Online Appendix: Proofs

Proof of Lemma 1: First, observe that in the limit when the noise goes to zero, we have (Morris and Shin 2003):

$$Pr(x_i < \hat{x}|\theta = \hat{\theta}) = 1 - Pr(\theta < \hat{\theta}|x_i = \hat{x}), \text{ for all } \hat{x} \text{ and } \hat{\theta}.$$
 (21)

To show this, we mirror the steps in Morris and Shin (2003):

$$\begin{aligned} Pr(\theta < \hat{\theta} | x_i = \hat{x}) &= \int_{\theta = -\infty}^{\hat{\theta}} pdf(\theta | \hat{x}) d\theta \\ &= \int_{\theta = -\infty}^{\hat{\theta}} \frac{pdf(\hat{x} | \theta) \ g(\theta)}{\int_{-\infty}^{\infty} pdf(\hat{x} | \theta) \ g(\theta) \ d\theta} \ d\theta \\ &= \int_{\theta = -\infty}^{\hat{\theta}} \frac{f_{\epsilon}(\frac{\hat{x} - \theta}{\sigma_w}) \ g(\theta)}{\int_{-\infty}^{\infty} f_{\epsilon}(\frac{\hat{x} - \theta}{\sigma_w}) \ g(\theta) \ d\theta} \ d\theta \\ &= \int_{z(\hat{\theta})}^{z = \infty} \frac{f_{\epsilon}(z) \ g(\hat{x} - \sigma_w \ z)}{\int_{-\infty}^{\infty} f_{\epsilon}(z) g(\hat{x} - \sigma_w \ z) \ dz} \ dz \\ &= 1 - F_{\epsilon}(z(\hat{\theta})) \quad (\text{in the limit when } \sigma_w \to 0) \\ &= 1 - F_{\epsilon}\left(\frac{\hat{x} - \hat{\theta}}{\sigma_w}\right) \\ &= 1 - Pr(x_i < \hat{x} | \theta = \hat{\theta}). \end{aligned}$$

We now use equation (21) to prove the lemma:

$$H(p|\theta = \hat{\theta}) = Pr(Pr(\theta < \hat{\theta}|x_i = \hat{x}) < p|\theta = \hat{\theta}) \quad (\text{definition of } H)$$

$$= Pr(1 - Pr(x_i < \hat{x}|\theta = \hat{\theta}) < p|\theta = \hat{\theta}) \quad (\text{from (21)})$$

$$= Pr(1 - F_{\epsilon}((\hat{x} - \hat{\theta})/\sigma_w)
$$= Pr(\hat{\theta} + \sigma_w F^{-1}(1 - p) < \hat{x} \mid \theta = \hat{\theta})$$

$$= 1 - F_{\epsilon}(F_{\epsilon}^{-1}(1 - p))$$

$$= p.$$$$

Proof of Lemma 2: Let $\Delta(x_i; x^*)$ be worker *i*'s net expected payoff from revolting versus not revolting. We show that as x_i traverses the real line from $-\infty$ to ∞ , $\Delta(x_i; x^*)$ changes

sign at a unique point.

$$\begin{aligned} \Delta(x_i;x^*) &= Pr(\theta < \theta^{**}|x_i, \tilde{r}_f, K) \times s - (1-\alpha) \ E\left[\left(\frac{\underline{K} + K}{\underline{L} + Pr(x_j \ge x^*|\theta)(1-\underline{L})}\right)^{\alpha} \middle| x_i, \tilde{r}_f, K\right] \\ &= \int_{\theta=-\infty}^{\infty} \left(\mathbf{1}_{\{\theta < \theta^{**}\}} \ s - (1-\alpha) \ \left(\frac{\underline{K} + K}{\underline{L} + Pr(x_j \ge x^*|\theta)(1-\underline{L})}\right)^{\alpha}\right) \ f(\theta|x_i, \tilde{r}_f, K) \ d\theta \\ &= \int_{\theta=-\infty}^{\infty} \pi(\theta) \ f(\theta|x_i, \tilde{r}_f, K) \ d\theta, \end{aligned}$$

where $\mathbf{1}_{\{\cdot\}}$ is the indicator function, and $\pi(\theta) \equiv \mathbf{1}_{\{\theta < \theta^{**}\}} s - (1 - \alpha) \left(\frac{\underline{K} + K}{\underline{L} + Pr(x_j \ge x^* | \theta)(1 - \underline{L})}\right)^{\alpha}$. Observe that

$$\lim_{\theta \to -\infty} \pi(\theta) = s - (1 - \alpha) \left(\frac{\underline{K} + K}{\underline{L}}\right)^{\alpha} > s - (1 - \alpha) \left(\frac{\overline{K}}{\underline{L}}\right)^{\alpha} > 0.$$
(Assumption 1)
$$\lim_{\theta \to \infty} \pi(\theta) = -(1 - \alpha) \left(\frac{\underline{K} + K}{1}\right)^{\alpha} < 0.$$

Moreover, inspection of $\pi(\theta)$ reveals that $\pi(\theta)$ changes sign from positive to negative at a unique point $\theta = \theta^{**}$.

Next, because $f(\theta|x_i, \tilde{r}_f, K)$ is TP_2 (i.e., has MLRP between θ and x_i), by Karlin's theorem (Karlin 1968, Ch. 1, Theorem 3.1), $\Delta(x_i; x^*)$ has, at most one sign change. Finally, the inspection of $\Delta(x_i; x^*)$ reveals that $\lim_{x_i \to -\infty} \Delta(x_i; x^*) > 0 > \lim_{x_i \to \infty} \Delta(x_i; x^*)$. Thus, $\Delta(x_i; x^*)$, indeed, has one sign change from positive to negative.

Proof of Lemma 3: Recalling that

$$L(\theta) = Pr(x_i \ge x^* | \theta) \ (1 - \underline{L}) = \left(1 - F_\epsilon \left(\frac{x^* - \theta}{\sigma_w}\right)\right) \ (1 - \underline{L}), \tag{22}$$

we have:

$$\begin{aligned} \Pr(L(\theta)/(1-\underline{L}) < A | x_i = x^*) &= \Pr(1 - F_{\epsilon}((x^* - \theta)/\sigma_w) < A | x_i = x^*) & \text{(from (22))} \\ &= \Pr(\theta < x^* - \sigma_w F_{\epsilon}^{-1}(1-A) | x_i = x^*) \\ &= 1 - \Pr(x_i < x^* | \theta = x^* - \sigma_w F_{\epsilon}^{-1}(1-A)) & \text{(from (21))} \\ &= 1 - F_{\epsilon} \left(\frac{x^* - x^* + \sigma_w F_{\epsilon}^{-1}(1-A)}{\sigma_w} \right) \\ &= 1 - F_{\epsilon} (F_{\epsilon}^{-1}(1-A)) \\ &= A. \end{aligned}$$

Hence, the marginal worker with signal $x_i = x^*$ believes that $Pr(x_i \ge x^*|\theta)$ is distributed uniformly on [0, 1], and hence $L(\theta)|x_i = x^* \sim U[0, 1 - \underline{L}]$.

Proof of Proposition 3: Given a level of aggregate domestic capital $\underline{K}+K$, the equilibrium is characterized by a pair (x^*, θ^*) such that:

$$Pr(\theta < \theta^{**} | x_i = x^*, \tilde{r}_f, K) \times s = E[w(\theta) | x_i = x^*, \tilde{r}_f, K].$$

$$(23)$$

$$w(\theta) = (1 - \alpha) \left(\frac{\underline{K} + K}{\underline{L} + Pr(x_i \ge x^* | \theta)(1 - \underline{L})} \right)^*.$$
(24)

$$Pr(x_i < x^* | \theta^{**}, \tilde{r}_f, K) \ (1 - \underline{L}) = \theta^{**}.$$

$$\tag{25}$$

First, observe that in the limit where the noise in the workers' private signals approaches zero, $pdf(\theta|x_i, \tilde{r}_f, K)$ approaches $pdf(\theta|x_i)$.¹⁷ Now,

$$\begin{split} E[w(\theta)|x_i = x^*] &= (1-\alpha) \left(\underline{K} + K\right)^{\alpha} \int_{-\infty}^{\infty} \frac{1}{[\underline{L} + (1 - \Pr(x_i < x^*|\theta))(1 - \underline{L})]^{\alpha}} \ pdf(\theta|x_i = x^*) \ d\theta \\ &= (1-\alpha) \left(\underline{K} + K\right)^{\alpha} \int_{0}^{1} \frac{dz}{(\underline{L} + z(1 - \underline{L}))^{\alpha}} \quad \text{(from Lemma 3)} \\ &= (1-\alpha) \left(\frac{(\underline{K} + K)^{\alpha}}{1 - \underline{L}} \left[\frac{(\underline{L} + z(1 - \underline{L}))^{1-\alpha}}{1 - \alpha} \right]_{0}^{1} \\ &= (\underline{K} + K)^{\alpha} \frac{1 - \underline{L}^{1-\alpha}}{1 - \underline{L}}. \end{split}$$

Thus, in the limit, equations (23) and (25) simplify to:

$$Pr(\theta < \theta^{**} | x_i = x^*) \times s = (\underline{K} + K)^{\alpha} - \frac{1 - \underline{L}^{1-\alpha}}{1 - \underline{L}}.$$
(26)

$$Pr(x_i < x^* | \theta^{**}) \ (1 - \underline{L}) = \theta^{**}.$$

$$\tag{27}$$

Because $Pr(\theta < \theta^{**}|x^*) = 1 - Pr(x_i < x^*|\theta^{**})$ in the limit, the result for $\theta^{**}(K)$ follows. Given this $\theta^{**}(K)$, equation (27) implies a unique x^* .

Moreover, $\theta^{**}(K)$ is decreasing in K and clearly $\theta^{**}(K) < 1$. To see that $\theta^{**}(K) > 0$, note that $\frac{1-\underline{L}^{1-\alpha}}{1-\underline{L}} < \frac{1-\alpha}{\underline{L}^{\alpha}}$, and hence $\frac{(\underline{K}+K)^{\alpha}}{1-\underline{L}} < (1-\alpha) \left(\frac{\overline{K}}{\underline{L}}\right)^{\alpha} < s$, where the last inequality follows from Assumption 1.

Proof of Lemma 4: Let $\Gamma(y_i; \rho)$ be a capitalist's net expected payoff from investing one unit of capital in the country versus abroad, given his private signal y_i and given the strategies

¹⁷As we discussed in footnote 10, \tilde{r}_f and K constitute a noisy public signal of θ , which becomes irrelevant for calculating the posterior when the noise in private signals becomes sufficiently accurate.

of other capitalists (ρ) and workers (x^*). We show that $\Gamma(y_i; \rho)$ has single-crossing property.

$$\Gamma(y_i;\rho) = Pr(\theta \ge \theta^* | y_i) E[r_d(\theta) | \theta \ge \theta^*, y_i] - r_f
= \int_{-\infty}^{\infty} \left[\mathbf{1}_{\{\theta \ge \theta^*\}} \alpha \left(\frac{\underline{L} + Pr(x_k \ge x^* | \theta) (1 - \underline{L})}{\underline{K} + K(\theta)} \right)^{1-\alpha} - r_f \right] pdf(\theta | y_i) d\theta
= \int_{-\infty}^{\infty} \Pi(\theta) pdf(\theta | y_i) d\theta,$$
(28)

where $\Pi(\theta) \equiv \mathbf{1}_{\{\theta \ge \theta^*\}} \alpha \left(\frac{\underline{L} + Pr(x_k \ge x^*|\theta) (1-\underline{L})}{\underline{K} + K(\theta)}\right)^{1-\alpha} - r_f$. Observe that:

$$\lim_{\theta \to -\infty} \Pi(\theta) = -r_f < 0 \text{ and } \lim_{\theta \to \infty} \Pi(\theta) \ge \alpha \left(\frac{1}{\overline{K}}\right)^{1-\alpha} - r_f > 0, \tag{29}$$

where the last inequality follows from Assumption 2 that $\overline{f} < \alpha(1/\overline{K})^{1-\alpha}$, where we recall that $r_f \in [0, \overline{f}]$. From (28) and (29), $\lim_{y_i \to -\infty} \Gamma(y_i; \rho) < 0 < \lim_{y_i \to \infty} \Gamma(y_i; \rho)$. Thus, $\Gamma(y_i; \rho)$ has at least one sign change.

We will show that there exists a $\overline{\sigma} > 0$ such that if $\sigma_w < \overline{\sigma}$, then $\Pi(\theta; \sigma_w)$ has exactly one sign change as θ traverses the real line from $-\infty$ to ∞ , where we have made the dependence of Π on σ_w explicit.¹⁸ Then, because $pdf(\theta|y_i)$ is TP_2 (i.e., has MLRP between θ and y_i), by Karlin's theorem, $\Gamma(y_i; \rho, \sigma_w)$ has at most one sign change for $\sigma_w < \overline{\sigma}$.

Now, we show that there exists a $\overline{\sigma} > 0$ such that if $\sigma_w < \overline{\sigma}$, then $\Pi(\theta; \sigma_w)$ has exactly one sign change as a function of θ . Clearly, $\Pi(\theta; \sigma_w) = -r_f < 0$ for $\theta < \theta^*$. Let $\widehat{\Pi}(\theta; \sigma_w)$ be the restriction of $\Pi(\theta; \sigma_w)$ to $[\theta^*, \infty)$, so that

$$\widehat{\Pi}(\theta; \sigma_w) \equiv \alpha \left(\frac{1 - F_\epsilon \left(\frac{x^*(\sigma_w) - \theta}{\sigma_w} \right) (1 - \underline{L})}{\overline{K} - F_\eta \left(\frac{y^* - \theta}{\sigma_c} \right) \Delta K} \right)^{1 - \alpha} - r_f, \text{ for } \theta \in [\theta^*, \infty),$$

where $\Delta K \equiv \overline{K} - \underline{K} < \overline{K}$, and we used the cdf of the noise in the signals of workers (F_{ϵ}) and capitalists (F_{η}) . By continuity, for every $\gamma > 0$, there exists a $\delta > 0$ such that if $\theta \in [\theta^*, \theta^* + \delta]$, then $\overline{K} - F_{\eta} \left(\frac{y^* - \theta}{\sigma_c}\right) \Delta K \in [\overline{K} - F_{\eta} \left(\frac{y^* - \theta^*}{\sigma_c}\right) \Delta K, \overline{K} - F_{\eta} \left(\frac{y^* - \theta^*}{\sigma_c}\right) \Delta K + \gamma]$. Moreover, because $\lim_{\sigma_w \to 0} x^*(\sigma_w) = \theta^*$, for sufficiently small σ_w , we have $x^*(\sigma_w) - (\theta^* + \delta) < 0$. Thus, for every

¹⁸A stronger assumption, $\overline{f} < \alpha(\underline{L}/\overline{K})^{1-\alpha}$, immediately implies that, for any $\sigma_w > 0$, $\Pi(\theta)$ switches sign from negative to positive at the unique point θ^* . Then, because $pdf(\theta|y_i)$ is TP_2 (i.e., has MLRP between θ and y_i), by Karlin's theorem, $\Gamma(y_i; y^*)$ has at most one sign change.

 $\beta > 0$, there exists a $\sigma_{\beta} > 0$ such that if $\sigma_w < \sigma_{\beta}$, then $1 - F_{\epsilon} \left(\frac{x^*(\sigma_w) - \theta}{\sigma_w} \right) (1 - \underline{L}) > 1 - \beta$, for all $\theta \ge \theta^* + \delta$. Now, choose a $\hat{\beta} > 0$ such that $\alpha \left(\frac{1 - \hat{\beta}}{\overline{K}} \right)^{1 - \alpha} > r_f$ (by Assumption 2, such a $\hat{\beta}$ exists). Thus, there exists a $\sigma_{\hat{\beta}} > 0$ such that if $\sigma_w < \sigma_{\hat{\beta}}$, then for $\theta \ge \theta^* + \delta$, we have:

Next, we show that there is at most one sign change in $\theta \in [\theta^*, \theta^* + \delta]$. By continuity, at any $\theta_0 \in (\theta^*, \theta^* + \delta]$ at which there is a sign change, we must have $\widehat{\Pi}(\theta = \theta_0; \sigma_w) = 0$:

$$1 - F_{\epsilon} \left(\frac{x^{*}(\sigma_{w}) - \theta_{0}}{\sigma_{w}} \right) \left(1 - \underline{L} \right) = \left(\frac{r_{f}}{\alpha} \right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_{\eta} \left(\frac{y^{*} - \theta_{0}}{\sigma_{c}} \right) \Delta K \right).$$
(31)

By Assumption 2, $\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^* - \theta^*}{\sigma_c}\right)\Delta K\right) < 1$. If $\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^* - \theta^*}{\sigma_c}\right)\Delta K\right) < \underline{L}$, then choose γ (and the corresponding δ) such that, for all $\theta \in [\theta^*, \theta^* + \delta]$,

$$\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^* - \theta}{\sigma_c}\right)\Delta K\right) \leq \left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^* - \theta^*}{\sigma_c}\right)\Delta K + \gamma\right) < \underline{L}.$$

Thus, $\widehat{\Pi}(\theta; \sigma_w) > 0$ for all $\theta \in [\theta^*, \theta^* + \delta].$

Next, consider the case where $\underline{L} < \left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^*-\theta^*}{\sigma_c}\right)\Delta K\right) < 1$. Then, choose γ (and the corresponding δ) such that $\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^*-\theta^*}{\sigma_c}\right)\Delta K + \gamma\right) < 1$. This implies that, for all $\theta \in [\theta^*, \theta^* + \delta]$, $\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^*-\theta}{\sigma_c}\right)\Delta K\right) \in [I_1, I_2] \subset (\underline{L}, 1)$, for some $I_1 < I_2$. Thus, from equation (31), at any $\theta_0 \in (\theta^*, \theta^* + \delta]$ at which there is a crossing, we must have $\frac{y^*-\theta_0}{\sigma_c} \in [k_1, k_2]$ and $\frac{x^*(\sigma_w)-\theta_0}{\sigma_w} \in [l_1, l_2]$, for some $k_1 < k_2$ and $l_1 < l_2$. Define

$$f_{\eta}^{M} \equiv \max_{x \in [k_{1}, k_{2}]} f_{\eta}(x) \text{ and } f_{\epsilon}^{m} \equiv \min_{x \in [l_{1}, l_{2}]} f_{\epsilon}(x) > 0.$$
 (32)

Differentiating $\widehat{\Pi}(\theta; \sigma_w)$ with respect to θ yields:

$$\frac{d\widehat{\Pi}(\theta;\sigma_w)}{d\theta} > 0 \quad \Leftrightarrow \quad \frac{\frac{1}{\sigma_w} f_\epsilon \left(\frac{x^*(\sigma_w) - \theta}{\sigma_w}\right) (1 - \underline{L})}{1 - F_\epsilon \left(\frac{x^*(\sigma_w) - \theta}{\sigma_w}\right) (1 - \underline{L})} > \frac{\frac{1}{\sigma_c} f_\eta \left(\frac{y^* - \theta}{\sigma_c}\right) \Delta K}{\overline{K} - F_\eta \left(\frac{y^* - \theta}{\sigma_c}\right) \Delta K}.$$
(33)

Thus, at any θ_0 at which $\widehat{\Pi}(\theta = \theta_0; \sigma_w) = 0$, we have:

$$\frac{d\widehat{\Pi}(\theta;\sigma)}{d\theta}\Big|_{\theta=\theta_0} > 0 \quad \Leftrightarrow \quad \frac{1}{\sigma_w} f_\epsilon \left(\frac{x^*(\sigma_w) - \theta_0}{\sigma_w}\right) > \frac{1}{\sigma_c} f_\eta \left(\frac{y^* - \theta_0}{\sigma_c}\right) \frac{\Delta K}{1 - \underline{L}} \left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}}, \quad (34)$$

where we used equation (31). Moreover, from (32),

$$\frac{1}{\sigma_w} f_{\epsilon} \left(\frac{x^*(\sigma_w) - \theta_0}{\sigma_w} \right) \ge \frac{1}{\sigma_w} f_{\epsilon}^m \text{ and } \frac{1}{\sigma_c} \frac{\Delta K}{1 - \underline{L}} \left(\frac{r_f}{\alpha} \right)^{\frac{1}{1 - \alpha}} f_{\eta}^M \ge \frac{1}{\sigma_c} \frac{\Delta K}{1 - \underline{L}} \left(\frac{r_f}{\alpha} \right)^{\frac{1}{1 - \alpha}} f_{\eta} \left(\frac{y^* - \theta_0}{\sigma_c} \right)$$
(35)

Thus, from (34) and (35), if $\sigma_w < \frac{f_e^m}{f_\eta^M} \left(\frac{1}{\sigma_c}\frac{\Delta K}{1-\underline{L}}\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}}\right)^{-1} \in (0,\infty)$, then $\frac{d\widehat{\Pi}(\theta;\sigma_w)}{d\theta}\Big|_{\theta=\theta_0} > 0$. That is, for sufficiently small σ_w , at any point $\theta_0 \in (\theta^*, \theta^* + \delta]$ at which $\widehat{\Pi}(\theta)$ crosses 0, the derivative is strictly positively. Thus, there is at most one such crossing. In particular, either $\Pi(\theta)$ switches sign only at θ^* , or it switches sign only at some $\theta_0 \in (\theta^*, \theta^* + \delta)$.

Finally, consider the special case, where $\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^*-\theta^*}{\sigma_c}\right)\Delta K\right) = \underline{L}$. Then, $\widehat{\Pi}(\theta^*; \sigma_w) > 0$ for all $\sigma_w > 0$. If $x^*(\sigma_w)$ goes to θ^* from below, for sufficiently small σ_w , there exists a $\delta > 0$ such that $\widehat{\Pi}(\theta; \sigma_w) > 0$ for all $\theta \in [\theta^*, \theta^* + \delta)$. To see this, observe that

$$1 - F_{\epsilon} \left(\frac{x^*(\sigma_w) - \theta}{\sigma_w} \right) (1 - \underline{L}) \ge \underline{L} + (1 - F_{\epsilon}(0))(1 - \underline{L}) > \underline{L}, \ \forall \theta \ge \theta^*$$

Thus, we can pick a $\gamma > 0$ (with the corresponding δ) small enough, so that for $\theta \in [\theta^*, \theta^* + \delta)$ we have:

$$\left(\frac{r_f}{\alpha}\right)^{\frac{1}{1-\alpha}} \left(\overline{K} - F_\eta\left(\frac{y^* - \theta}{\sigma_c}\right)\Delta K\right) < \underline{L} + (1 - F_\epsilon(0))(1 - \underline{L}) \le 1 - F_\epsilon\left(\frac{x^*(\sigma_w) - \theta}{\sigma_w}\right)(1 - \underline{L}),$$

and hence $\widehat{\Pi}(\theta; \sigma_w) > 0$ for all $\theta \in [\theta^*, \theta^* + \delta)$. Next, suppose $x^*(\sigma_w)$ approaches θ^* from above. From (33), for sufficiently small σ_w , $\frac{d\widehat{\Pi}(\theta;\sigma_w)}{d\theta}|_{\theta=x^*(\sigma_w)} > 0$, and it can be made arbitrarily large. Further, by log-concavity, the left hand side of the second inequality in (33) is decreasing in θ . Thus, for sufficiently small σ_w , when $\theta \in (\theta^*, x^*(\sigma_w)]$, we have $\frac{d\widehat{\Pi}(\theta;\sigma_w)}{d\theta} > 0$, and hence $\widehat{\Pi}(\theta;\sigma_w) > 0$ for all $\theta \in [\theta^*, x^*(\sigma_w)]$. Thus, any crossing must happen at some $\theta_0(\sigma_w) > x^*(\sigma_w)$, and hence $\frac{x^*(\sigma_w) - \theta_0(\sigma_w)}{\sigma_w} < 0$, where we made explicit the possible dependence of θ_0 on σ_w . Now, if $\frac{x^*(\sigma_w) - \theta_0(\sigma_w)}{\sigma_w}$ is finite for all sufficiently small σ_w , then the logic of equations (32)-(35) goes through because we can find some $f_{\epsilon}^m > 0$. That is, there exists a $\overline{\sigma}_a > 0$ such that if $\sigma_w < \overline{\sigma}_a$, then $\Pi(\theta; \sigma)$ has one sign change as a function of θ . Otherwise, $\frac{x^*(\sigma_w) - \theta_0(\sigma_w)}{\sigma_w}$ must become unboundedly negative. But then $F\left(\frac{x^*(\sigma_w) - \theta_0(\sigma_w)}{\sigma_w}\right)$ approaches 0, and the logic of (30) applies. That is, there exists a $\overline{\sigma}_b > 0$ such that if $\sigma_w < \overline{\sigma}_b$, then $\Pi(\theta; \sigma)$ has one sign change as a function of θ . If $x^*(\sigma_w)$ approaches θ^* from both above and below, then set $\overline{\sigma} = \min\{\overline{\sigma}_b, \overline{\sigma}_a\}$.

Proof of Proposition 4: First, we calculate the expected payoff from domestic investment for a capitalist whose signal is at the equilibrium threshold $y_j = y^*$. The left hand side of equation (8) is:

$$Pr(\theta \ge \theta^* | y_j = y^*) \ E[r_d(\theta) | \theta \ge \theta^*, y_j = y^*]$$

$$= Pr(\theta \ge \theta^* | y_j = y^*) \ \alpha \ \int_{-\infty}^{\infty} \left(\frac{\underline{L} + L(\theta)}{\underline{K} + K(\theta)}\right)^{1-\alpha} \ pdf(\theta | \theta \ge \theta^*, y_j = y^*) \ d\theta$$

$$= Pr(\theta \ge \theta^* | y_j = y^*) \ \alpha \ \int_{\theta^*}^{\infty} \left(\frac{\underline{L} + L(\theta)}{\underline{K} + K(\theta)}\right)^{1-\alpha} \ \frac{pdf(\theta | y_j = y^*)}{Pr(\theta \ge \theta^* | y_j = y^*)} \ d\theta$$

$$= \alpha \ \int_{\theta^*}^{\infty} \frac{[\underline{L} + Pr(x_i \ge x^* | \theta) \ (1 - \underline{L})]^{1-\alpha}}{[\underline{K} + Pr(y_l \ge y^* | \theta) \ (\overline{K} - \underline{K})]^{1-\alpha}} \ pdf(\theta | y_j = y^*) \ d\theta$$

$$= \alpha \ \int_{\theta^*}^{\infty} \frac{1}{[\underline{K} + Pr(y_l \ge y^* | \theta) \ (\overline{K} - \underline{K})]^{1-\alpha}} \ pdf(\theta | y_j = y^*) \ d\theta, \ (\text{because } \lim_{\sigma_w \to 0} Pr(x_i \ge x^* | \theta > \theta^*) = 1)$$

$$= \alpha \ \int_{z(\theta^*)}^{1} \frac{1}{[\underline{K} + (\overline{K} - \underline{K}) \ z]^{1-\alpha}} \ dz, \ (\text{change of variable from } \theta \text{ to } z = Pr(y_l \ge y^* | \theta))$$

$$= \alpha \ \frac{1}{\overline{K} - \underline{K}} \left[\frac{[\underline{K} + (\overline{K} - \underline{K}) \ z]^{\alpha}}{a}\right]_{z=z(\theta^*)}^{1}$$

$$= \frac{1}{\overline{K} - \underline{K}} \left\{\overline{K}^{\alpha} - [\underline{K} + (\overline{K} - \underline{K}) \ z(\theta^*)]^{\alpha}\right\}$$

$$= \frac{\overline{K}^{\alpha} - [\underline{K} + K(\theta^*)]^{\alpha}}{\overline{K} - \underline{K}}.$$
(37)

Substituting from equation (37) into equation (8) yields:

$$[\underline{K} + K(\theta^*)]^{\alpha} = \overline{K}^{\alpha} - (\overline{K} - \underline{K}) r_f.$$
(38)

Substituting from equation (38) into equation (10) yields the unique θ^* in equation (11). Finally, given a unique θ^* , we show that a unique y^* solves equation (38), and hence y^* exists and is unique. Recall that $K(\theta^*) = Pr(y_j \ge y^* | \theta^*)$ ($\overline{K} - \underline{K}$). From equation (38), for a given θ^* , as y^* traverses the real line from $-\infty$ to ∞ , the left hand side (strictly) falls from \overline{K}^{α} to \underline{K}^{α} . Clearly, $\overline{K}^{\alpha} > \overline{K}^{\alpha} - (\overline{K} - \underline{K}) r_f$. Next, we show $\underline{K}^{\alpha} < \overline{K}^{\alpha} - (\overline{K} - \underline{K}) r_f$, i.e., $\frac{\overline{K}^{\alpha} - \underline{K}^{\alpha}}{\overline{K} - \underline{K}} > r_f$. Observe that from (36) and (37) we have:

$$\frac{\overline{K}^{\alpha} - \underline{K}^{\alpha}}{\overline{K} - \underline{K}} = \lim_{y^{*} \to \infty} \frac{\overline{K}^{\alpha} - [\underline{K} + K(\theta^{*})]^{\alpha}}{\overline{K} - \underline{K}} \\
= \lim_{y^{*} \to \infty} \alpha \int_{z(\theta^{*})}^{1} \frac{1}{[\underline{K} + (\overline{K} - \underline{K}) \ z]^{1 - \alpha}} dz \\
= \alpha \int_{0}^{1} \frac{1}{[\underline{K} + (\overline{K} - \underline{K}) \ z]^{1 - \alpha}} dz \ge \alpha \frac{1}{\overline{K}^{1 - \alpha}} > \overline{f} \ge r_{f},$$

where second to last inequality is true by Assumption 2. Thus, there is a unique y^* that satisfies equation (38) and hence equation (8).

Proof of Corollary 1: From Proposition 4,

$$\frac{\partial \theta^*}{\partial \underline{L}} = -1 + \frac{1}{s} (1 - \alpha) \underline{L}^{-\alpha} [\overline{K}^{\alpha} - (\overline{K} - \underline{K}) r_f] \le -1 + \frac{1}{s} (1 - \alpha) \left(\frac{\overline{K}}{\underline{L}}\right)^{\alpha} < 0,$$

where the last inequality follows from Assumption 1. $\frac{\partial \theta^*}{\partial \overline{K}} > 0$ follows from Assumption 2. Other results are immediate.

Proof of Proposition 5: With capital control, a capitalist's expected payoff is:

$$U_1 = (1 - G(\theta_1^*)) \alpha \overline{K}^{\alpha},$$

where we used $\lim_{\sigma_w\to 0} Pr(x_i \ge x^* | \theta \ge \theta_1^*) = 1$. Without capital control, a capitalist's expected payoff is:

$$U_{0} = Pr(\theta \ge \theta_{0}^{*}, y_{i} \ge y^{*}) \alpha E\left[\left(\frac{1}{\underline{K} + Pr(y_{j} \ge y^{*}|\theta) (\overline{K} - \underline{K})}\right)^{1-\alpha} \middle| \theta \ge \theta_{0}^{*}, y_{i} \ge y^{*}\right] \overline{K} + Pr(y_{i} < y^{*})r_{f} \Delta K$$
$$= Pr(\theta \ge \theta_{0}^{*}, y_{i} \ge y^{*}) \alpha \left(\frac{1}{\overline{K}}\right)^{1-\alpha} \overline{K} + Pr(y_{i} < y^{*}) r_{f} \Delta K$$
$$= (1 - G(\theta_{0}^{*})) \alpha \overline{K}^{\alpha} + G(\theta_{0}^{*}) r_{f} \Delta K,$$
(39)

where we used the facts that $\lim_{\sigma_c \to 0} y^* = \theta_0^*$, and the distribution of y_j approaches that of θ .

Lemma 5 Fix \overline{K} , and suppose $\sigma_c \to 0$ and $g(\theta)$ is log-concave. For $R_f \in [0, \alpha \overline{K}^{\alpha}]$, either $U_0(R_f)$ is monotone, or it has a unique extremum, which is minimum.

Proof of Lemma 5: Differentiating $U_0(r_f)$ from (39) with respect to r_f yields:¹⁹

$$\frac{dU_0(R_f)}{dR_f} = G(\theta_0^*) - \frac{\partial \theta_0^*}{\partial R_f} g(\theta_0^*) \left(\alpha \ \overline{K}^\alpha - R_f\right).$$
(40)

Moreover, from equation (14),

$$\frac{\partial \theta_0^*}{\partial R_f} = \frac{1 - \underline{L}^{1-\alpha}}{s}.$$
(41)

Substituting from (41) into (40) yields:

$$\frac{dU_0(R_f)}{dR_f} = G(\theta_0^*) - g(\theta_0^*) \ \frac{1 - \underline{L}^{1-\alpha}}{s} \ \left(\alpha \ \overline{K}^{\alpha} - R_f\right).$$

Thus,

$$\frac{dU_0(R_f)}{dR_f} > 0 \quad \Leftrightarrow \quad \frac{g(\theta_0^*)}{G(\theta_0^*)} < \left[\frac{1 - \underline{L}^{1-\alpha}}{s} \left(\alpha \ \overline{K}^{\alpha} - R_f \right) \right]^{-1}.$$
(42)

As R_f increases from 0 to $\alpha \overline{K}^{\alpha}$, (i) the right hand side rises, and (ii), from equation (41), θ_0^* increases, and hence the left hand side falls by log-concavity of $g(\theta)$. Thus, $U_0(r_f)$ is either monotone, or it has a unique extremum, which is a minimum.

From (42),

$$\frac{dU_0(R_f)}{dR_f}\bigg|_{R_f=0} < 0 \quad \Leftrightarrow \quad \frac{g(\theta_{0,m}^*)}{G(\theta_{0,m}^*)} > \left[\begin{array}{c} \frac{1-\underline{L}^{1-\alpha}}{s} \ \alpha \ \overline{K}^{\alpha} \end{array} \right]^{-1} = \frac{1}{\alpha[(1-\underline{L})-\theta_{0,m}^*]}.$$

The result follows because $U_0(R_f = 0) = U_1$ and $U_0(R_f = \alpha \overline{K}^{\alpha}) > U_1$.

¹⁹Results are the same if one differentiates first, and then takes the limits.

Online Appendix: Karlin's Theorem

For completeness we state Karlin's Theorem. We first provide the definitions of the objects used in the theorem. All the material is quoted from Chapter 1 of Karlin's (1968) book, Total Positivity, Vol. I.

Definition 1 A real function (frequently called kernel) K(x, y) of two variables ranging over linearly ordered sets X and Y, respectively, is said to be totally positive of order r (abbreviated TP_r) if for all

 $x_1 < x_2 < \dots < x_m, y_1 < y_2 < \dots < y_m \qquad x_i \in X, y_j \in Y; 1 \le m \le r$ (43)

we have the inequalities

$$K\begin{pmatrix} x_1, x_2, \cdots, x_m \\ y_1, y_2, \cdots, y_m \end{pmatrix} = \begin{vmatrix} K(x_1, y_1) & K(x_1, y_2) & \cdots & K(x_1, y_m) \\ K(x_2, y_1) & K(x_2, y_2) & \cdots & K(x_2, y_m) \\ \vdots & \vdots & & \vdots \\ K(x_m, y_1) & K(x_m, y_2) & \cdots & K(x_m, y_m) \end{vmatrix} \ge 0$$

A concept more general than total positivity is that of sign regularity.

Definition 2 A function K(x, y) is sign-regular of order r (abbreviated SR_r) if there exists a sequence of numbers ϵ_m each either +1 or -1 such that where conditions (43) apply, we have

$$\epsilon_m K\begin{pmatrix} x_1, x_2, \cdots, x_m\\ y_1, y_2, \cdots, y_m \end{pmatrix} \ge 0$$

Definition 3 Let f(t) be defined in I, where I is an ordered set of the real line. Let

$$S^{-}(f) = S^{-}[f(t)] = \sup S^{-}[f(t_1), f(t_2), \cdots, f(t_m)]$$

where the supremum is extended over all sets $t_1 < t_2 < \cdots < t_m$ $(t_i \in I)$, m is arbitrary but finite, and $S^-(x_1, x_2, \cdots, x_m)$ is the number of sign changes of the indicated sequence, zero terms being discarded. Let K(x, y) defined on $X \times Y$ be Borel-measurable, and assume for simplicity that the integral $\int_Y K(x, y) d\mu(y)$ exists for every x in X. Here μ represents a fixed sigma-finite regular measure defined on Y such that $\mu(U) > 0$ for each open set U for which $U \cap Y$ is nonempty. Let f be bounded and Borel-measurable on Y, and consider the transformation

$$g(x) = (Tf)(x) = \int_Y K(x, y)f(y)d\mu(y)$$

Theorem 1 If K is SR_r and satisfies the integrability requirements stated above, then

$$S^{-}(g) = S^{-}(Tf) \leq S^{-}(f) \quad provided \ S^{-}(f) \leq r-1$$

In the case in which K is TP_r and f is piecewise-continuous, if $S^-(f) = S^-(g) \le r - 1$, we further assert that the values of the functions f and g exhibit the same sequence of signs when their respective arguments traverse the domain of definition from left to right.