
Appendix for “Preventive Repression: Two Types of

Moral Hazard"

Tiberiu Dragu

New York University

Adam Przeworski

New York University



Before proceeding with the proofs of propositions, notice that, from a technical perspec-

tive, our setting is a (non-standard) nonlinear bilevel optimization problem (Colson et al.

2007) in that the ruler maximizes a function of two (continuous) variables that affect the

agent’s optimal incentives while the agent optimally decides how much to divert from pro-

tection to other activities (a continuous variable) and what fraction of the diverted resources

to put into politics and corruption (a continuous variable) both of which affect the princi-

pal’s optimization problem.1 Moreover, depending on whether politics or corruption is the

optimal diversion activity for the agent, we need to consider different objective functions for

the principal’s maximization problem.

Proof of Lemma 1. For any B and s, given that d = B−p, the security agent’s maximization

problem is

maximize
p∈[0,B]

p(B − p+ s)(1−B).

The agent’s optimal level of p is the solution of the FOC: s+B − 2p = 0, which implies

that p̂ = B+s
2

if s ≤ B and p̂ = B if s ≥ B (this is a maximum since the second-order

condition is satisfied). As a result, the optimal level of d is d̂ = B−s
2

if s ≤ B and d̂ = 0 if

s ≥ B.

Proof of Proposition 1. First, if s ≥ B, the agent’s optimal actions are p̂(B, s) = B and

d̂(B, s) = 0, and the ruler’s optimal allocation of resources is the solution to the following

constrained maximization problem:

maximize
B,s∈[0,1]

B(1− s)(1−B) s.t. s ≥ B.

Forming the Lagrangian, L(B, s, λ) = B(1− s)(1−B)− λ(B− s), the first order conditions

are dL
dB

= (1 − s)(1 − 2B) − λ = 0; dL
ds

= −(B − B2) + λ = 0; λ(B − s) = 0; λ ≥ 0; and

1For a review of bilevel optimization problems see Colson, Benoit, Patrice Marcotte, and
Gilles Savard. 2007. "An overview of bilevel optimization." Annals of Operations Research
153 (1): 235-256.
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s−B ≥ 0. The critical points of this constrained maximization are: 1) B = s = 1, λ = 0; 2)

B = 0, s = 1, and λ = 0; and 3) B = s = 1
3
, λ = 2

9
. Checking the second order conditions,

the optimal solutions of this constrained optimization problem are B∗ = 1
3
and s∗ = 1

3
.

Second, if s ≤ B, the agent’s optimal actions are p̂(B, s) = B+s
2

and d̂(B, s) = B−s
2

,

and the ruler’s optimal allocation of resources is the solution to the following constrained

maximization problem:

maximize
B,s∈[0,1]

B + s

2

(
1− B + s

2

)
(1−B) s.t. s ≤ B.

Forming the Lagrangian, L(B, s, λ) = B+s
2

(
1 − B+s

2

)
(1 − B) − λ(s − B), the first order

conditions are dL
dB

= 1
4
(3B2−2B(3−2s)+2−4s+s2)+λ = 0; dL

ds
= 1

2
(1−B)(1−B−s)−λ = 0;

λ(s − B) = 0; λ ≥ 0; and B − s ≥ 0. The critical points of this constrained maximization

are: 1) B = s = 1, λ = 0; and 2) B = s = 1
3
, λ = 1

9
. Checking the second order conditions,

the optimal solutions of this constrained optimization problem are B∗ = 1
3
and s∗ = 1

3
.

Given that in both scenarios, the ruler’s optimal allocations are B∗ = s∗ = 1
3
, this

implies that the equilibrium resources for protection and distribution of rents are B∗ = 1/3

and s∗ = 1/3. Finally, this implies that the agent’s equilibrium actions are p∗ = 1/3 and

d∗ = 0, as claimed.

Proof of Lemma 2. For any given B and s, given that d = B − p, the agent’s optimization

problem is

maximize
p∈[0,B]

p
[
s(1−B) + (B − p)γ

]
.

The optimal p is the solution to the FOC: s(1−B)+γB−2γp = 0 (the solution is a maximum

since the second order condition is satisfied). The optimal solution is p̃ = γB+s(1−B)
2γ

if s ≤ γB
1−B

and p̃ = B if s ≥ γB
1−B . This implies that the optimal diversion of resources is d̃ = γB−s(1−B)

2γ

if s ≤ γB
1−B and d̃ = 0 if s ≥ γB

1−B .

Proposition 2. First, if s ≥ γB
1−B , the agent’s optimal actions are p̃(B, s) = B and d̃(B, s) = 0.
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Thus, the ruler’s optimal B and s are the solution to the following constrained maximization

problem:

maximize
B,s∈[0,1]

B(1− s)(1−B) s.t. s(1−B) ≥ γB.

Forming the Lagrangian L(B, s, λ) = B(1− s)(1−B)−λ
(
γB− s(1−B)

)
, the first order

conditions are dL
dB

= (1 − s)(1 − 2B) − λ(γ + s) = 0; dL
ds

= −(B − B2) + λ(1 − B) = 0;

λ
(
γB− s(1−B)

)
= 0; λ ≥ 0; and s(1−B)−γB ≥ 0. The critical points of this constrained

maximization problem are: 1) B = 0, s = 1, λ = 0; and 2) B = 1
2(1+γ)

, s = γ
1+2γ

, λ = 1
2(1+γ)

.

Checking the second order conditions, the optimal solutions of this constrained optimization

problem are B∗ = 1
2(1+γ)

and s∗ = γ
1+2γ

.

Second, if s ≤ γB
1−B , the agent’s optimal actions are p̃(B, s) = γB+s(1−B)

2γ
and d̃(B, s) =

γB−s(1−B)
2γ

. This implies that the ruler’s optimal B and s are the solution to the following

constrained maximization problem:

maximize
B,s∈[0,1]

γB + s(1−B)

2γ

(
1− s

)(
1−B

)
s.t. s(1−B) ≤ γB.

Forming the Lagrangian L(B, s, λ) = γB+s(1−B)
2γ

(
1 − s

)(
1 − B

)
− λ

(
s(1 − B) − γB

)
,

the first order conditions are dL
dB

= 1
2γ
(1 − s)[γ(1 − 2B) − 2s(1 − B)] + λ(s + γ) = 0;

dL
ds

= 1
2γ
(1−B)[−γB + (1−B)(1− 2s)]− λ(1−B) = 0; λ

(
s(1−B)− γB

)
= 0; λ ≥ 0; and

s(1 − B) − γB ≤ 0. The critical points of this constrained maximization problem are: 1)

B = 1, s = 1, λ = 0; and 2) B = 1
2(1+γ)

, s = γ
1+2γ

, λ = 1−γ
4γ(1+γ)

. Checking the second order

conditions, the optimal solutions of this constrained optimization problem are B∗ = 1
2(1+γ)

and s∗ = γ
1+2γ

.

Given that in both scenarios, the ruler’s optimal allocations are B∗ = 1
2(1+γ)

and s∗ =

γ
1+2γ

, this implies that the equilibrium distribution of rents is s∗ = γ
1+2γ

and the equilibrium

allocation of resources to protection is B∗ = 1
2(1+γ)

. Finally, this implies that the agent’s

equilibrium actions are p∗ = 1
2(1+γ)

and d∗ = 0, as claimed.

Proof of Proposition 3. In text.
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Proof of Proposition 4. First, if 1 − B ≥ γ and s ≥ B, the agent’s optimal actions are

σ∗(B, s) = 1, p̂(B, s) = B, and d̂(B, s) = 0. Thus the ruler’s optimal allocation of resources

is the solution to the following constrained maximization problem:

maximize
B,s∈[0,1]

B(1− s)(1−B) s.t. s ≥ B and 1−B ≥ γ.

Forming the Lagrangian, L(B, s, λ1, λ2) = B(1− s)(1−B)− λ1(B− s)− λ2(γ +B− 1), the

first order conditions are dL
dB

= (1 − s)(1 − 2B) − λ1 − λ2 = 0; dL
ds

= −(B − B2) + λ1 = 0;

λ1(B − s) = 0; λ2(γ +B − 1) = 0; λ1 ≥ 0; λ2 ≥ 0; s−B ≥ 0; and 1−B − γ ≥ 0. If γ ≤ 2
3
,

the critical points of this constrained maximization are: 1) B = 0, s = 1, λ1 = λ2 = 0;

2) B = s = 1
3
, λ1 = 2

9
, λ2 = 0. If 2

3
≤ γ < 1, the critical points are: 1) B = 0, s = 1,

λ1 = λ2 = 0; and 2) B = s = 1− γ, λ1 = γ(1− γ), λ2 = γ(3γ− 2). And if γ = 1, the critical

points are: B = 0, s = α, λ1 = 0, λ2 = 1− α for any α ∈ [0, 1]. Checking the second order

conditions, the optimal solutions of this constrained optimization problem are B∗ = s∗ = 1
3

for γ ≤ 2
3
and B∗ = s∗ = 1 − γ for γ ≥ 2

3
. The ruler’s payoff is U∗R = 4

27
if γ ≤ 2

3
and

U∗R = γ2(1− γ) if γ ≥ 2
3
.

Second, if 1−B ≥ γ and s ≤ B, the agent’s optimal actions are σ∗(B, s) = 1, p̂(B, s) =

B+s
2

, and d̂(B, s) = B−s
2

. The ruler’s optimal allocation of resources is the solution to the

following constrained maximization problem:

maximize
B,s∈[0,1]

B + s

2

(
1− B + s

2

)
(1−B) s.t. s ≤ B and 1−B ≥ γ.

Forming the Lagrangian, L(B, s, λ1, λ2) = B+s
2

(
1− B+s

2

)
(1−B)−λ1(s−B)−λ2(γ+B−1),

the first order conditions are dL
dB

= 1
4
(3B2 − 2B(3 − 2s) + 2 − 4s + s2) + λ1 − λ2 = 0;

dL
ds

= 1
2
(1 − B)(1 − B − s) − λ1 = 0; λ1(s − B) = 0; λ2(γ + B − 1) = 0; λ1 ≥ 0; λ2 ≥ 0;

1−B− γ ≥ 0; and B− s ≥ 0. If γ ≤ 2
3
, the critical points of this constrained maximization

are: B = S = 1
3
, λ1 = 1

9
, λ2 = 0. And if γ ≥ 2

3
, the critical points are: B = s = 1 − γ,

λ1 =
1
2
γ(2γ−1), λ2 = γ(3γ−2). Checking the second order conditions, the optimal solution
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of this constrained optimization problem is B∗ = s∗ = 1
3
for γ ≤ 2

3
and B∗ = s∗ = 1− γ for

γ ≥ 2
3
. The ruler’s payoff is U∗R = 4

27
if γ ≤ 2

3
and U∗R = γ2(1− γ) if γ ≥ 2

3
.

Third, if 1−B ≤ γ and s ≥ γB
1−B , the agent’s optimal actions are σ∗(B, s) = 0, p̃(B, s) =

B, and d̃(B, s) = 0. Thus, the ruler’s optimal B and s are the solution to the following

constrained maximization problem:

maximize
B,s∈[0,1]

B(1− s)(1−B) s.t. s(1−B) ≥ γB and 1−B ≤ γ.

Forming the Lagrangian L(B, s, λ1, λ2) = B(1− s)(1−B)− λ1
(
γB− s(1−B)

)
− λ2(1−

B − γ), the first order conditions are dL
dB

= (1 − s)(1 − 2B) − λ1(γ + s) + λ2 = 0; dL
ds

=

−(B − B2) + λ1(1 − B) = 0; λ1
(
γB − s(1 − B)

)
= 0; λ2(1 − B − γ) = 0; λ1 ≥ 0; λ2 ≥ 0;

s(1 − B) − γB ≥ 0; and 1 − B − γ ≤ 0. If γ ≤
√

1
2
, the critical points of this constrained

maximization problem are: B = s = 1 − γ, λ1 = 1 − γ, λ2 = 1 − 2γ2. If
√

1
2
≤ γ < 1, the

critical points are: B = 1
2(1+γ)

, s = γ
1+2γ

, λ1 = 1
2(1+γ)

, λ2 = 0. And if γ = 1, the critical

points are: 1) B = 1
4
, s = 1

3
, λ1 = 1

4
, λ2 = 0; and 2) B = 0, s = 1, λ1 = λ2 = 0. Checking

the second order conditions, the optimal solution of this constrained optimization problem

is B∗ = 1
2(1+γ)

, s∗ = γ
1+2γ

if γ ≥
√

1
2
and B∗ = s∗ = 1 − γ if γ ≤

√
1
2
. The ruler’s payoff is

U∗R = 1
4γ+4

if γ ≥
√

1
2
and U∗R = γ2(1− γ) if γ ≤

√
1
2
.

Fourth, if 1 − B ≤ γ and s ≤ B γ
1−B , the agent’s optimal actions are σ∗(B, s) = 0,

p̃ = γB+s(1−B)
2γ

, and d̃ = γB−s(1−B)
2γ

. This implies that the ruler’s optimal B and s are the

solution to the following constrained maximization problem:

maximize
B,s∈[0,1]

γB + s(1−B)

2γ

(
1− s

)(
1−B

)
s.t. s(1−B) ≤ γB and 1−B ≤ γ.

Forming the Lagrangian L(B, s, λ1, λ2) = γB+s(1−B)
2γ

(
1−s

)(
1−B

)
−λ1

(
s(1−B)−γB

)
−

λ2(1−B− γ), the first order conditions are dL
dB

= 1
2γ
(1− s)[γ(1− 2B)− 2s(1−B)] + λ1(γ +

s)+λ2 = 0; dL
ds

= 1
2γ
(1−B)[−γB+(1−B)(1−2s)]−λ1(1−B) = 0; λ1

(
s(1−B)−γB

)
= 0;

λ2(1 − B − γ) = 0; λ1 ≥ 0; λ2 ≥ 0; s(1 − B) − γB ≤ 0; and 1 − B − γ ≤ 0. If γ ≤ 2
3
, the
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critical points of this constrained maximization problem are: 1) B = 1 − γ, s = γ
2
, λ1 = 0,

λ2 =
1
4
(2− γ)(1− γ); and 2) B = 1, s = 1, λ1 = λ2 = 0. If 2

3
≤ γ ≤

√
1
2
, the critical points

are: 1) B = 1 − γ, s = 1 − γ, λ1 = 3γ−2
2

, λ2 = 1 − 2γ2; and 2) B = 1, s = 1, λ1 = λ2 = 0.

And if γ ≥
√

1
2
, the critical points are: 1) B = 1

2(1+γ)
, s = γ

1+2γ
, λ1 = 1−γ

4γ(1+γ)
, λ2 = 0; and 2)

B = 1, s = 1, λ1 = λ2 = 0. Checking the second order conditions, the optimal solution of

this constrained optimization problem is B∗ = 1
2(1+γ)

and s∗ = γ
1+2γ

if γ ≥
√

1
2
; B∗ = 1− γ

and s∗ = 1 − γ if 2
3
≤ γ ≤

√
1
2
; and B = 1 − γ, s = γ

2
if γ ≤ 2

3
. The ruler’s payoff is

U∗R = 1
4(γ+1)

if γ ≥
√

1
2
; U∗R = γ2(1− γ) if 2

3
≤ γ ≤

√
1
2
; and U∗R = 1

8
γ(2− γ)2 if γ ≤ 2

3
.

Comparing the ruler’s payoff for different values of γ in the above four scenarios, the

ruler’s highest payoff is 4
27

for γ ≤ 2
3
, γ2(1− γ) for γ ∈ [2

3
,
√

1
2
], and 1

4γ+4
for γ ≥

√
1
2
. As a

result, the ruler’s equilibrium choices are

B∗ =


1
3

1− γ
1

2(γ+1)

if γ ≤ γ1

if γ ∈ [γ1, γ2]

if γ ≥ γ2

and s∗ =


1
3

1− γ
γ

1+2γ

if γ ≤ γ1

if γ ∈ [γ1, γ2],

if γ ≥ γ2

where γ1 = 2
3
and γ2 =

√
1
2
.

Proof of Proposition 5. In the game in which the agent can choose between diverting to

politics and diverting to corruption, the ruler’s equilibrium payoff is the following:

U∗R =


4
27

γ2(1− γ)
1

4(γ+1)

if γ ≤ γ1

if γ ∈ [γ1, γ2].

if γ ≥ γ2

where γ1 = 2
3
and γ2 =

√
1
2
. Notice that the ruler’s equilibrium payoff is continuous in γ

and is constant in γ for γ ≤ γ1 and is decreasing in γ for γ > γ1. To see this, notice that

at γ = γ1, we have (γ1)
2(1 − γ1) = 4/27 and at γ = γ2, we have (γ2)

2(1 − γ2) = 1
4(γ2+1)

.

Notice also that the expression d
dγ

(
γ2(1− γ)

)
= γ(2− 3γ) ≤ 0 for any γ ∈ [γ1, γ2] and that
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the expression d
dγ

(
1

4(γ+1)

)
= − 1

4(γ+1)2
< 0 for any γ ≥ γ2. On the other hand, in the politics

game, the ruler’s equilibrium payoff is UR = 4
27
. Taken together, these arguments imply that

the ruler’s equilibrium payoff is (weakly) higher in the politics game than in the game in

which the agent can choose between diverting to politics and diverting to corruption.

In the game in which the agent can choose between politics and corruption, the agent’s

equilibrium payoff is

U∗A =


2
27

γ(1− γ)2

γ
4(γ+1)2

if γ ≤ γ1

if γ ∈ [γ1, γ2],

if γ ≥ γ2

where γ1 = 2
3
and γ2 =

√
1
2
. Notice that the agent’s equilibrium payoff is continuous in γ;

the agent’s equilibrium payoff is constant in γ for γ ≤ γ1, is decreasing in γ for γ ∈ [γ1, γ2]

and is less than 2/27 for γ ∈ [γ2, 1]. To see this, notice that at γ = γ1, we have γ(1−γ)2 = 2
27

and at γ = γ2, we have γ(1−γ)2 = γ
4(γ+1)2

. Also notice that d
dγ

(
γ(1−γ)2

)
= 1−4γ−γ2 < 0

for any γ ∈ [γ1, γ2] and that γ
4(γ+1)2

< 2
27

for any γ ∈ [γ2, 1] since 8γ2 − 11γ + 8 > 0

for all γ ∈ [γ2, 1]. On the other hand, in the politics game, the agent’s equilibrium payoff

is UA = 2
27
. Taken together, these arguments imply that the agent’s equilibrium payoff is

(weakly) higher in the politics game than in the game in which the agent can choose between

diverting to politics and diverting to corruption.

Proof of Proposition 6. In the politics game, the equilibrium probability of regime survival

is p∗ = 1/3. On the other hand, in the game in which the agent can choose between politics

and corruption, the equilibrium probability of regime survival is

p∗ =


1
3

1− γ
1

2(γ+1)

if γ ≤ γ1

if γ ∈ [γ1, γ2],

if γ ≥ γ2
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where γ1 = 2
3
and γ2 =

√
1
2
. Notice that the equilibrium probability of regime survival is

continuous in γ since at γ = γ1, we have 1
3
= 1 − γ and at γ = γ2, we have 1 − γ = 1

2(γ+1)
.

Notice also that this equilibrium probability is constant in γ for γ ≤ γ1 and is decreasing in

γ for γ ≥ γ1 since both 1− γ and 1
2(γ+1)

are decreasing in γ. Take together, these arguments

imply that the equilibrium probability of regime survival is (weakly) higher in the politics

game than in the game in which the agent can choose between diverting to politics and

diverting to corruption.

8


