Online Appendix: Proofs

Proof of Lemma 1: First, observe that in the limit when the noise goes to zero, we have

(Morris and Shin 2003):
Pr(z; <%0 =0) =1— Pr(0 <f|z; = &), for all & and 6. (21)

To show this, we mirror the steps in Morris and Shin (2003):
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We now use equation (21) to prove the lemma:

H(pld =0) = Pr(Pr(f <8|z; =) < plo =0) (definition of H)

Il
S

(
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Proof of Lemma 2: Let A(x;;2*) be worker i’s net expected payoff from revolting versus
not revolting. We show that as x; traverses the real line from —oo to co, A(xz;; x*) changes



sign at a unique point.
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where 174 is the indicator function, and m(6) = 1g<g-y s — (1 — @) ( KR (1—L)> .

L+-Pr(xz;>x*|0)
Observe that

Jim 7(6) = s (1-a) (KEK)Q>S—(1—04) g)aw. (Assumption 1)
lm w(6) = —(1-0) (K+K)a<o.

Moreover, inspection of m(#) reveals that 7(0) changes sign from positive to negative at a
unique point 6 = 0**.

Next, because f(0|z;,7¢, K) is TP, (i.e., has MLRP between 6 and z;), by Karlin’s the-
orem (Karlin 1968, Ch. 1, Theorem 3.1), A(x;; x*) has, at most one sign change. Finally,
the inspection of A(z;;2*) reveals that lim,, o A(x;2*) > 0 > lim,, 0o A(zy;2%). Thus,
A(x;;x*), indeed, has one sign change from positive to negative. O

Proof of Lemma 3: Recalling that

L(0) = Pr(z; > 2*|0) (1 — L) = (1 _F, (x — 9)) (1- L), (22)

Ow

we have:

Pr(L(0)/(1-L) < Alz; =2") = Pr(l—F((z"—0)/oy,) < Alz; = z") (from (22))
= Pr(@<a* —o,F (1= A)|z; = %)

= 1—Pr(z; <z*|0 =2" - 0,F (1 —A)) (from (21))
_1_F (:1:'* — o+ o, F (1 - A))
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= 1-F(F'(1-4)
= A



Hence, the marginal worker with signal x; = x* believes that Pr(z; > z*|0) is distributed
uniformly on [0, 1], and hence L(0)|x; = 2* ~ U[0,1 — LJ. O
Proof of Proposition 3: Given a level of aggregate domestic capital K+ K, the equilibrium

is characterized by a pair (z*, 0*) such that:

Pr(0 < 0|o, =x",7;, K) x s = Elw(0)|x; = =", 7, K]. (23)
K+ K «

0 =0-9 (g s emiD) 2

Pr(z; < 20,7, K) (1 — L) = 6*. (25)

First, observe that in the limit where the noise in the workers’ private signals approaches
zero, pdf (0|z;, 7y, K) approaches pdf (6]z;).!” Now,

* « > 1
Ew(@)|z; =2 = (1-a) (K+K) /_Oo L+ (1— Pr(z; < 27)0))(1 - L)]

! 2
= (1-a) (K+K)0‘/O (L+z(ale—L))0‘ (from Lemma 3)

= pdf (0]x; = x*) df

(K + K)* 1(L+z(1—-L))'"*1
= (- =7 { 1—a ]0
= <K+K>“11:€a

Thus, in the limit, equations (23) and (25) simplify to:

1 — Llfa

Pr(0 < 0™z, =2") x s = (K + K)* 7T

Pr(z; < z*|0™) (1 - L) = 0. (27)

Because Pr(0 < 0**|z*) = 1 — Pr(z; < x*|0*) in the limit, the result for 6**(K) follows.
Given this 6**(K), equation (27) implies a unique z*.
Moreover, 6**(K) is decreasing in K and clearly 0**(K) < 1. To see that 6**(K) > 0,

—a [+ —a =\ &
note that %g < Z—f, and hence (K+K)17(;L)1 <(1-a) (%) < 8, where the last

inequality follows from Assumption 1. O

Proof of Lemma 4: Let ['(y;; p) be a capitalist’s net expected payoff from investing one unit

of capital in the country versus abroad, given his private signal y; and given the strategies

17As we discussed in footnote 10, 7 and K constitute a noisy public signal of 6, which becomes irrelevant
for calculating the posterior when the noise in private signals becomes sufficiently accurate.



of other capitalists (p) and workers (z*). We show that I'(y;; p) has single-crossing property.

L(yiip) = Pr(0>0"y) Elrqa(0)|0 > 0%, y;) —ry
% L+ P > 240) (1= L)\
= / 1ig>p+y (_ iz 2 2716) { _)) - Tf] pdf (0]y;) do

K+ K(9)
-/ " 11(6) pdf (8]y,)do. (28)
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where I1(0) = 1(p>¢-} @ <L+PT(9;§JZF§;((§)) (IL)) — ry. Observe that:
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i - i >a= -
GEIPOOH(G) ry < 0 and 9113)10 I0) > « (K) ry >0, (29)

where the last inequality follows from Assumption 2 that f < a(1/K)'~®, where we recall
that r; € [0, f]. From (28) and (29), lim,, , .~ ['(ys;p) < 0 < limy, o0 D(ys; p). Thus, T'(y:; p)
has at least one sign change.

We will show that there exists a @ > 0 such that if o, < 7, then I1(#; 0,,) has exactly one
sign change as 6 traverses the real line from —oo to co, where we have made the dependence
of IT on o, explicit.!® Then, because pdf(6|y;) is TP, (i.e., has MLRP between 6 and v;), by

Karlin’s theorem, I'(y;; p, 0,,) has at most one sign change for o,, < 7.

Now, we show that there exists a @ > 0 such that if o, < 7, then II(6; 0,,) has exactly
one sign change as a function of 6. Clearly, I1(6;0,,) = —ry < 0 for § < §*. Let 11(6; 0,,) be
the restriction of I1(6; o) to [#*, 00), so that

-«

1-F. (—’”*(Z”)*@) (1-L)
—ry, for 0 € [0%,00),

K - F, (y —9) AK

11(6;0,) = a

where AK = K — K < K, and we used the cdf of the noise in the signals of workers (F,) and
capitalists (F;,). By continuity, for every v > 0, there exists a § > 0 such that if 6 € [6*, 6*+],
then K — F, < )AK €[K-F, (y 0 )AK K-F, (y 0 )AK—i—ﬂ Moreover, because

lim,, 0 2*(0,) = 0%, for sufficiently small o,,, we have x*(0,,) — (0*4+) < 0. Thus, for every

18A stronger assumption, f < «(L/K)'~%, immediately implies that, for any o,, > 0, II(#) switches sign
from negative to positive at the unique point 8*. Then, because pdf(0|y;) is TPy (i.e., has MLRP between
6 and y;), by Karlin’s theorem, I'(y;; y*) has at most one sign change.
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B > 0, there exists a o3 > 0 such that if o, < 05, then 1 — F, & (ow)=6 1—-L)>1-p,
B B o

N AN\ 11—«
for all 8 > 6* + 6. Now, choose a # > 0 such that « <%> > r; (by Assumption 2, such
a B exists). Thus, there exists a 05 > 0 such that if o, < 04, then for 6 > 6 + 0, we have:

« l1-a
_ 1 F (£02=0) (1- 1)
(0;0,) > « % —ry
| F (M) a-n\
>« % — Iy
1 A\ l—a
> o i) — Ty
K
> 0 (for 8 > 0" +9). (30)

Next, we show that there is at most one sign change in 6 € [0*,0* + 6]. By continuity, at
any 6y € (0*,0* + 0] at which there is a sign change, we must have ﬁ(9 = 0p;0,) = 0:

1-F (”7(“1;—3;90> (1-L)= (%‘)1 (F—Fn (y*;eo> AK). (31)

By Assumption 2, (%f)ﬁ (K F, (y —0 )AK) <1.1If (%f)ﬁ <K F, <y _9*) AK) <

Oc

L, then choose v (and the corresponding ¢) such that, for all § € [0*,0* + ],

(" (Ron (7)) = ()7 (R (757w <

Thus, [1(6; 0,,) > 0 for all 6 € [6%, 6% + 4].

Next, consider the case where L < (%f) < ( > ) < 1. Then, choose 7y
> AK + 7) < 1. This implies
that, for all 6 € [6%,6% + 4], () = (K F, <y _9> AK) € [I1,5] C (L,1), for some

I, < I,. Thus, from equation (31), at any 6y € (0*,60* + 0] at which there is a crossing, we

(and the corresponding d) such that (£ ) ( - (

must have % € [ky, k2] and % € [l1, 5], for some ky < ko and 3 < ly. Define

fM= max f,(z) and f™ = min f(x)> 0. (32)

K x€lky,k2] x€(l1,l2]

Differentiating I1(4; o,,) with respect to 6 yields:
dﬁ(@; Ow) 1 f (x (Zuw)= 9) (1-1) aicfn (yza) AK
e 50 - * .
do |- F, (—x @) (1-1) K- F(52)AK

w




Thus, at any 6, at which ﬁ(@ = 0o; 0,) = 0, we have:

S0 o if€<w>>%fn<y*_eo) AK (r_f>1_la7 (34)

=00 Ow w Oc

dIl(6: o)
df

where we used equation (31). Moreover, from (32),

ifs (x*(gw)—e ) > —fm and L AK (r_f>1la
Ow o

1 AK r ﬁ y*—90
M - 2 (U .
fa _Jcl—L<a> fn( oc )

w O-w O-C 1 - L O{
(35)
m r 1 -1 o
Thus, from (34) and (35), if 0, < ]{2\4 (i% (Ef)l"*> € (0,00), then ¢ 9 g |9 6 > 0-

That is, for sufficiently small o, at any point 6y € (6*,6* + ] at which H(Q) crosses 0, the
derivative is strictly positively. Thus, there is at most one such crossing. In particular, either

I1(0) switches sign only at 6%, or it switches sign only at some 6y € (6*,60* + 9).

Finally, consider the special case, where (%f)ﬁ (K F, (y _9*) AK ) = L. Then,
11(6%; 0,,) > 0 for all o, > 0. If 2*(0,) goes to 6* from below, for sufficiently small o, there
exists a 0 > 0 such that II(#; 0,,) > 0 for all 6 € [6*,6* + &). To see this, observe that

z*(oy) — 0 N
l1-F|————|(1-L)>L+(1—-F(0)1—-L)>L, ¥0 > 0"
Ow
Thus, we can pick a y > 0 (with the corresponding ¢) small enough, so that for 6 € [6*,0*+)

we have:

*

(%) (F— F, (y 0: 9) AK) <L+(1-F(0)(1-L)<1-F (w) (1-L),

Ow

and hence ﬁ(@; o) > 0 for all § € [6*,0* + 0). Next, suppose z*(o,,) approaches 6* from

above. From (33), for sufficiently small o, il (9 ow)

lo=2*(0) > 0, and it can be made arbi-

trarily large. Further, by log-concavity, the left hand side of the second inequality in (33) is

dH(@ ow)

decreasing in 6. Thus, for sufficiently small o,, when 6 € (6*,2*(0,,)], we have >0,

and hence ﬁ(@; ow) > 0 for all 0 € [6*,2%(0,)]. Thus, any crossing must happen at some

z* (o) —00o(

0o(0w) > x*(0y), and hence 9w) < (), where we made explicit the possible depen-

*(ow)—00(ow) -

w

dence of 6 on o,,. Now, if = is finite for all sufficiently small o,,, then the logic of

equations (32)-(35) goes through because we can find some f > 0. That is, there exists a

T, > 0 such that if o, < 7,, then I1(#; o) has one sign change as a function of §. Otherwise,

2" (0w) =00 (0w) 2" (0w) =00 (0w)

must become unboundedly negative. But then F ( ) approaches 0,
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and the logic of (30) applies. That is, there exists a g, > 0 such that if o, < 7}, then I1(6; o)
has one sign change as a function of 0. If 2*(o,,) approaches 6* from both above and below,
then set @ = min{y, 7, }. O
Proof of Proposition 4: First, we calculate the expected payoff from domestic investment
for a capitalist whose signal is at the equilibrium threshold y; = y*. The left hand side of

equation (8) is:
Pr(0 = 0"y; =y") E[ra(0)0 = 0%,y; = y7]

11—«
)> pdf (010 > 6%, y; — y*) do

Pr0 > 6%y =y") a / Ki—I-K(Q

> <L+L(9) >1a pdfOly; =y*) .
K+ K(0) Pr(0 > 6*ly; = y*)

* <L+L(0)

= Pr(0=0"y;=y") o /

*

% L4 Pr(es = al9) (- D) o
= o | P o) e PO =) a0

o 1
= « — df (0ly; = y*) df, (because lim Pr(z; > z*|0 > 0*) =1
f. T e e e PO =) 0, (becnuse Jim Pr(as > 710> ) =1
1
1
= « — dz, (change of variable from 6 to z = Pr(y; > y*|6 36
/2(9*) K+ (K - K) z]-@ ( ( 10)) (36)
~ ot pK+W—KMP1
F_K « z2=z(6*)
1 —a _
= — K — K K -K 9* @
e (K"~ K+ (R = 1) =(0)%)
_ K - [E+ K@) o
K-K

Substituting from equation (37) into equation (8) yields:

o P

K+ K@) =K — (K- K)ry. (38)

Substituting from equation (38) into equation (10) yields the unique 6* in equation (11).
Finally, given a unique 6*, we show that a unique y* solves equation (38), and hence y*
exists and is unique. Recall that K(0*) = Pr(y; > y*|0*) (K — K). From equation (38),

for a given 0*, as y* traverses the real line from —oo to oo, the left hand side (strictly) falls

7



from K~ to K*. Clearly, K* > K" — (K — K) ry. Next, we show K* < K= — (K — K) ry,

ie., ngfa > ry. Observe that from (36) and (37) we have:

K" - K~ , K
—_ = hm —
K—-K Yoo K—-K

. ! 1
= lim « / — dz
vimoo e [K+ (K — K) 2]t~
! 1 1 —
= Oé/ — dz > o —— > f >y,
o K+ (K —-K)z]t-@ K

where second to last inequality is true by Assumption 2. Thus, there is a unique y* that

satisfies equation (38) and hence equation (8). O

Proof of Corollary 1: From Proposition 4,

00" 1 A 1 K\"
=—1+4-1l—-a) LK —(K—-K <-14+-(1- — ] <0
L=ty U@ L R - Rkl < -1 1-a) (T) <o
where the last inequality follows from Assumption 1. % > 0 follows from Assumption 2.
Other results are immediate. OJ

Proof of Proposition 5: With capital control, a capitalist’s expected payoff is:

Ur=(1-G(#) a K,

where we used lim,, 0 Pr(z; > z*|0 > 67) = 1. Without capital control, a capitalist’s
expected payoff is:

1 11—«
K + Pr(y; > y*|0) (K — K))

Uy = Pr(0>0y >y") QE[(

0> 05, yi > y*] K
+Pr(y; <y*)ry AK
1 11—« L
= Pr(0>605v>y") «a <K> K+ Pr(yi<y®) rf AK

= (1-G()) a K*+G(6) ry AK, (39)

where we used the facts that lim,, _,o y* = 0, and the distribution of y; approaches that of 6.

Lemma 5 Fiz K, and suppose o. — 0 and g(0) is log-concave. For Ry € [0, « Fa} , either

Uo(Ry) is monotone, or it has a unique extremum, which is minimum.



Proof of Lemma 5: Differentiating Uy(ry) from (39) with respect to r; yields:*

T = GO) — g ) (o K~y ). (40)
Moreover, from equation (14),
o0  1-—-L"°
= = . 41
c“)Rf S ( )
Substituting from (41) into (40) yields:
dUO(Rf) _ * * 1 — Llia T4
TR, G(0o) = 9(bg) ——— |a K — Ry ).
Thus,
dUs(Ry) g(0;) [1-L'™ ( . -
—_— K — . 42
iR; >0 & G(93)< - o} Ry (42)

As Ry increases from 0 to oK, (i) the right hand side rises, and (i), from equation

(41), 6 increases, and hence the left hand side falls by log-concavity of ¢(#). Thus, Uy(ry)

is either monotone, or it has a unique extremum, which is a minimum. 0]
From (42),
dUs(R 0 1-L .1 1
—O(f) <0<:>g(0*’)>—— a K = —.
dRy R;=0 G(05,m) 8§ al(l = L) = 65,,]
The result follows because Uy(Ry = 0) = U; and Uy(Ry = afa) > U]. O

9Results are the same if one differentiates first, and then takes the limits.
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Online Appendix: Karlin’s Theorem

For completeness we state Karlin’s Theorem. We first provide the definitions of the ob-
jects used in the theorem. All the material is quoted from Chapter 1 of Karlin’s (1968) book,
Total Positivity, Vol. 1.

Definition 1 A real function (frequently called kernel) K(x,y) of two variables ranging over
linearly ordered sets X andY, respectively, is said to be totally positive of order r (abbreviated

TPF,) if for all
T < Ty < < Ty <Y< <Ym TEX, Y, €Y;1<m<r (43)

we have the inequalities

K(l'lvyl) K<m1ay2) K($17ym)
K(xs, K(xs, e K(29, Ym
K(m,Iz, ,:cm) _ ( 'le) ( ?yz) ( ?y ) >0
Y, Y2, ,Ym : : :
K(xmay1> K(xmayZ) K(xmaym)

A concept more general than total positivity is that of sign regularity.

Definition 2 A function K(z,y) is sign-reqular of order r (abbreviated SR, ) if there exists a

sequence of numbers €, each either +1 or —1 such that where conditions (43) apply, we have

m K(txl?x?’”' ,me) >0
Y1, 92, s Ym

Definition 3 Let f(t) be defined in I, where I is an ordered set of the real line. Let
ST(f) =ST[fO)] = sup S™[f(t1), f(t2), -+, f(tm)]

where the supremum is extended over all sets t; <ty < .-+ <t (t; € I), m is arbitrary but
finite, and S™(x1, o, ,xy,) is the number of sign changes of the indicated sequence, zero

terms being discarded.

10



Let K(z,y) defined on X xY be Borel-measurable, and assume for simplicity that the in-
tegral [, K (z,y)du(y) exists for every  in X. Here y represents a fixed sigma-finite regular
measure defined on Y such that p(U) > 0 for each open set U for which U MY is nonempty.

Let f be bounded and Borel-measurable on Y, and consider the transformation
ola) = () = [ Kl flu)duto)
Theorem 1 If K is SR, and satisfies the integrability requirements stated above, then
S57(g) =57 (Tf) <S(f) provided S™(f) <r—1

In the case in which K is TP, and f is piecewise-continuous, if S™(f) = S~ (g) < r —1,
we further assert that the values of the functions f and g exhibit the same sequence of signs

when their respective arguments traverse the domain of definition from left to right.
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