption given in equation .

Latent Propensities. For the latent propensities, we derive the variational distribution as follows,

logq(yije) = E,, g,llogp(yije | yije) +1og p(yije | 2it, Bjt)] + const.
= log[l{yzgt = 1}1{ym >0} + 1{yzgt = 0}1{yzgt < 0}] - (y@]t 2yfth(f<z‘t)TE(Bjt)) + const.
This is a truncated normal distribution, and hence the approximating distribution is given by equa-

tion .
Item Parameters. The variational distribution for item parameters is given by,
log(Bj1) = Y By, xllogp(yij | zit, Bin)] + log p(B) + const.

i€Ly

= 0 S BTED) B — 2B E ) Bre} — S (BRE5 B — 2] 55 B) + const.

1€Ls

where Z; = {i : T, < t < T;}. Recognizing this as a Normal distribution, we have the resulting

variational distribution given in equation (62)).

Ideal Points. For notational simplicity and without loss of generality, let T; = 1 and T; = T.

Then, we have,

log q(z41, - - ., TiT)

T Ji T
= ZZE llog p(yij: | it Bit)] + Zlogp Tit | Ti1—1) + log p(zt) + const.
t=1 j=1 t=2
T Ji 1 T 1
= — — Z Z t — Q{E(y:}t)E(ﬁjt) (ﬁj 2w — Tit— 1 5 (;I;Z — Mz)2 -+ const.
t 1 =1 t:2 z

We recognize that this expression resembles the posterior distribution of the following dynamic linear
model, i.e., p(zi1, ..., i | Gits .. i1 BLs - - - BT),

it = B+

Tig = Tjg—1 1 Nit
where f = \/SIL B(5), g = {7 B EB) — B(Bjage)} /B & "= N(O.1), me R
N(0,w?), and x; R N (e, X2).

Thus, we can apply the standard Kalman filtering results to obtain the necessary moments. We

begin by applying the forward recursion relationship,
p(@it | Girs- -, Git) = d(@it; cit, Cin)
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where ¢y = ¢iy—1 + Ki(jjie — Bicip—1) and Cyy = (1= KyB)Q with Qi = w2+ Ciy—1, Kt = Bt/ St
and Sy = Bfﬂlt + 1. We recursively compute these quantities by setting cjo = p,; and Cio = Xz ;.

We then use the backward recursion to obtain,

p(xit | ity - Uir) = o1(@it; die, Dit)

where diy = cit + Jit(dig+1 — ciz+1) and Dy = Cy + J2(Di g1 — Qig1) with Jip = Cit/Qi 1. Again,
the recursive computation is done by setting d;7 = ¢;7 and D;7 = Cj.
D Variational Inference for the Hierarchical Ideal Point Model

For the hierarchical model, the joint posterior distribution is given by equation . We derive the

variational EM algorithm under the factorization assumption given in equation ((40)).

Latent Propensities. The latent propensities can be derived as,

logq(y;) =Bz, llogp(ye | i) +1og p(y; | Bjis Velita) Mt %)) + const.
= log[1{y; > 0,y¢ = 1} + {y; < 0,y, = 0}]
1 *
= 5Bl — aitg = B Vg Zia — Bjtania)?] + const.
= log[1{y; > 0,y¢ = 1} + {y; < 0,y, = 0}]

1 * *
-5 [y1z2 — 2y; {E(ij[eﬂ +EBu)E(vgpua)  2ig + E(m[Z])E(Bj[z})}] + const.

We recognize that this is a truncated normal distribution, and therefore, we obtain the variational
distribution given in equation (65)).

Ideal Point Error Terms. We derive the variational distribution for the ideal point error terms

as follows,
log q(1n)
L ~
= By G0 llogp(nn | o2) + > 1{i[l) = n}log p(y | Bjias Vgln]» Zns ) | + comst.
=1
1 n2 L
- _§Ey*ﬂmcf? LZT} + Z 1{ill] = n}(y; — gy — ﬁj[eﬂ;[n]zn — Bjlym)? | + const.
glnl =1

L L

1 _ . . %

- _§Ey*7ﬁ~ma2 [(Ug[i} + Z 1{i[¢] = 7”‘5?{4}) 77721 -2 Z 1{i[¢] = n}(y; Bite — jiqBjlg — /332-[47;@]%)%
=1 =1

+ const.

Thus, the approximating distribution is again a normal distribution and is given by equation (67]).

Item Parameters. The variational distribution for item parameters can be derived as follows,

log q(Bk,)
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L
= Ep ny llogp(ﬂkz) + ) 1{j[0) = k}log p(y; | Br: Vglife)> migg) | + const.
=1

L
1 ~ o . .
= —§Ey*7777'7 (IBk - I'I/B)Txél(ﬂk - IJ‘B) + Z 1{][6] = k}{yf — Qf — /Bk(7;z[f}]zz[f] + 777,[[])}2 + const.
- /=1
1 [ N L i
= 3By [(Br— 1) 851 (Br — pp) + D 1{l0) = K} (47 — By %ipg)” | + const.
- /=1
1 [ L 3 . L
- =1 =1

where X;; = (17'7gT[i[E]]Zi[€} + Ui[é})T is a 2 dimensional vector. Thus, the variational distribution is

given by equation (68).
Group-level Coefficients. The derivation of the variational distribution for group-level coeffi-

cients is given as follows,

log ¢(vm)
L ~
=E,.. 3 [logp('ym) + Y 1{gli[0]] = m}log p(y; | Bjie, Ym: mige)) | + comst.
(=1
1 L 2
= 5By 5 | (m = thy) TS (Y — i) + D 1 gli[0] = m} {y?f — ajiq — Bijg(YmZig + m[e])} + const.
(=1
1 L
= B8 Y <2'yl +> Hglild]] = m}ﬂf[e}zi[z]zj[eo Ym
(=1
L
—2v,, {2§1M7 + ) H{glill)] = m}zg B (vi — o — 5j[z]77i[e])} + const.
=1
Thus, the variational distribution is given by equation .
Group-level Variances. Finally, we derive the variational distribution for the group-level variance
parameter a,%l.
N
logg(oy,) = E, llogp(afn) + Y 1{gln] = m}logp(n, | o3,)| + const.
n=1
ve + N 1{g[n] = m} 1 N
_ o n=1 = 2 2 _ 2
= E, [— < 5 + 1) logo;, — %7 (30 + nz::l 1{g[n] = m}nn> + const.

Thus, the approximating distribution is the inverse-gamma distribution given in equation .

E Local Variational Inference for the Generalized Wordfish Model

For the generalized Wordfish model, the joint posterior distribution is given by equation . We
derive the variational EM algorithm under the factorization assumption given in equation .

One feature of this variational EM algorithm, when compared with those for the other models
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considered in this paper, is the use of local variational inference. As a result, we have an additional
local variational parameter {;; to be optimized in our algorithm. For computational efficiency, we
update this local variational parameter only once at each iteration. While this approximation can

be optimized when updating each parameter, we find that this makes little improvement in practice.

Document verboseness. We derive the variational distribution for the document verboseness

parameter .

J
S 1
logq(vr | Y) = Eéjvxi[k] Z {yjkzpk —exp (1/1k + ’BJTXi[k]>} - E(wi — 29 piy) | + const.
j=1
where X;j;) = (1, 7). We observe that the existence of the exponential function makes it impossible
to obtain a closed form expression for the integral. We first employ the local variational inference

by introducing an additional unidentified parameter ;z,

J
o 1
> {yjkwk — exp(§j) exp (-Ejk + Py, + 5}&[@)} - ﬁ(?ﬁi — 2tpgpuyp) | +const.
j=1 P
We then apply the second-order approximation to the exponential function, i.e., exp(z) ~ 1+x+22/2.
Note that this approximation is most accurate around x = 0. Hence, we set this local variational

parameter {;;, to the current value of 1, + ,éijci[k}. This yields,

log q(vx,)
d AT & AT i AT
~ Eg oy Yk — exp(&k) | 1 — &k + Vn + Bj Xy + % — & — &Py Xy + jk + kB Xifk]
j=1
,é;ii[k}igk]éj 1, .,
—|—f — E(% — 24y ) | + const.
1 J ~ 1
= Eﬁj’ri[k] —5 Z; {exp(fjk)d}z — 2 [yjk — exp(fjk) (1 — fjk + ,@;rf(l[k])] } — E(@Dz — 21/)]“[147[,) -+ const.
]:
Thus, the variational distribution is given by,
K K
a{tis) = Jlawe) =~ [TV ALY

k=1 k=1

where ax = 37 [yjx — exp(&ip) {1 — §r+E (o) +E(B) B2y} + 0, 2y and Ay, = Y7 exp(&) +
01; 2,

Ideal Points. The update for ideal points proceeds in the same exact manner as that for the
document verboseness parameter. That is, we introduce the local variational parameter §;;. Then,

we have the following approximation for the variational distribution for ideal points,
log q(zn)
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2

J K
E, 5 | D> Lilk]=n} {yjkﬁjxn —exp(&k) (1 = &k + Yk + oy + Bjan + gék — &k

7j=1k=1

T,Z)Q a2. ,821,‘2 1
=&k — EjkBiTn + 7’“ + Yray + YrBizn + EJ + a;fxn + ‘72 = 202( — 2T fhy)

K
> 1{ilk] = n} {exp(&) Bixn — 2Bj2n(yse — exp(&in) (1 + 0 — &k + 1)) }

k=1

Mk

1
Ewk Bi | 9

Il
—

J

L s
52 (x5 — 2wppy)| + const.

Thus, the variational distribution is given by,

N N
q{zn i) = HQ(xn) ~ HN(BﬁlbnaBil)
n=1 n=1

where b, = 3071 350 1{ilk] = n}E(8){yr — exp(&n) (1 + E(ay) — & + E(Wr))} + 077, and
J K . —

By = 320 2oy Hilk] = n} exp(=&x) /E(B3) + 02

Term Parameters. Finally, the update for the term parameters Bj proceeds similarly. The

variational distribution is given by,

K
N N N 1 -
log q(B)) = Eyy [Z {yjkﬁjTii[k] — exp (W + 5]'Tf<i[k])} - 5(53' - ,u[;)TE Y8 - Bs)

k=1

~+const.

Again, we consider the second-order approximation through local variational inference.

log ¢(8;)
= AT AT & AT Uy
By i Z YieB; Xk — exp(&k) | 1 — §iu + ¥k + B Xy + % = &iptr — kB X + 7’“

k=1

Q

-+ const.

. ,8 X[k X3 .
B Ry + 2[W>} ;(ﬁj—ug)TE "B - np)

1 & ~ —
= By [ 3 > {eXP &ik)B] Xi X B — 2 [k — exp(&i) (1 — &k + )] B]-Txi[k]}
k=1

_%(Bj — ) 35 (8 - MB)] + const.

Thus, the variational distribution is given by,

J 7
ad{B¥) = [laB) = [IN(C; e Ch
1 =1
where ¢; = {y;1, —exp(&r) (1 — i +E(vr)) FEX ) +251uﬁ~ and C; = 31| eXP(ﬁjk)E(ii[k}igk]) +
>t
B8
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F Approximate Variational Inference for the Network Ideal Point
Model

Latent Propensity. This update step is similar to the latent propensity update step for the
standard ideal point model (see Appendix .

log q(Y™)

N J 1 2
T P ZZlog (1{yi; > 031 {ys; = 1} + My < 0}1{yi; = 0}) — 2 {ui; — o = Bi + (wi — zj)*}

i=1 j=1

~+const.

N J

i=1 j=1

1

—3 [(955)? — 24 {E(ay) + E(8:) — E(a7) — E(25) + 2E(x4)E(2;)}] + const.

Thus, the variational distribution is given by the following truncated normal distribution,
N J .
" « « ’TN(mij,l,O,oo) if yij =1
q(Y") = H H Q(yij) where Q(yij) = )
where m;; = E(a;) + E(8;) — E(z7) — E(z?) + 2E(z;)E(2;).

User-specific Intercept.

log q(Bi)
d 1 2 1
= Ev-axs JZ::l D) {Bi - y;kj + oy — (xz — Zj)z} - @ (51‘ - Mﬁ)2 -+ const.
1 [
= -3 Z {87 — 28; (B(y;;) — E(oy) + E(a?) — 2E(z)E(2;) + E(22)) } + 01% (B2 — 2B;115) | + const.
Li=1
ul 1 J
- 2 (J * Jg> B — 26 ﬁg + Z} (E(y3;) — E(ay) + E(a?) — 2E(x:)E(2;) + E(2])) ¢ | + const.
=

Thus, the variational distribution is given by,
N
¢B) = [[aB) where N(B 'b;, B
i=1

where B = J + 1/0% and b; = ug/d% + Z;-Izl (E(yz*j) — E(aj) + E(z?) — 2E(z;)E(2;) + E(z]z))

Ideal Points for Users. This update step does not correspond to a standard distribution. There-

fore, we employ the approximation via Taylor expansion.

J
1 2 1
logq(z;) = _iEY*’aﬂ’z E {yfj —aj — B+ (zi — zj)Q} + 2 (z? — 2zu,) | + const.
=1 @
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Apply the second-order Taylor expansion around the current value of x; denoted by Z;, yielding,
1 . . . 1.,,. .
logq(xz;) = —§E [f(:c,) + (&) (2 — 25) + §f”(xi)($i - xz)z] + const.

_ —%]E Bf//(@z)x? B (f//<i'z)i'z . f’(éf%)) HTz] -+ const.

where

J
flz) = %(3;2 —2xpy) + Z {y:; —a; — B + (x — Zj)2}2
fl(x) = j (z — pa) +4Z {ylj j_/Bi"’(x_Zj)Q}
x =1

2 *
@) = > 1y (v = 05— Bi+3 (-2
Therefore, we arrive at the following variational distribution,

N N
[[a) ~ [INV (D7 a:, DY)
i—1 i=1

where D; = E(f"(%;))/2 and d; = {E(f"(2;))&; — E(f'(Z;))}/2. The relevant expectations are given
by,

B(f/(@) = (o )
J
$43" ({2~ B() (E(i) ~ Bloy) ~ E(3)) + (o ~ 34E(z;) + 30E(=) — E(:}))}
j=1
J
B(f(@) = = +43 {(Elu) ~ Elay) ~ B(8) +3 (2 — 20E(z,) + E()

Politician-specific Intercept. This step is analogous to the user-specific intercept update.

log q(o;)
1
= _iEY*ﬁ,x,z [Z {aj - (yZ*j — Bi + (x5 — 2j) )} + 0—2 (o — Ma)2 + const.
1 Y 1
= 9 Z a — 20 {E yz] E(8:) + (E(z %) - QE(CUZ')E(ZJ') + E(ZJQ))H - ﬁ (Oéj2 — Qajua) + const.
1

_ - const.
5 +

N
<N+012> a? - ( +) (Elyy) - )+(E(flf?)—QE(ﬂfi)E(zj)JrE(Z?))))

=1

Thus, the variational distribution is given by,
J

J
[Ta(es) = [IN(A ey, 47
j=1

j=1

where A= N+ 1/02 and a; = pa/0% + ZZ]L (E(y;‘]) —E(B;) + (E(z?) — 2E(z;)E(2;) + E(zf)))
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Ideal Points for Politicians. This step is analogous to the update for the ideal points of users
and does not correspond to a standard distribution. Therefore, we apply the second-order Taylor

series approximation.

2 1
logg(z;) = —fEY B [ E (i — Bi+ (zi — 2)%) + —2( — 2zj1) | + const.
=1 Z

Apply the second-order Taylor expansion around the current value of z; denoted by Z;, yielding,

1 (1, . FN .
logq(z;) =~ —EE [29"(,2]-),2? —(9"(%)% — d'(%))) z]} + const.

where

g(z) = 72(22 —2zp;) + Z {y’;k_] — Oy Bi + (v — 2)2}
i=1
9 N
I = S (—p) =4 Y (@i—2) {ul— oy = B+ (@i — 27}
z i=1
9 N
"(2) = +aY {u—oi—Bi+3@i—27)
z i=1
Therefore, we arrive at the following variational distribution,
J J
9z) = [[az) ~ [[NE; e B
Jj=1 Jj=1

where E; = E(¢”(2;))/2 and e; = {E(¢"(%5))2; — E(¢'(%5))}/2. The relevant expectations are given

E(G/(2) = (2 ps)
—42{ (E(vi;) — E(ay) — E(8) + (E(a?) — 3E(a?)z + 3E(z;) 2> — 2) }

E(g"(2)) = +4Z{ (955) — E(ay) — E(8;)) + 3 (E(2?) — 2E ()2 + 22) }

62





