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1. List of Surveys

The surveys are taken from Buttice and Highton (2013) replication materials. Table 1
summarizes all questions by year and topic. The uppercase letter refers to either the National
Annenberg Election Studies (N) or the Cooperative Congressional Election Studies (C).
The lowercase letter refers to the question prefix while the subscript details the particular
question(s). A sub-subscript indicates where there is a series of questions on the same topic
(as in the case of questions on how to use the military in 2008 asked in the CCES).

Table 1: Surveys by year and topic

Topic | 2000 2004 2006 2008
Abortion | N - beog N - cCepl C- V3019, V3060 N - ceagl, C -
€C310
Budget C - v4040,4044 C - cc309,420
Death Penalty | N - cbgp1,12
Defense Spend N - ccds7 67 C - cc3164
Elections C - cca19, 4
Environment C - v3p29 N - cfdy, C -
CC311,422
Gay Marriage | N - cbyjgq N - cceoq N - cecpgr, C -
CC316f
Gun Control | N - cbgos,06 N - cces;
Health Care | N - C - cc316e
cbeo2,05,08,14
Immigrants C - v3069 N - Cdd01704
Iraq War N - CCd34735 C - V3066 N - Cdbol, C -
CC316a
Military Use | N - cbjor N - cedos C - v3030—3034 C - CC418; ¢
Minimum Wage C- V2072,3072 C- CC316b
Race Policies | N - c¢blps, C - v3po7 C - ccsis
Cmel
Social Security | N - cbbgs, | N - cceso C - v3o24 C - ces12
cbco1,05
Stem Cell C- V3063 C - CC316¢
Taxes | N - cbbg; N - ccbys N - cbbp
Trade Policy N - CCng C- V3078 C - CC316h
Welfare | N - cbpoy, | N - CCC39,40,41 C - v3075 C - CC316,,;
deog




2. Alternative Measures of Performance

The main findings estimate method performance by calculating the MAE and interstate
correlation p for each simulation and then averaging. However, Buttice and Highton (2013)
use a slightly different method that takes the average prediction over the 200 simulations
for each state (ys = ﬁ > 200 y;) and compares this value to the true opinion via MAE and
interstate correlation. In addition, the authors divide this measure by the standard deviation
of the true opinion across states. This “standardized bias” can be formally expressed as:

b 73 _ p,true
bias' = abs(¥s = y;™*) (1)
Sd(ytrue>
pm,state — COT’(}_’m . yt'rue) (2)

Figure 1 plots the bias and p* for all 89 surveys using this method. As illustrated, BARP’s
superior performance is even more striking when using this method. Substantively, this
captures the fact that BARP’s predictions are, in expectation, more accurate than MRP’s.
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Figure 1: Standardized bias (right panel) and p**¢ (left panel) for all 89 surveys.



3. Data Characteristics

While BARP generally outperforms MRP across the 89 surveys, both struggle to accurately
predict opinion on similar surveys. For example, both have exceptionally low interstate corre-
lation measures for survey 3 (a question on supporting a path to citizenship for immigrants).
Similarly, both BARP and MRP have high mean absolute errors on survey 65 (a question on
whether voters should be able to register on election day). What is it about these surveys
that is particularly challenging for extrapolating opinion to the state level?

Buttice and Highton (2013) argue that the predictive accuracy of MRP is a function of
three characteristics of the data — the prognostic power of the individual-level covariates
(measured by McFadden’s pseudo R? generated by a logit regression of opinion on the
individual-level covariates), the prognostic power of the geography-level covariates (the R?
from an OLS regression of average state opinion on state-level covariates), and the degree
to which individuals sort themselves geographically by opinion (measured by the intraclass
correlation coefficient (ICC) of opinion by geography).

These characteristics put some structure on the intuition of garbage-in, garbage-out when it
comes to how data quality affects extrapolation. In the case of the individual- and geography-
level covariates, weak prognostic power means that the model is fundamentally misspecified.
The researcher should consider using other explanatory variables to improve prediction. In
the case of geographic preference sorting, the intraclass correlation coefficient (ICC) captures
how similar units are within a group and how different they are across groups. Where this
value is low it means that opinions don’t differ meaningfully across the geographic unit of
interest.

I calculate each of these three measures for each survey, generating a vector of 89 data quality
attributes. I then regress the sensitivity of each method’s predictive performance (in terms of
both MAE and interstate correlation) on these different dimensions of data quality, visualized
in Figure 2.

Three conclusions are worth drawing from these estimates. First, the individual-level prognos-
tic strength does not appear to impact performance in these surveys. Second, both methods
are similarly sensitive to data quality issues. The only significant difference between the
methods is for how MAE is affected by the ICC (top-left panel). Third, MRP performance is
competitive with BARP when the data quality measures are favorable.

One perplexing pattern that invites further analysis is the different impacts of the state R?
on mean absolute error (no relationship) versus interstate correlation (significant positive
relationship), illustrated in the center row of plots. I speculate that more prognostic state-
level predictors are better able to sort states by extrapolated outcomes without necessarily
bringing them any closer to the actual value of the target outcome. Since interstate correlation
effectively captures how well states recover the rank ordering along each opinion, we see this
discrepancy between MAE and interstate correlation.
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Figure 2: Relationship between method performance (MAE in left column, interstate correla-
tion in right column) and data quality characteristic (ICC in top row, State R? in middle
row, McFadden’s pseudo R? in bottom row). Linear bivariate regression model overlaid as
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4. Replication

The main body of my paper shows that, across 89 survey items, BARP outperforms MRP in
terms of both correlation and mean absolute error. But what do these improvements mean
in substantive terms?

To test this, I replicate research by Hare and Monogan (2018) who replicate work by Lax and
Phillips (2012). Using their publicly available data, I re-estimate opinions using BARP and
then replicate their main findings with these new data. Figure 3 compares the MRP-based
opinion estimates (x-axis) with the BARP-based estimates (y-axis).
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Figure 3: Hare and Monogan (2018) raw opinion estimates comparison. X-axes are MRP-based
opinion estimates, y-axes are BARP-based opinion estimates.

As illustrated, the method choice matters. The mean absolute difference (MAD) ranges
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from 1.6 percentage points (bilingual education) to 4.38 percentage points (State Children’s
Health Insurance Program — SCHIP) with some evidence that BARP returns slightly higher
predictions overall (points lying above the diagonal 45° line, dashed). The correlation between
each method’s predicted opinions ranges from 0.54 (in-state tuition) to 0.84 (assisted suicide).
From a purely descriptive perspective, the method choices appear to matter.

These differences carry substantive implications for their main analysis which tests whether
state-level opinions predict state-level policies — a pattern they label congruence. Their
analysis concludes that there is no significant evidence of policy congruence in 2008 or 2014
for the seven issues they identify as being highly salient. However, when controlling for
the state-level 2008 policy, there is evidence that congruence has increased in 2014. They
draw the substantive conclusion that, for more salient issues, the “democratic deficit” first
identified in Lax and Phillips (2012) diminishes.

The authors use two distinct specifications to estimate “congruence”. The first (summarized
in Table 3) regresses an indicator for whether a state has a liberal policy on one of seven issue
topics on state-level opinion on that topic, extrapolated using MRP. The second specification
(summarized in Table 4) interrogates whether the size of the opinion majority has any impact
on state policy by regressing an indicator for congruent policy on the size of the majority
opinion, again extrapolated using MRP. In both cases, the results are estimated separately
for 2008, 2014, and then again in 2014 using the 2008 policy as a lagged dependent variable in
columns 1 through 3 respectively. The main conclusion drawn by Hare and Monogan (2018)
is that there is no evidence of policy congruence in either 2008 or 2014 across these seven
issues but that controlling for the 2008 policy suggests that congruence has increased.

I replicate the second and third columns from Tables 3 and 4 using both the authors’ original
MRP opinion estimates (gray) and BARP opinion estimates (black) in Figure 4. T highlight
the p-values since the original authors evaluate their findings with respect to a one-sided test.

Figure 4 suggests that the choice of extrapolation method matters. In three out of the four
models (columns 2 and 3 in Table 3, and column 3 in Table 4), BARP data yields significant
results at the 95% level of confidence (two-tailed test) where MRP yields only marginally
significant results. The original authors implement one-sided hypothesis tests, meaning that
their conclusions in column 3 are bolstered with BARP-generated opinions. We are therefore
more confident in their conclusion that policy congruence has increased between 2008 and
2014, and the magnitude of this increase appears larger than in their analysis using MRP.

However, their motivation to test the change in policy congruence rests on their conclusion
that, in isolation, there is no evidence of congruence in 2014 alone (column 2). Yet this
conclusion is undermined when using BARP-generated estimates in Table 3. Here we see
a coefficient almost double that reported in the original paper and much more significant.
Substantively, replacing the MRP-generated opinions with those produced by BARP suggests
that:

1) in 2014, states are more likely to adopt legislation supported by a majority of their
constituents (Table 3, column 2),

2) this effect increased between 2008 and 2014 (Table 3, column 3),
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Figure 4: Hare & Monagan (2018) replication with BARP-estimated opinions. Top row
replicates Table 3 and bottom row replicates Table 4. Left column replicates Column (2)
and right column replicates Column (3) of each table. Original MRP results indicated with
hollow circles and gray 90 and 95% confidence bars. Updated results using BARP indicated
with solid black circles and confidence bars.

3) in 2014, the size of the opinion majority does not increase the probability that they get
their preferred policy (Table 4, column 2),

4) but states that became more congruent between 2008 and 2014 did so thanks to having
larger opinion majorities (Table 4, column 3).

Overall, replacing MRP opinions with BARP-based extrapolations provides more precise
estimates, yielding a significant positive relationship between state-level opinions and state-
level policies. In addition, BARP-based opinions yield both more tightly estimated zeros as
well as more significant substantive results. These results suggest that a superior extrapolation
method yields both more precise nulls and more striking substantive relationships.



5. Sample Sizes

The main analysis compared method performance using sample sizes ranging between 1,500
and 4,500. However, nationally representative survey sizes historically are often smaller than
1,500. And the advent of the internet has allowed for larger sample sizes than 4,500. In the
following section, I compare BARP and MRP performance on small sample sizes between
700 and 1,500 observations, and large sample sizes ranging from 6,000 up to 10,500.

To test sensitivity to smaller sample sizes, I calculate MAE and interstate correlation across
200 simulations and then use a t-test to estimate the difference between n = 700 and
n = 1,500. I plot the t-test coefficients as points in Figure 5, with confidence errors given
by horizontal (MRP, x-axis) and vertical (BARP, y-axis). Here there is weaker evidence of
BARP’s relative insulation, particularly in terms of correlation where BARP appears to be
more sensitive to sample size, recording larger benefits when moving from 700 observations
to 1,500 (as illustrated by points lying closer to the vertical dashed line).
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Figure 5: X-axes indicate the coefficients generated by a t-test comparing the mean absolute
error (left) and correlation (right) between the full and misspecified regressions for MRP
(white circles) and BARP (black circles).
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How much do these methods matter when the researcher is able to obtain relatively large
sample sizes? To assess this question, I re-analyze each method on sample sizes ranging
from n = 6,000 to n = 10,500 and plot the average MAE and interstate correlation across
all 89 surveys in Figure 6, along with the top and bottom 20" percentiles (rectangles).
As illustrated, MRP and a simple disaggregated mean achieve equivalence around 10,000
observations. However, BARP retains its edge across all sample sizes.
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Figure 6: Left panel presents the average mean absolute error across 200 simulations and 89
surveys for different sample sizes (x-axis) for BARP, MRP, and simple disaggregated averages.
Rectangles cover the top and bottom 20" percentiles of these metrics. Plots in the right
panel plot the average mean absolute error for each of the 89 surveys as lines.

One possible explanation for BARP’s superior performance across sample sizes is the method’s
insulation from particularly challenging surveys. The right-column of plots in Figure 6 depict
each individual survey as a single line. MRP struggles to predict opinions in the most
challenging surveys regardless of sample size. Conversely, BARP is able to take the additional
information provided by more observations to yield more accurate predictions. This evidence
of BARP’s superior regularization is also reflected in a similar analysis of correlation over
sample sizes, as shown in Figure 7.

11



DM

Mean Absolute Error Convergence

[ee)
o
- 7] (=}
<
o
o
[ee] d
S © I T T T 1
2000 4000 6000 8000
MRP
© ]
© BARP ©
o —
8 MRP = — -
< = =
S Z
<
o
DM o
© T T T T 1
2000 4000 6000 8000
~ BARP
o
o —— —
o —
< =
2 o
T T T T T 1
0 2000 4000 6000 8000 10000 g
T T T T 1
Sample Size 2000 4000 6000 8000

Figure 7: Left panel presents the average interstate correlation across 200 simulations and 89
surveys for different sample sizes (x-axis) for BARP, MRP, and simple disaggregated averages.
Rectangles cover the top and bottom 20" percentiles of these metrics. Plots in the right
panel plot the average interstate correlation for each of the 89 surveys as lines.
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6. Computation Time

The improvements in predictive accuracy obtained with BARP do not come with some costs.
First, for applied researchers unfamiliar with Bayesian Additive Regression Trees or other
machine learning methods, there is a learning curve to adoption. In section 9, I describe an
R package I developed to aid in BARP adoption. Second, BARP is more computationally
intensive, particularly in cases with larger sample sizes and / or larger numbers of trees or
MCMC simulations.

Figure 8 illustrates these timing differences between MRP and BARP across different sample
sizes and hyper-parameter settings.! While the differences are non-trivial, BARP is hardly
prohibitively slow. Furthermore, speed improvements can be obtained by exploiting paral-
lelization for systems with multiple CPU cores. The right panel summarizes computation
time for BARP in the extreme with 500 trees and 1,000 MCMC iterations after the burn-in.
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Figure 8: Computation time by method (left plot) and by BARP hyperparameter values
(right plot, with trees on x-axis and MCMC iterations after the burn-in as series).

'Results generated using a Dell Inspiron i7559-7512GRY laptop with a 6th generation Intel Core i7 2.6
GHz processor and 16gb of RAM using a 1TB hard drive.
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7. Other Machine Learning Regularization Methods

The main analysis focuses on a particular machine learning method — Bayesian Additive
Regression Trees (BART). However, there are many non-linear methods that tout similar
regularization benefits. To compare method performance, I re-run the main analysis with a
selection of other non-parametric regularization methods, including:

 Gradient Boosting Machines (GBM)
« Kernel k-Nearest Neighbor (kNN)

» Neural Networks (NNET)
 Support Vector Machines (SVM)

« FElastic-net regularization (LASSO)

In the following section, I describe each method briefly and then compare method performance
to BARP.

GBM

GBM builds new models (h(-)) on top of weak initial models (F'(-)) in an attempt to reduce
the magnitude of the residuals via gradient descent. For an initial model that predicts an
outcome y as a function of some covariate(s) F'(-), calculate the gradient g(-) associated with
a specific loss function L(:). Then fit a new model h(-) to the gradient and add it to the
initial model with some weight p. The process repeats until a stopping rule is reached.

1. Start with an initial model F'(X})

2. Calculate the negative gradients —g(X7)

3. Fit a regression tree to the negative gradients h(X;)
4. Update the model Fy(X;) = F(X1) + ph(X1)

GBM is conceptually similar to BART in the use of regression trees that are fit to the
residuals. A more detailed description of GBM can be found in [CITE].

Kernel-kNN

A k-nearest neighbors algorithm assigns an outcome for an observational unit using the
average outcome found among the k£ most similar observations units for which the outcome
is observed where ‘similarity’ is defined as distance in covariate space. In the context of
predicting public opinion, we feed the algorithm survey data containing both the opinion
recorded (Y') for each respondent (i) as well as their individual-level and geography-level
covariates of interest (X).

14



For a new individual for which we have covariate information X but no outcome information
Y, kNN predicts their opinion by selecting some number (k) of individuals from the training
data who are closest in covariate space. In both cases, I implement a kernel weight to privilege
closer comparisons over those further away.

Kernel-kNN has three important hyper-parameters: the number of nearest neighbors £, the
kernel function that defines how distance is penalized, and the algorithm used to measure
distance. For the purposes of my analysis, I use cross validation to determine the optimal k,
distance measure, and kernel from among the defaults provided in the KernelKnn package
for R. However, applied researchers are encouraged to do their own cross validation tests
using more sophisticated kernels, such as a gamma kernel with a free hyper-parameter for
the shape «.

NNET

A neural net applies weights to a vector of information commonly referred to as the ‘input
layer’” of neurons. In the context of predicting opinions from a survey, the input layer can be
thought of as the covariate information we have on each survey respondent. A set of weights
connects each neuron in the input layer to all neurons in a second hidden layer.

The values that each neuron in the hidden layer takes on are simply the weighted sum of
all input layer neurons, plus some bias value. Depending on the complexity of the neural
net, there can be several hidden layers of neurons. But the final set of weights transforms
the last hidden layer into predictions for all possible outcome values. In the context under
consideration, these outcome values are the opinions held by each survey respondent.

A loss function measures the difference between each true outcome and the prediction
generated by a particular combination of weights and biases. These weights and biases are
then updated via gradient descent down the surface of the loss function and assigned via
back-propagation. Typically, the weights, antecedent node values, and biases are transformed
via a sigmoid function to yield values on the support of [0, 1].

The field of neural networks has developed substantially beyond the description provided
above. However, for the applied purpose of predicting opinions based on observed covariates,
I use a simple neural net with only one hidden layer. I use cross validation to determine the
optimal number of nodes in this hidden layer, along with the decay parameter used to avoid
overfitting via the nnet package for R.

SVM

Support Vector Machines attempt to draw a linear hyperplane through data to such that

the observations are perfectly separated by the outcome data. The hyperplane is chosen

such that the ‘margin’ — the distance between the hyperplane and the closest data point — is
2

maximized. The margin can be expressed as il when the binary outcome is redefined as -1
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and 1 and the optimization problem can be re-expressed as minimizing %||W| %, allowing it
to be solved via the quadratic programming solution:

1
W(a) = Z QG — B} Z Oéi@jyz‘ijiT%
i ij

st. a; > O,Zaiyi =0

The method takes its name from the fact that many of the o parameters are zero, implying
that only a few of the vectors matter. These are the support vectors and are similar to the
nearest neighbors method except that the proximate points of interest are determined not
by an arbitrary distance / number of closest matches but rather by defining the separating
hyperplane.

For data that are well ordered in covariate space, the hyperplane is easily understood as a
line. However, for more complicated combinations, one must project the data onto higher
dimensional space. To save on computation time, one can apply a kernel function K (-) to the
xl'z; part of the quadratic programming solution, avoiding calculating the projection. This
kernel function must be chosen by the researcher and represents the substantive intuition
behind how to define similarity.

There are a few decisions that need to be made by the researcher, the most important being
the choice of kernel.

Elastic-Net

Finally, I compare these machine learning methods with an alternative linear predictor that
uses an elastic-net penalty for regularization. To implement, I use the glmnet package for R
which implements a more flexible elastic-net penalty of the form:

Bos,

N
min S wil s o + 670 + A [(1— @)l
i=1

Method Performance

[ implement each method via the SuperLearner package for R which estimates both individual
predictions as well as an ensemble that combines all methods in a weighted prediction. The
weights are generated by determining how well each method performs in predicting the
outcome on a validation dataset, where performance targets the maximized AUC (area under
an ROC curve) criteria. For a detailed introduction to ensemble machine learning methods,
see Alpaydin (2010).

Figure 9 summarizes the ensemble weights from 200 simulations for each of the 89 surveys.
The left panel plots the average percent of simulations in which the weight assigned to BARP
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in the ensemble is larger than the weight assigned to each of the competing five methods
by survey. The right panel combines all simulations and surveys to yield the total share
that BARP is more prognostic than the competing methods. Overall, BARP is assigned the
largest weight in the ensemble in 61% of simulations across 89 surveys.
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Figure 9: These plots summarize the share of simulations in which BART is given the more
weight in the ensemble SuperLearner than alternative regularization methods. The left plot
breaks out these comparisons by survey (y-axis) and comparison method (points). The right
plot aggregates over both surveys and competing methods, yielding a single percent of all
surveys and simulations in which BARP is given the most weight in the ensemble.

However, the weights used to determine method performance are optimized for classification
which does not necessarily mean they are good for interstate correlation. To assess method
performance in the context of the motivating interest in mean absolute error and interstate
correlation, I re-estimate performance for all 89 surveys across 200 simulations randomly
sampling 1,500 observations from each survey. I compare each method’s performance against
the true state opinion (again, calculated as the state average using the full survey data) in
terms of both mean absolute error (MAE) and inter-state correlation. To visualize these
results, I subtract the average MAE for each method from the average MAE for BARP, and
rank these differences by survey. I do the same for correlation. These results are summarized
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in the left and right panels of Figure 10 respectively.

BARP vs. Other ML by MAE BARP vs. Other ML by Correlation
(] o
=

ET

| | | | i i | | | I
-0.08 -0.06 -0.04 -0.02 0.00 0.0 0.2 0.4 0.6 0.8

BARP MAE - Method MAE BARP Correlation — Method Correlation

Figure 10: Machine learning method performance relative to BARP across 89 surveys (y-axis).
The left plot summarizes the difference between each method’s mean absolute error (MAE)
and BARP, with positive values indicating larger errors on the part of the ML method. The
right plot summarizes the difference between BARP’s interstate correlation and each method,
with positive values indicating lower interstate correlation on the part of the ML method.

As illustrated, BARP generally outperforms all other machine learning methods in terms of
MAE, including the ensemble. However, there is consistent evidence that it is not as good in
terms of interstate correlation, particularly when compared to the ensemble predictions which
are higher than BARP across all 89 surveys. These findings are confirmed when averaging
over surveys for different sample sizes, as visualized in Figure 11. While all methods improve
with more data, BARP retains the predictive edge in terms of MAE although it is more in
the middle of the pack in terms of interstate correlation.

These comparisons produce three general conclusions.

o First, MRP is competitive with more sophisticated methods in terms of mean absolute
error in larger sample sizes.
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Figure 11: Machine learning method performance in terms of mean absolute error (MAE -
left plot) and interstate correlation (right plot) across different sample sizes (y-axis).

o Second, BARP is among the best-in-class in terms of mean absolute error but is more
in the middle of the pack in terms of interstate correlation.

o Third, the best methods evaluated in terms of mean absolute error are not the same
as the best methods judged by interstate correlation. Across both metrics, LASSO
regularization is competitive.

I focus the letter on BARP for it’s overall strength along both dimensions but include many
alternative regularization methods including the six summarized here in the R package.
Applied researchers are encouraged to use different methods to test the robustness of their
findings, with particular care given to whether their substantive interest is in assessing
congruence (in which case mean absolute error performance is especially important) or
responsiveness (in which case interstate correlation is especially important).
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8 A BART primer

This section introduces Bayesian Additive Regression Trees. Users are encouraged to refer to
Chipman, George, and McCulloch (2010) for a more detailed discussion.

A single regression tree 7 approximates an unknown function f by recursively partitioning
the covariate space (X) to best organize observations (i) according to some outcome Y. The
resulting bins (commonly referred to as “nodes” or “leafs”) proceed until a stopping criteria
is met. Each terminal node b is associated with a parameter value p;, which combine to form
the set M. Observed values of © € X are assigned to a u; € M by a function g(x; T, M)
which is an approximation of the unknown function f. Armed with many such trees indexed
by ¢, the researcher can predict Y via

T
Y:Zg(X;'E,./\/lt)—l—e, e ~ N(0,0%)
t=1
The Bayesian aspect of BART imposes priors on the parameters (7;, M;) and o2, the details
of which can be found in Chipman, George, and McCulloch (2010).

Consider a simplified example where y; is an individual’s (i) opinion on gay marriage and X
includes information on respondent age, educational attainment, and state of residence. A
regression tree might first divide the data into one group (known as a “node” or a “leaf”)
over 35 years of age, and the other group younger if this division most cleanly separates
supports of gay marriage from opponents. The algorithm might then divide the data based
on gender, then back again on age, then on state of residence, each time further separating
sub-groups of respondents into supporters and opponents. Each division is called a “splitting
rule” where the “splitting variable” z; is divided at a “splitting value” c.

When the tree stops growing (based on a pre-specified depth or a minimum limit on the
number of observations in each terminal node), the terminal nodes each contain a fraction
of the original observations characterized by observed opinions and a particular sequence
of splitting rules. So for example, a terminal node containing 10 survey respondents, 9
of whom oppose gay marriage, may have been created by selecting those over 35, those
without a college degree, those living in the Northeast, those under 50, and those living in
Massachusetts. This particular sequence of splitting rules is then assigned a parameter p
capturing the aggregate opposition to gay marriage in this group. Armed with these terminal
nodes and set of parameters u; € M, the researcher can then predict opinions using new
data or use the estimated functions g to evaluate the partial dependence between a given
covariate and the outcome.

Repeating this process many times using the regularization priors on (77, M;) and o2 yields a
rich characterization of the unobservable function f. Draws from the posterior distribution of
Pr(T;, My, 0%|Y) leverage a Metropolis-within-Gibbs sampler which first proposes a change to
the structure of T, either by growing a terminal node, pruning two child nodes, or changing
one of the splitting rules. Samples of M; are then drawn from this new structure and this
process repeats for each tree in 7. Finally, a new draw of o2 completes the sampler, providing
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an estimate of f.

The discussion above deals with continuous outcome variables. In applications to binary
opinion data, BART can be fruitfully implemented as a linear probability method. However,
if Y is coded as a factor, BART can instead be used for classification with a probit model
Pr(Y = 11X = ®(XL, 9(X;T;, M;)). (Naturally, no prior is needed for o, since the probit
assumes 02 = 1.) The latent variable Z is added to the sampler, replacing Y after the

additional step:

T T
Zilys =1~ mam{N(Zg(X; 7;,/\/lt)>,0}Zi|yi =0~ min{N(Zg(X;’ﬁ,Mﬁ),O}
=1 =1

From this brief introduction, it should be clear that BART possesses two attractive qualities.
First, it allows for deep interactions that grow exponentially in the number of covariates as well
as the allowed tree depth. Second, the ensemble character of the method can capture additive
effects. These qualities allow for superior estimation of the unknown function f relative to
multilevel models and relax the requirement that the research define the functional form
correctly a priori. In the context of extrapolating public opinion through post-stratification,
BART’s superior predictive performance is particularly attractive, as discussed in detail
in Bisbee (2019). In the ensuing sections, I demonstrate how to easily leverage BART’s
predictive power with the BARP package for R.
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9 The BARP Package

In this vignette, I walk through an applied example using the BARP package for R. I use
the data included with the BARP package which consists of:

1. A nationally representative survey of support for gay marriage fielded in 2006.

2. Census data giving the share of the population falling into different covariate bins
(i.e. the share that is a black female with a college degree between the ages of 31 and
50) for the geographic unit of interest (in this example, US states).

This vignette is designed to demonstrate the functions associated with the BARP package.
The vignette proceeds as follows: In Section 9.1 I demonstrate how to implement the basic
barp function to generate state-level opinions from nationally representative data. I show
how to estimate upper and lower bounds of these values through either Bayesian credible
intervals or through bootstrapping over random samples of the data.

In Section 9.2 I demonstrate how to explore the partial depedencies generated by the
model using the barp_partial_dependence function. This function allows the researcher to
evaluate which covariates are most strongly associated with support of, or opposition to, a
given topic. The function allows for up to three-way interaction estimation, permitting rich
characterizations of how the supplied covariates predict the opinion of interest.

Section 9.3 evaluates the prognostic power of the covariates by examining the number of
times they are used as a “splitting rule” (see section 3.1 for more details). The number of
times the covariates are used is known as the “variable inclusion proportion”. Following Bleich
et al. (2014), I permute the outcome variable to break any connection with the covariates
and re-estimate the variable inclusion proportions to generate a null distribution. Against
that null distribution I evaluate the significance of variable inclusion. I also discuss methods
for dealing with missing data, introduced in Kapelner and Bleich (2015).

Section 9.4 describes how to implement alternative prediction algorithms. Users can instan-
tiate any one of the 43 different algorithms included in the SuperLearner package (Polley
and Van der Laan 2015), the full list of which is viewable with a call to the 1istWrappers ()
function. These functions can be run in isolation or in combination, in which case the package
will return both the predictions associated with each algorithm as well as those predictions
generated by a weighted ensemble of all algorithms, with weights calculated with 10-fold
cross validation.

Section 9.5 concludes.

9.1.0 Predicting opinions with barp
barp is the main function in the BARP package and produces objects of class barp which

then can be used in other functions. A barp object is a list containing two components. The
first is a data.frame that gives the predicted opinion, and the lower and upper bounds for
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each geographic unit of interest. The second is the bartMachine object (Kapelner and Bleich
2013). I demonstrate the function below.

While the package was originally built with the intention of implementing Bayesian Additive
Regression Trees, it has since been expanded to accommodate a number of alternative
regularization algorithms via the SuperLearner package. These alternative algorithms will
return predicted opinions in the same data.frame object but users will not be able to examine
partial dependencies or prognostic covariate strength. I return to a brief discussion of how to
run BARP with alternative regularization algorithms at the end of this vignette.

9.1.1 Installing BARP and setting available memory

BARP implements Bayesian Additive Regression Trees using the bartMachine package
developed by Adam Kapelner and Justin Bleich (Kapelner and Bleich 2013). This requires
rJava; installing rJava on a Windows PC can be tricky because some machines require users
to manually set the PATH to their Java bin. For users confronting errors, a good start can be
found here. (But Googling the specific error is always the best method.)

Once rJava is installed, BARP can be installed as follows:

require(devtools)
install_github(' jbisbeel/BARP')

With BARP installed, the first thing to do before loading the package is set the memory
available to Java with options(java.parameters = "-Xmx [NUM]g") where [NUM] refers to
the number of gigabytes of memory to use. For common opinion datasets (i.e. < 5,000 rows
and < 20 covariates), 3 GB should suffice.

options(java.parameters = "-Xmx5g")
require (BARP)

9.1.2 Loading the data and predicting opinions

We can now proceed to extrapolating opinions on gay marriage to the state level. Following
Buttice and Highton (2013), I will use four individual-level covariates (age, education, and
the interaction of gender and race), two state-level covariates (Republican presidential vote-
share in the preceding election, and the share of the population identifying as a “religious
conservative”), and two geographic indicators (state, and region). Note that the geographic
unit of interest to the user (geo.unit) must be included in the vector of covariates. The
outcome opinion in this example is opposition to gay marriage, surveyed in 2006.

The main parameters used by the barp function include:

1. the survey data dat
2. the census data census
3. variable names for the outcome y and covariates x
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4. variable name of the geographic unit of interest geo.unit

The user should also specify the name of the column in the census data that lists the
proportions or shares that fall into each covariate category (proportion). If left to the
default “None”, barp assumes that the census data is raw and calculates the proportions by
counting the number of rows for each covariate bin over the total rows per geographic unit.

data("gaymar")
census06 <- census06 7>, merge(svy %>’ dplyr::select(state,stateid) %>’ distinct())
factors <- c("region","gXr","state")
census06 [factors] <- lapply(censusO6[factors],factor)
svy[c(factors)] <- lapply(svyl[c(factors)],factor)
barp.obj <- barp(y = "supp_gaymar",
x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),
dat = svy,census = census06,

geo.unit = "state",
proportion = "n",
seed = 1021,

serialize = TRUE)

The resulting barp object summarizes the predicted opinions and bounds as a data.frame.
Plotting the barp object will return either a simple plot of the predicted values and credible
intervals (evaluate_model = FALSE, the default), or a set of convergence diagnostic plots
(evaluate_model = TRUE). The latter plot should exhibit relative stability across the post-
burn-in Markov Chain Monte Carlo (MCMC) simulations in terms of percent acceptance,
number of leafs and terminal nodes, and tree depth (and o2 when vy is not a factor).

barp.obj$pred.opn %>’ head()

##  state SL.bartMachine 1 All opn.lb opn.ub
## 1 AL 0.1422521 0.04367446 0.2383575
## 2 AR 0.1268787 0.02760524 0.2212013
## 3 AZ 0.3222951 0.22747162 0.4159995
## 4 CA 0.3714351 0.28748739 0.4525278
## 5 co 0.3655661 0.27821291 0.4564940
## 6 CT 0.4506066 0.36040250 0.5372730
plot(barp.obj,algorithm = "BARP")
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Predicted Values and Credible Intervals
Algorithm: SL.bartMachine_1_All
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plot(barp.obj,evaluate_model =

T)

25



—
(o]
S Sigsq Estimates over MCMC lteration Percent Acceptance by MCMC lteration
1]
o
£ 8 4 o
£ o —
a
(2] [ce}
5 o | £ S
= i %
© o ]
o g «
% o < o
s 3 e o
S o 3 -]
g = °
g & | 5 o
2 S : 5oe
Q . LY ) - o |
i | | | | | ) T ° T | | | | | |
- 0 200 400 600 800 1200 0 200 400 600 800 1200
(%]
>
O MCMC lteration (green lines: after burn—in 95% ClI) MCMC lIteration

Tree Num Nodes And Leaves by

MCMC lteration After Burn—in Tree Depth by MCMC Iteration After Burn—in

I I I I I I I I I I I I
0 200 400 600 800 1000 0 200 400 600 800 1000

(%]

]

o

(@]

o © -
<

= (%]

NIQ n _| 2 n -
(%] — (@]

g o

@ = Y 7
o o

- o ] S

o] i = o -
c z

@ a

0 [

S o
S ¥ 7| e Annsleansta ity o m
= £ oo
E I“Imm“'m
>

[<3]

o

'—

MCMC lteration MCMC lteration

Alternatively, the user can choose to calculate the upper and lower bounds using bootstrapped
simulations by setting BSSD = TRUE and defining the number of simulations through the
nsims parameter. (Note that doing so will multiply the compute time accordingly). The
user can set the credible intervals for the bounds with cred_int = ¢(0.025,0.975). Lastly,
additional arguments can be passed to bartMachine including num_trees, num_burn_in,
num_iterations after burn in, verbose, et cetera. These parameters are non-trivial and
should be adjusted based on evaluating model performance via evaluate_model = TRUE in
the plot function.

barp.obj2 <- barp(y = "supp_gaymar",
X c(nageu,neducn,ngxrn’
"pvote","religcon",

26



"state","region"),
dat = svy,census = census06,

geo.unit = "state",
proportion = "n",
BSSD = T,

nsims = 50,

num_trees = 40,

num_burn_in = 250,
num_iterations_after_burn_in = 250,
setSeed = 1021)

plot(barp.obj2)
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Predicted Values and Credible Intervals
Bootstrapped Confidence Intervals Across Ensemble Predictions
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9.1.2.1 Classification vs regression

As mentioned in Section 0.0, bartMachine can handle classification tasks in addition to
conventional prediction. The user can prompt bartMachine to execute its classification
algorithm by making y a factor. However, care must be taken when ordering the factor as
the predicted probabilities are based on the first value. Failing to account for this (somewhat
unintuitive) nuance will result in predicted probabilities that are inverted.

svy$supp_gaymar <- factor(svy$supp_gaymar,levels = c("1","0"))

barp.class <- barp(y = "supp_gaymar",
X = c("age" , "aduc" , ||gxr|| ,

28



"pvote",'"religcon",
"state","region"),
dat = svy,census = census06,
= "state",

geo.unit
proportion = "n",
setSeed = 1021)

plot(barp.class)
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While in most cases the difference between the default and classification routines is trivial,
users can examine the confusion matrix of the classification object to gain further insight on
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model performance and tweak the prob_rule_class parameter to improve the predictive
power. (Note for applications of BARP to extract representative estimates of opinion at
different geographic units, these changes barely influence unit-level predictions.)

barp.class$trees$confusion matrix

## predicted 1 predicted O model errors
## actual 1 245.000 1260.000 0.837
## actual O 156.000 3339.000 0.045
## use errors 0.389 0.274 0.283

barp.class2 <- barp(y = "supp_gaymar",
x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),
dat = svy,census = census06,
geo.unit = "state",
proportion = "n",prob_rule class = 0.45,setSeed = 1021)

barp.class2$trees$confusion matrix

## predicted 1 predicted O model errors
## actual 1 418.000 1087.000 0.722
## actual O 330.000 3165.000 0.094
## use errors 0.441 0.256 0.283

9.2.0 Partial dependencies with barp

The user may also be interested in the substantive relationships between covariates and the
outcome. The BARP package includes tools to facilitate this type of analysis.

9.2.1 Calculating partial dependencies

The barp_partial dependence function estimates partial dependence for deep interactions
between the covariates using the barp object. The predicted values of the outcome are
estimated at different values of the covariate(s) of interest and can be analyzed to make infer-
ential statements about the relationship between the covariates and the outcome, analogous
to the coefficients and standard errors of conventional regression analysis.

The vars parameter allows the user to indicate which covariates to explore and, if desired,
define the values at which the partial dependence should be estimated. If only the variable
names are entered as a character vector, the levels are automatically generated by splitting
the support of the variable into quantiles at c(0.05,seq(.1,.9,by = .1),.95) and taking
the unique values. Otherwise, the vars parameter must be named list where the names are
the variables of interest and the contents are the custom values.
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The user can also choose how much of the original data to use when calculating the partial
dependence through the prop_data parameter, allowing for faster calculation times at the cost
of less precise estimates. The value should be a numeric value between 0 and 1, corresponding
to the share of the total data. Lastly, the user can stipulate the credible interval bounds
through the credible_interval parameter.

bpd <- barp_partial_dependence(barp = barp.obj,
vars = list(age = c(1:4),educ = c(1:4)),
prop_data = .2,
credible interval = ¢(0.025,0.975),
setSeed = 1021)

The resulting object of class bpd contains a list of two components. The first component is a
summary data.frame, which gives the predicted outcome and the lower and upper bounds
for each value of each variable. The second component is a raw data.frame that gives the
posterior predictions (rows) for each value of each variable (columns). The user can make
inferential statements using either component of the bpd object or can rely on default plotting
methods, described below in Section 3.2.

round (bpd$summary %>% head(),3)

##  age educ pred 1b ub

## 1 1 1 0.483 0.409 0.559
# 2 2 1 0.342 0.285 0.405
## 3 3 1 0.251 0.203 0.300
##H 4 4 1 0.126 0.076 0.175
## 5 1 2 0.476 0.421 0.540
# 6 2 2 0.342 0.304 0.385

round (bpd$raw[,1:4] %>% head(),3)

##  agel_educl age2_educl age3_educl aged_educl

## 1 0.487 0.368 0.264 0.141
## 2 0.503 0.358 0.275 0.158
## 3 0.454 0.317 0.243 0.113
## 4 0.497 0.373 0.282 0.092
## 5 0.451 0.368 0.307 0.148
## 6 0.478 0.327 0.263 0.135

9.2.2 Plotting partial dependence

BARP provides a default plotting function to streamline the visualization of the partial
dependence results up to three-way interactions. This function allows the user to provide
variable names (through the var_names parameter) and level descriptions (through the
var_labs parameter), as well as an indicator for which variables are categorical and which
are not (is_categorical). The type of plot produced will depend on how many variables
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are included as well as whether or not each is categorical.

For a single variable, the plot type is a function of whether the variable is categorical or

continuous, as illustrated.

bpdl <- barp_partial_dependence(barp = barp.obj,
vars = list(age
prop_data = .2,
setSeed = 1021)

1:4),

pl <- plot(bpdl,var_names = "Age",
is_categorical = F)

p2 <- plot(bpdl,var_names = "Age",
var_labs = list(c("18-30","31-50","51-65","65+")),
is_categorical = T)

grid.arrange(pl,p2,ncol = 2)

Predicted Values and Credible Interve Predicted Values and Credible Interve
Age
0.54
0.5-
© 0.4
g 0.4 4 §
S 5
o] g
() O
k3 S
303 g% I
[a
0.2 0.2 I
1 2 3 4 18-30 31-50 51-65 65+
Age Age

For an interaction analysis of two variables, there may be one of three different plots produced.

pl <- plot(bpd,
var_names = c("Age","Education"),
var_labs = list(c("18-30","31-50","51-65","65+"),
c("LTHS","HS","Some Coll","Coll+")),
is_categorical = c(T,T))
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p2 <- plot(bpd,
var_names = c("Age","Education"),
var_labs = list(c("18-30","31-50","51-65","65+"),
c("LTHS","HS","Some Coll","Coll+")),
is_categorical = c(F,T))
grid.arrange(pl,p2,ncol = 2)
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plot(bpd,

var_names = c("Age","Education"),
var_labs = list(c("18-30","31-50","51-65","65+"),
c("LTHS","HS","Some Coll","Coll+")),

is_categorical = c(F,F))
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Partial Dependence Plot:
Age by Education
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Finally, for a three-way interaction, the plot will be a grid of heatmaps, regardless of variable
type. The third variable will always be the one used to organize the grid while the first and
second variables will be the x- and y-axes respectively. Users should limit the number of
levels in the barp_partial_dependence function for visual clarity.

bpd3 <- barp_partial_dependence(barp.obj = barp.obj,
vars = list(age = 1:4,educ = 1:4,
state = c("VT","NH","ME",
IIOKII s |INEII , IITXII ,
”CA” s |lwAll s "OR")) s
prop_data = .2,
setSeed = 1021)
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plot (bpd3,
var_names = c("Age","Educ","Region"),
var_labs = list(c("18-30","31-50","51-65","65+"),
c("LTHS","HS","Some Coll","Coll + "),
C(HVTII’IINHH,IIMEII’
"OK","NE","TX",
"CA","WA","OR")))

Partial Dependence Plot:
Age by Educ by Region
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9.3.0 Covariate importance using barp

The partial dependence analysis informs the user of different covariates’ relationships to
the opinion of interest. Instead, however, researchers may be interested in which covariates
matter most to the BART model. One method of assessing covariate importance is through
examination of how often a covariate is used, either in a tree or as a splitting rule.

As BART proceeds, it attempts to divide the data to most cleanly separate observations
along the outcome variable. For example, the fastest way to separate subjects who support
gay marriage from those who oppose it is likely to be to divide the data into two groups
— those under 50 years of age and those over. This splitting rule may then be applied to
educational attainment and then to gender. Alternatively, counting the number of times a
variable appears in the trees across posterior samples yields a similar measure. BARP’s
barp_prognostic_covs function defaults to the splitting rule (through the type = 'splits'
parameter).

Over the course of post-burn-in Markov Chain Monte Carlo (MCMC) iterations and over
the branches of a decision tree, a variable may be chosen as a splitting rule or included in a
tree a certain number of times. The Variable Inclusion Proportion (VIP) of a given covariate
is the share of total splitting rules (or total trees) in which the covariate is chosen. This
proportion is a measure of covariate importance in the model. For more information, please
refer to Bleich et al. (2014).

9.3.1 Average variable inclusion proportions

To assess the relative covariate importance, BARP includes a barp_prognostic_covs
function. This function will return the observed VIPs for all covariates averaged over a
number of runs set by the user through the num_reps parameter. The user can also set the
number of trees through the num_trees parameter which may differ from the number of trees
used in the original barp command. If the user’s goal is predictive accuracy, more trees allow
for more flexibility. When evaluating covariate importance, however, limiting the number
of trees can improve estimation because each covariate must compete with all others to be
included (Chipman, George, and McCulloch 2010). If not specified by the user, num_trees
defaults to 20.

barpcov <- barp_prognostic_covs(barp.obj,
perm_test = F,
interactions = F,
num_reps = 30,
num_trees = 20,
type = "splits",
setSeed = 1021)

round (barpcov$covariate_importance %>’ head(),3)

#it age educ pvote religcon gXr region state
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##
##
##
##
#i#
##

The barp_prognostic_covs function returns an object of class barpcov which, if run without
a permutation test, contains a single matrix with the number of rows equal to the num_reps
parameter and the number of columns equal to the number of variables. Plotting this object
will produce a horizontal bar chart ordered by variable importance as measured by VIPs. An
optional parameter var_names allows the user to replace the default variable names with
more descriptive labels.

[1,]
[2,]
(3,]
[4,]
(5,]
(6,]

O O O O O o

.204
.196
.215
.199
.203
.199

plot (barpcov)

O O O O O O

.129
.137
.133
.138
.140
.161

O O O O O O

.126
.126
.106
.137
.141
.115

O O O O O O

.132
.150
.134
.132
.143
.144

O O O O O o

.189
.175
.192
.163
.166
.168
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9.3.2 Permutation tests

Although the average of the VIPs for all covariates can give the user an idea of which covariates
are most important, it does not allow for statistical inference. By randomly permuting y a
permutation test breaks the relationship between all covariates and the outcome variable. The
newly permuted VIPs represent a null distribution to compare with the observed VIPs. The
user can estimate each variable’s statistical significance by setting perm_test = TRUE and
defining the number of permutation simulations to run though the num_permute parameter.

barpcov_perm <- barp_prognostic_covs(barp.obj,
perm_test = T,
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num_permute = 30,
interactions = F,
num_reps = 30,
num_trees = 20,
type = "splits")

round (barpcov_perm$permutation_test %>’ head(),3)

#it age educ pvote religcon gXr region state
## [1,] 0.149 0.153 0.138 0.124 0.140 0.135 0.162
## [2,] 0.134 0.153 0.148 0.133 0.143 0.121 0.168
## [3,] 0.133 0.172 0.132 0.137 0.128 0.122 0.177
## [4,] 0.164 0.119 0.120 0.123 0.165 0.128 0.181
## [5,] 0.138 0.131 0.121 0.114 0.193 0.127 0.175
## [6,] 0.146 0.146 0.101 0.180 0.173 0.105 0.148

round (barpcov_perm$p_vals [order (barpcov_perm$p_vals)],3)

#it age gXr religcon pvote educ region
#it 0.020 0.030 0.149 0.653 0.693 0.772

state
1.000

The barpcov-class object now includes a matrix summarizing the permutation test results
and a vector of p-values capturing the proportion of a variable’s permutation test VIPs that
fall below the average observed VIP. The plot command now colors the results by significance
at a user-specified level through sig_level (defaults to 0.05), and overlays the VIP value at

this level as a vertical black line.

plot(barpcov_perm,
sig level = 0.10,topn = 20)
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Covariate Significance at 10%
Based on Splits with Permutation
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Alternatively, and as with all BARP outputs, the user may customize her own visualization
using the raw data. In this example, I plot the histogram of the permutation results for each
variable and overlay the average VIPs as vertical lines.

require(tidyr)

toplot <- gather(as_data_frame(barpcov_perm$permutation_test),variable,perm)

pvals <- data_frame(variable = names(barpcov_perm$p_vals),pvals = barpcov_perm$p_vals)
pvals <- pvals[order(pvals$pvals),]

pvals <- pvals[1:min(12,nrow(pvals)),]

avgVIPs <- apply(barpcov_perm$covariate_importance,2,mean)

avgVIPs <- data_frame(variable = names(avgVIPs) ,means = avgVIPs)

toplot <- pvals %>% left_join(toplot) %>’ left_join(avgVIPs)
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ordered <- pvals$variable
toplot <- toplot %>J, arrange(match(variable,ordered))
toplot$variable <- pasteO(toplot$variable," (",round(toplot$pvals,2),")")
ggplot (toplot, aes(x=perm))+
geom_vline(aes(xintercept = means), colour="black") +
geom_histogram(binwidth=0.01,colour = "white",fill = rgb(0,0,0,.3)) +
facet_wrap(~variable) +
theme_classic()

age (0.02) || educ (0.69) || gXr (0.03)

01 I I I

pvote (0.65) region (0.77) religcon (0.15)

count

0 1 1 1 1

p.09 012 015 018 021009 012 015 018 021

state (1)

009 012 015 018 021
perm
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9.3.3 Interactions

These methods can also be applied to interaction terms.

barpcov_int <- barp_prognostic_covs(barp.obj,
perm_test =T,
num_permute = 30,
interactions = T,
num_reps = 30,
num_trees = 20,
type = "splits")

plot(barpcov_int,
topn = 25,
sig_level = 0.10)
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9.3.4 Missing Data

The goal of extrapolating representative data from non-representative surveys is fundamentally
a missing data problem where the more sparsely populated bins constitute the missing data.
However, unlike well-known imputation methods such as Amelia (see Honaker et al. (2011)
for details) which attempt to recover missing data at the unit of the original data, MRP-style
methods predict opinions at the level of grouped bins of individuals where the bins are defined
by observable covariates.

Nevertheless, there may be situations, particularly in panel data, where observations are
missing at the individual respondent level in a survey. BARP allows users to implement
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a variety of imputation methods via use_missing data, including using the simple
average of the vector of observations (replace_missing data_with_x_j_bar), using
a linear model (impute_missingness_with_x_j_bar_for_lm), or to treat the missing
data as covariates (use_missing data_dummies_as_covars). A future update of the
BARP package will add in functionality for the random forest imputation method
(impute_missingness_with_rf_impute). See Kapelner and Bleich (2015) for more details
on how Bayesian Additive Regression Trees treat missing data.

svy$age [sample(1:nrow(svy) ,nrow(svy)*.01,replace = F)] <- NA
svy$educ[sample (1:nrow(svy) ,nrow(svy)*.01,replace = F)] <- NA

barp.covs <- barp(y = "supp_gaymar",

x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),

dat = svy,census = census06,

geo.unit = "state",

proportion = "n",

use_missing data = TRUE,

use _missing data_dummies_as_covars = TRUE,

setSeed = 1021)

barp.xjbar <- barp(y = "supp_gaymar",

x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),

dat = svy,census = census06,

geo.unit = "state",

proportion = "n",

use_missing data = TRUE,

replace missing data_with_x_j bar = TRUE,

setSeed = 1021)

barp.xjlm <- barp(y = "supp_gaymar",
x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),
dat = svy,census = census06,
geo.unit = "state",
proportion = "n",
use_missing data = TRUE,
impute_missingness_with_x_j_bar_for_lm = TRUE,
setSeed = 1021)
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cor.mat <- cor(cbind(barp.obj$pred.opn$SL.bartMachine 1 All,
barp.xjbar$pred.opn$SL.bartMachine 1 All,
barp.xjlm$pred.opn$SL.bartMachine_1_All,
barp.covs$pred.opn$SL.bartMachine 1 _All))
colnames(cor.mat) <- rownames(cor.mat) <- c("No Missing",
"Impute Xj Bar",
"Impute Xj LM",
"Missing as Covs")
round (cor.mat,3)

## No Missing Impute Xj Bar Impute Xj LM Missing as Covs
## No Missing 1.000 0.987 0.993 0.989
## Impute Xj Bar 0.987 1.000 0.993 0.991
## Impute Xj LM 0.993 0.993 1.000 0.993
## Missing as Covs 0.989 0.991 0.993 1.000

9.4.0 Alternative Regularization Methods

The updated BARP package allows users to replace or add additional regularization algo-
rithms via the method parameter. These algorithms can be one of the 43 methods included
in the SuperLearner package (Polley and Van der Laan 2015) although users must ensure
that the associated dependencies are installed. A detailed introduction to this package can
be found here.

The easiest implementation of these alternative algorithms is to include one or more as a
character vector. In this case, I use the vanilla implementation of SL.glmnet.

data("gaymar")
census06 <- census06 7>7 merge(svy 7>/ dplyr::select(state,stateid) %>% distinct())

barp.objSL <- barp(y = "supp_gaymar",

x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),

dat = svy,census = census06,

algorithm = c("SL.glmnet"),

geo.unit = "state",

proportion = "n",

setSeed = 1021)

barp.objSL$pred.opn %>% head()
## state SL.glmnet All opn.lb opn.ub

## AL AL 0.1661456 NA NA
## AR AR 0.1345653 NA NA
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## AZ AZ 0.2977428 NA NA

## CA CA 0.3635293 NA NA
## CO Co 0.3541205 NA NA
## CT CT 0.3854912 NA NA

plot(barp.objSL,algorithm = "SL.glmnet")

Predicted Values and Credible Intervals
Algorithm: SL.gimnet_All

NH @
MA @
NY ®
Rl®
CTe
VT @
DE @
CA e
WA @
NJe
CO e
ME @
IL®
MD ®
PA ®
NV @
NM @
Ml ®
Wil e
MN ®
OR @
IA®
AZ ®
VA @
OH @
KS ®
FLe®
ND ®
IN®
MT @
SD e
NE @
NC @
MO @
WV e
GA e
TX ®
LA e
SC e
Wy e
De®
KY ®
TN ®
MS @
AL ®
OK @
AR @
uT e
0.1 0.2 0.3 0.4 0.5 0.6

Predicted Value

Unlike with barp objects, other algorithms do not provide uncertainty estimates without
turning on bootstraps with BSSD = TRUE.

barp.objSLBS <- barp(y = "supp_gaymar",
X = c(”age" s "educ" , ||gxrn s

n n

"pvote",'"religcon",
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barp.objSLBS$pred.opn %>% head()

##
#i#
#i#
##
##
##
#i#t

g W N =

state

O O O O O

dat = svy,census = census06,
algorithm = c("SL.glmnet"),

"state","region"),

geo.unit = "state",
proportion = "n",
BSSD = TRUE,

nsims = 50,

setSeed = 1021)

pred.opn
.1860024
.1201974
.3214124
. 3672889
.3631236
.4153072

plot(barp.objSLBS)
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opn.ub
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.4702434
.5055253
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Predicted Values and Credible Intervals
Bootstrapped Confidence Intervals Across Ensemble Predictions
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These algorithms can be customized as described in the SuperLearner documentation. For
example, if we wanted to run a random forest with 150 trees, we would do the following:

rf new <- create.Learner("SL.randomForest",params = list(ntree = 150))
barp.objRF <- barp(y = "supp_gaymar",
x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),
dat = svy,census = census06,
algorithm = c(rf_new$names),
geo.unit = "state",
proportion = "n'",
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setSeed = 1021)

barp.objRF$pred.opn 7%>% head()

#it state SL.randomForest_1_All opn.lb opn.ub

## AL AL 0.02913993 NA NA
## AR AR 0.01521739 NA NA
## AZ AZ 0.14342199 NA NA
## CA CA 0.14478368 NA NA
## CO Co 0.25880952 NA NA
## CT CT 0.33599271 NA NA

plot(barp.objRF)
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Predicted Values and Credible Intervals
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Finally, we can test multiple algorithms at once and examine which perform the best via
cross validation by feeding in a vector of algorithm names to the algorithm parameter.

barp.objEns <- barp(y = "supp_gaymar",
x = c("age","educ","gXr",
"pvote",'"religcon",
"state","region"),
dat = svy,census = census06,
algorithm = c(rf_new$names,"SL.glmnet","SL.randomForest"),
geo.unit = "state",
proportion = "n",
setSeed = 1021)
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barp.objEns$pred.opn %>’ head()

#i#
#i#
##
#i#
##
##
#i#
##
##
##
##
#i#t
#i#
##

plot(barp.objEns)
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Predicted Values by Algorithm
All Algorithms & Ensemble
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As illustrated, the SL.randomForest algorithm returns very similar predictions when using
the default number of trees (1,000) versus 150. We can further examine how these algorithms
perform by looking at their cross-validated risk via the risk object in the output. The
first column returns the performance metric (typically AUC for classification, NNLS for
regression,although these can be adjusted by the user) and the second provides the weight
associated with this algorithm in estimating the ensemble predictions.

barp.objEns$risk

## AUC coef
## SL.randomForest_1 All 0.3560406 0.2097273
## SL.glmnet All 0.3309479 0.5788130
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## SL.randomForest_All  0.3529118 0.2114597

Some of these algorithms require bespoke packages which will need to be installed before
running barp. In addition, others may only work for classification or regression and will give
an error if applied to the incorrect data type.

9.5.0 Conclusion

This vignette has introduced and demonstrated the features of the R package BARP. The
purpose of this package is to improve on the estimation of opinion at narrower levels of
geography than originally represented in a survey. The package includes several helper
functions designed to facilitate exploration of the model, both in terms of performance and
in terms of covariates. I invite comments on bugs, corrections, improvements, and any other
suggestions.
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