
A Appendix

A.1 Modeling the Birthday Distribution

Our goal is to estimate Pr(B = b | F = f, L = l, Y = y), the probability that a voter

has a birthday b conditional on having first name f , last name l, and being born in year

y. The challenge is that we do not observe a su�cient number of people with the same

name who were born in the same year to estimate this only using the empirical distribution.

Our first simplification is to assume that Pr(B = b | F = f, L = l, Y = y) = Pr(B =

b | F = f, Y = y), so that we can ignore an individual’s last name when estimating this

probability. The justification for this assumption comes from Figure A.1, which plots the

di↵erence in the share of voters with the most common first and last names born on a given

day and the share of the general population of voters born on that same day. The left panel

of the plot shows a disproportionate number of voters named John and Mary are born on

St. John’s Day (June 24) and near Christmas, respectively. The right panel does not show

similar spikes in the common last names. This pattern is understandable since first names

are actively selected whereas last names are generally not. Proposition 1 derives our estimate

of Pr(B = b | F = f, Y = y) under three assumptions.

Proposition 1. Assume:

1. If db,y1 = db,y28b, then Pr(B = b | Y = y1, F = f) = Pr(B = b | Y = y2, F = f);

2. Pr(F = f,D = d | B = b) = Pr(F = f | B = b) Pr(D = d | B = b);

3. Pr(D = d | B = b) = Pr(D = d).

Then we have,

Pr(B = b | F = f, Y = y) =
Pr(B = b | F = f) Pr(D = db,y)P
b0 Pr(B = b0 | F = f) Pr(D = db0,y)

. (8)
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Figure A.1: Examples of names among 2012 voters with a non-uniform date of birth distri-
bution, by day (a) or year (b) of birth.

The first assumption means that if y1 and y2 are two di↵erent years with the same

weekday schedule, then the distribution of birthdays for a given first name is the same. Two

years have the same weekday schedule when January 1st falls on the same day of the week

in both years, and neither or both years are a leap year. Note that while this assumption

means that someone named Connor born in 1973 would have the same probability of being

born on January 1st as someone named Connor born in 1979, as both were Mondays, it

does not require the number of Connors born in 1973 and 1979 to be the same. We use the

notation y0 ⇠ y to indicate that year y0 has the same weekday schedule as year y.

The second assumption means that the distribution of first names of people born on a

given day is independent of the day of the week. So once we condition on being born on a

given day, nothing is learned about what day of the week one was born on from one’s first

name. While we acknowledge there are cases — like being named Wednesday or Domingo

— where this assumption is not correct, such cases are relatively rare.

The third assumption is that birthday and birth day-of-week are independent. Thus,

knowing an individual’s birthday does not give us any information on the day of the week
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they were born on.

Proof of Proposition 1

Consider the set of people born with first name f and birthday b on day of the week

db,y, which is represented by {B = b,D = db,y, F = f}. Without loss of generality, we can

decompose this set into the union of sets of people born with first name f and birthday b in

a year y0 such that db,y0 = db,y. Going one step further, and ignoring leap years, we can say

that db,y0 = db,y is equivalent to y0 and y having the same weekday schedule, which we can

write as y0 ⇠ y using our notation:

{B = b,D = db,y, F = f} =
[

(y0 s.t. y0⇠y)

{B = b, Y = y0, F = f}.

Because the sets on the right-hand side of the equation above correspond to di↵erent years,

and thus have no intersection, we can write,

Pr(B = b,D = db,y, F = f) =
X

(y0 s.t. y0⇠y)

Pr(B = b, Y = y0, F = f),

Pr(B = b,D = db,y | F = f) Pr(F = f) =
X

(y0 s.t. y0⇠y)

Pr(B = b, Y = y0 | F = f) Pr(F = f),

Pr(B = b,D = db,y | F = f) =
X

(y0 s.t. y0⇠y)

Pr(B = b, Y = y0 | F = f)

=
X

(y0 s.t. y0⇠y)

Pr(B = b | Y = y0, F = f) Pr(Y = y0 | F = f).

Assumption 1 gives us that 8y0 ⇠ y, Pr(B = b | Y = y0, F = f) = Pr(B = b | Y = y, F = f)),

so that,

Pr(B = b,D = db,y | F = f) =
X

(y0 s.t. y0⇠y)

Pr(B = b | Y = y0, F = f) Pr(Y = y0 | F = f)

= Pr(B = b | Y = y, F = f)
X

(y0 s.t. y0⇠y)

Pr(Y = y0 | F = f).
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Rearranging terms, we get,

Pr(B = b | Y = y, F = f) =
Pr(B = b,D = db,y | F = f)P
(y0 s.t. y0⇠y) Pr(Y = y0 | F = f)

. (9)

Using Bayes’ rule, we can rewrite the numerator in Eq. (9) as,

Pr(B = b,D = db,y | F = f) =
Pr(F = f,D = db,y | B = b) Pr(B = b)

Pr(F = f)

=
Pr(F = f | B = b) Pr(D = db,y | B = b) Pr(B = b)

Pr(F = f)
(10)

where the second equality comes from assumption 2, which gives us that Pr(F = f,D = d |

B = b) = Pr(F = f | B = b) Pr(D = d | B = b). By Bayes’ rule,

Pr(F = f | B = b) =
Pr(B = b | F = f) Pr(F = f)

Pr(B = b)
. (11)

Plugging Eq. (11) into Eq. (10) and simplifying gives us that

Pr(B = b,D = db,y | F = f) = Pr(F = f | B = b)⇥ Pr(D = db,y | B = b)⇥ Pr(B = b)

Pr(F = f)

=
Pr(B = b | F = f) Pr(F = f)

Pr(B = b)
⇥ Pr(D = db,y | B = b)⇥ Pr(B = b)

Pr(F = f)

= Pr(B = b | F = f) Pr(D = db,y | B = b)

= Pr(B = b | F = f) Pr(D = db,y) (12)
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where the final equality comes from assumption 3, which gives us that Pr(D = d | B = b) =

Pr(D = d). Substituting the results of Eq. (12) into the numerator of Eq. (9) gives us that

Pr(B = b | Y = y, F = f) =
Pr(B = b,D = db,y | F = f)P
(y0 s.t. y0⇠y) Pr(Y = y0 | F = f)

=
Pr(B = b | F = f) Pr(D = db,y)P

(y0 s.t. y0⇠y) Pr(Y = y0 | F = f)

=
Pr(B = b | F = f) Pr(D = db,y)

Z(f, y)
. (13)

To solve for Z(f, y) we note that it must be the case that
P

b0 Pr(B = b0 | Y = y, F = f) = 1

for it to be a valid probability distribution. Thus,

Z(f, y) =
X

b0

Pr(B = b0 | F = f) Pr(D = db0,y). (14)

Plugging in Eq. (14) to Eq. (13) yields the proposition.

A.2 Statement and Proof of Theorem 1

Theorem 1. Suppose Df,l,y is a discrete probability distribution of birthdays b1, . . . , bn with

PrDf,l,y
(bi) = pbi|f,l,y. Further assume there are q � 1 independent observations from Df,l,y,

B1, . . . , Bq, and kf,l,y  q copies Bq+1, . . . , Bq+kf,l,y such that Bq+i = Bi. Let Mf,l,y be the

number of pairwise matches among the nf,l,y = q+kf,l,y observations, and define the estimator

k̂f,l,y =

 
Mf,l,y �

✓
nf,l,y

2

◆X

i

p2bi|f,l,y

!, 
1�

X

i

p2bi|f,l,y

!
. (15)

Then Ek̂f,l,y = kf,l,y and

Var(k̂f,l,y)  4
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Proof. To simplify the notation, we represent Mf,l,y by M , nf,l,y by n, Df,l,y by D, pbs|f,l,y

by ps, and kf,l,y by k. We start by computing the expectation of M . For 1  i < j  q + k,

let Ai,j indicate whether Bi = Bj. Then by the linearity of expectation,

EM = E
 

X

1i<jq+k

Ai,j

!
=

X

1i<jq+k

EAi,j. (16)

For 1  i  k, EAi,q+i = 1 since Bi = Bq+i by construction. For the remaining
�
q+k
2

�
� k

terms, EAi,j = PrD(Bi = Bj) =
P

s p
2
s. Consequently,

EM = k +

✓✓
q + k

2

◆
� k

◆X

s

p2s

= k

 
1�

X

s

p2s

!
+

✓
q + k

2

◆X

s

p2s.

By rearranging terms, we now have that Ek̂ = k.

To compute the variance of k̂, we first compute the variance of M , decomposing it as

Var(M) =
X

1i<jq+k

Var(Ai,j) + 2
X

R

Cov(Ai,j, Ak,l) (17)

where R is the set of indices so that each distinct, unordered pair (Ai,j, Ak,l) appears in the

sum exactly once. Since Ai,j is an indicator variable,

Var(Ai,j) = EAi,j � (EAi,j)
2 . (18)

By the above, Var(Ai,q+i) = 0 for 1  i  k; and for the remaining terms, Var(Ai,j) =
P

s p
2
s � (

P
s p

2
s)

2. Consequently,

X

1i<jq+k

Var(Ai,j) =

✓✓
q + k

2

◆
� k

◆0

@
X

s

p2s �
 
X

s

p2s

!2
1

A . (19)
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Next we consider the covariance terms Cov(Ai,j, Ak,l), dividing them into two sets and

analyzing them separately.

Case 1 : We first consider the terms where the indices i, j, k, l are all distinct. If neither

Bi nor Bj are copies of either Bk or Bl, then Ai,j and Ak,l are clearly independent, and so

Cov(Ai,j, Ak,l) = 0. Now suppose that exactly one (but not both) of {Bi, Bj} is a copy of

either Bk or Bl. In this case, since each observation can be a copy of at most one other

observation, Bi cannot be a copy of Bj, and Bk cannot be a copy of Bl. We thus have,

EAi,j = EAk,l =
X

s

p2s and EAi,jAk,l =
X

s

p3s.

Consequently,

Cov(Ai,j, Ak,l) =
X

s

p3s �
 
X

s

p2s

!2

.

Moreover, there are 2k
⇥�

q+k�2
2

�
� (k � 1)

⇤
such instances where there is a single copy between

{Bi, Bj} and {Bk, Bl}. To see this, note that we can enumerate the instances by first

selecting one of the k copies (and its pair); then selecting two additional observations from

the remaining q+k�2 while avoiding the k�1 combinations that result in selecting another

copy and its pair; and lastly, choosing one of the two ways in which the selected observations

can be combined to form two unordered pairs.

Finally, suppose that both Bi and Bj are copies of Bk and Bl. As above, Bi cannot be a

copy of Bj, and Bk cannot be a copy of Bl, so

EAi,j = EAk,l =
X

s

p2s and EAi,jAk,l =
X

s

p2s.

Consequently,

Cov(Ai,j, Ak,l) =
X

s

p2s �
 
X

s

p2s

!2

.

There are 2
�
k
2

�
such terms, since we must first select two of the k copies, and then select one
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of the two ways in which to combine the four random variables into two unordered pairs.

Case 2 : We next consider the covariance terms where there are three distinct indices

among the set {i, j, k, l}. Since i 6= j and k 6= l, this means that {i, j} \ {k, l} 6= ;. If there

are no copies among the three distinct random variables, then

EAi,j = EAk,l =
X

s

p2s and EAi,jAk,l =
X

s

p3s

and so,

Cov(Ai,j, Ak,l) =
X

s

p3s �
 
X

s

p2s

!2

.

The number of such terms—with three distinct random variables, none of which are copies of

one another—is 3
⇥�

q+k
3

�
� k(q + k � 2)

⇤
. To count the terms, we first count the

�
q+k
3

�
ways

of selecting three variables from the q + k, and then subtract the number of possibilities

in which one variable is a copy of another. This latter quantity can be obtained by first

selecting one of the k copied variables and its pair, and then selecting a third observation

from the remaining q + k � 2. Finally, given the three random variables, we form two pairs

by selecting which one of the three to duplicate, and replicating that selected variable in

each pair.

Now, if Bi is a copy of Bj, then Ai,j = 1. Consequently, Ai,j and Ak,l are independent,

and so Cov(Ai,j, Ak,l) = 0. An analogous argument holds if Bk is a copy of Bl.

Finally, if the non-repeated variable among {Bi, Bj} is a copy of the non-repeated variable

among {Bk, Bl}, then

EAi,j = EAk,l =
X

s

p2s and EAi,jAk,l =
X

s

p2s

and so,

Cov(Ai,j, Ak,l) =
X

s

p2s �
 
X

s

p2s

!2

.

Such terms number k(q+ k� 2), since we must select a copied random variable and its pair,
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and then a third random variable among the remaining q + k � 2 to replicate.

Aggregating all the above terms, we have,

Var(M) =

2

4
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Since Var(k̂) = Var(M)/ (1�
P

s p
2
s)

2,

Var(k̂) =

 P
s p

2
s

1�
P

s p
2
s

� ✓
q + k

2

◆
+ 4

✓
k

2

◆
+ 2k(q + k � 2)� k

�

+

"P
s p

3
s � (

P
s p

2
s)

2

(1�
P

s p
2
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2

# 
4k

✓
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2

◆
+ 6

✓
q + k

3

◆
� 4k(k � 1)� 6k(q + k � 2)

�
.

Finally, to derive an upper bound on Var(k̂) that is independent of k, observe that
P

s p
2
s 

P
s ps = 1, and so

P
s p

2
s/(1 �

P
s p

2
s) � 0. Moreover, by Jensen’s inequality applied to the

convex function �(x) = x2 and weights pi,
P

s p
3
s � (

P
s p

2
s)

2. Thus, the two terms involving

pi in the variance expression above are non-negative. Consequently, dropping the negative

terms, and noting that k  (q + k)/2, we get the bound

Var(k̂)  4

✓
q + k

2

◆ P
s p

2
s

1�
P

s p
2
s

�
+ 12

✓
q + k
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◆"P
s p
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s � (

P
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(1�
P

s p
2
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#
.

On the other hand, to derive a lower bound, we can minimize positive terms and maximize

negative terms in the variance expression. Considering k  (q + k)/2, observe that 4
�
k
2

�
+

2k(q + k� 2)� k � � q+k
2 , and 4k

�
q+k�2

2

�
� 4k(k� 1)� 6k(q + k� 2) � �4( q+k

2 )( q+k
2 � 1)�
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6( q+k
2 )(q + k � 2) = �4(q + k)(q + k � 2). So we can write

Var(k̂) �
✓

q + k

2

◆
� q + k

2

�  P
s p

2
s

1�
P

s p
2
s

�

+


6

✓
q + k

3

◆
� 4(q + k)(q + k � 2)

� "P
s p

3
s � (

P
s p

2
s)

2

(1�
P

s p
2
s)

2

#
.

A.3 Statement and Proof of Proposition 2

Proposition 2. Assume a set of n � 1 objects, out of which korig objects are duplicates, and

the rest are unique. Additionally assume that each object has at most one duplicate in the

set. Then suppose that each one of these n objects is copied with probability pu, and dropped

from the set with probability pr. Assume K to be the number of unique objects with a copy

in the updated set, and N to be the size of this set. If we define the estimator k̂orig as,

k̂orig =
K

(1� pr)2 � 2pu
� Npu

(1 + pu � pr + pupr) ((1� pr)2 � 2pu)
(20)

then Ek̂orig = korig.

Proof. We start by computing the expectation of K. By definition, K is the number of

unique objects with a copy observed in the updated set. Initially and before updating the

set, there are n�korig unique objects out of which korig objects have a copy in the set, and the

remaining n� 2korig objects are with no duplicates. Each of these korig objects will still have

a copy in the updated set if and only if neither itself nor its copy is dropped. The probability

that an object and its copy are not dropped is (1� pr)2. For the remaining n� 2korig unique

objects, each will have copy in the updated set if and only if it gets duplicated, which has a

probability of pu. Therefore,

EK = korig(1� pr)
2 + (n� 2korig)pu = korig

⇥
(1� pr)

2 � 2pu
⇤
+ npu. (21)
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Rearranging terms, we get,

E


K � npu
(1� pr)2 � 2pu

�
= korig. (22)

n is the number of objects in the original set, while N is the size of updated set. Each object

in the original set contributes two objects to the updated set with probability pu, or one

object with probability (1� pu)(1� pr) = 1� pu � pr + pupr. Therefore,

EN =
nX

i=1

2pu + 1� pu � pr + pupr = n(1 + pu � pr + pupr) (23)

Substituting n = EN
1+pu�pr+pupr

into the Eq. (22), we have Ek̂orig = korig.

Note that in the proof of Theorem 1 we were estimating the number of pairs of duplicates

in the set, while here we are interested in the number of unique records with duplicates in

the set. As long as we assume a person does not vote more than twice in the election, the

two estimation approaches yield the same result.

A.4 Name and DOB Errors in the Voter File

To estimate the number of people who voted twice in the 2012 election, we use Target

Smart’s national voter file, which lists the first name, middle name,18 last name, su�x, date of

birth, and turnout history associated with a voter registration.19 These data provide a nearly

comprehensive list of 2012 general election participation: the data include 126,414,090 vote

records from the 2012 election, as compared to the 129,085,410 votes cast for a presidential

18Although the data include middle name, we do not use this information in our analysis. First, states do

not require middle name to be reported and not everyone has a middle name. Among those who both have

a middle name and report it, the information is often recorded inconsistently. Many records also contain

only a middle initial, making it di�cult to assess the accuracy of a given match. Other records have what

appear to be transcription errors, such as a su�x in the middle name field.
19Some states do not reveal the full date of birth on each registration. In such cases, Target Smart

supplements the missing birthdates with information obtained from commercial data sources.
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candidate nationwide.20 124,942,823 of these 126,414,090 vote records have a non-missing

first name, last name, and DOB. Before using the data, we standardize first names in the

voter file by converting nicknames to their canonical form. We use pdNickname software,

which contains tables relating nicknames to canonical names. We only consider short form

or diminutive nicknames with the highest relationship quality scores (less than 5). If a

nickname maps to multiple canonical names, we convert it to the most popular canonical

name among voters with the same gender. For instance, a male voter named Chris is

considered Christopher, and a female voter named Chris is considered Christine.

One concern with these data is that date of birth may not always be reported accurately

in the voter file. Figure A.2 shows the distribution of birthdays (i.e., month and day of birth)

for voter registrations with a birth year of 1970 and a vote record in 2012. It illustrates a

pattern, also shown by Ansolabehere and Hersh (2010), that too many registration records

indicate that a voter was born on first day of the month. Across all years, about 14% of

2012 vote records are indicated to have been born on the first day of the month.21 Such

measurement error could cause us to incorrectly count two votes cast by distinct voters as

instead coming from a single voter, and thus overestimate the true rate of double voting.

We also suspect that the birthdates of individuals in multi-generational households are

reported incorrectly in a few states. When we match vote records within states by not only

first name, last name, and date of birth, but also registration address, we find 7,504 and

2,350 in-state duplicate voters in Mississippi and Wisconsin, respectively. In a vast majority

of these cases, the records share a di↵erent middle name or su�x, suggesting a situation

in which either a father (mother) or son (daughter) were assigned the others’ birthdate.

Figure A.3 shows the distribution of potential multi-generational matches within states,

normalized based on the size of the state. In addition to Wisconsin and Mississippi, we

20http://www.fec.gov/pubrec/fe2012/federalelections2012.pdf
21We can detect some other improbable clumps of birthdays in a few states. For instance, March 26th in

Wisconsin and New Hampshire, June 5th in Idaho, and the whole month of January in Hawaii all show a

higher concentration of certain voter registration birthdays
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Figure A.2: Distribution of birthdays in 1970 in the voter file.

see that the District of Columbia, Arkansas, New Hampshire, Hawaii, and Wyoming also

have a disproportionate number of cases in which voter records with the same observable

characteristics reside in the same household. These issues in multi-generational households

raise broader concerns about the quality of the voter file records in these states. We thus

exclude these states from our preferred sample, and then scale-up our estimates to account

for their removal when generating our final, national numbers.

Finally, we carry out a simulation to assess the sensitivity of our results to possible

birthdate errors that may remain in our preferred sample. Given an error rate p, we randomly

select p% of records in our preferred sample and assign each a new birthdate chosen uniformly

at random from days in the recorded birth year. We then estimate the number of double

votes in the synthetic dataset by running it through our full analysis pipeline, including

estimation of pb|f,l,y. Figure A.4 shows the result of this procedure when we simulate 10

synthetic datasets for each error rate p in the range 1% to 10%. We see that an error rate

of p corresponds to an approximately 2p reduction in the estimated number of double votes.

Appendix–13



New Mexico
Vermont
Arizona

Montana
Delaware

Rhode Island
South Dakota

Nebraska
Nevada

Connecticut
Maine

Utah
West Virginia

Kansas
Colorado

Iowa
Oregon

Oklahoma
Washington

Michigan
North Dakota

Arkansas
Massachusetts

New Jersey
Louisiana
Maryland
Missouri

Kentucky
Indiana

Idaho
New York

South Carolina
Minnesota

Illinois
Pennsylvania

Tennessee
Virginia

Alabama
North Carolina

Ohio
Georgia
Florida

California
Texas

Wyoming
Hawaii

New Hampshire
Wisconsin

Alaska
The District of Columbia

Mississippi

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

Number of Duplicate Records per Capita

Matching Criteria
First Name, Last Name, and Date of Birth

First Name, Last Name, Date of Birth, and Registration Address

First name, Last Name, Suffix, Date of Birth, and Registration Address

Figure A.3: Distribution of potential multi-generational matches within a state.

To understand why, note that any actual case of double voting in our synthetic datasets

becomes undetectable with probability approximately equal to 2p, since each vote record in

the pair has probability p of being assigned a new birthdate. This explanation, however,

only holds approximately, as birthdate errors also attenuate the day-of-week e↵ect, among

other factors, complicating theoretical analysis and prompting our simulation.
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Figure A.4: Estimated number of double votes in the preferred sample from multiple simu-
lations as we increase the error in recording of birthdates.

A.5 Evaluation on Synthetic Datasets

We evaluate the performance of our estimation strategy on synthetic datasets with a

known number of double votes and which preserve key features of the real data, including

correlations between names and dates of birth. To create each synthetic dataset, we carry

out the following procedure, starting with the preferred version of the voter file.

1. Randomly select a year-of-birth and first name pair from the voter file.

2. Randomly, and independently of Step 1, select a last name from the voter file.

3. Given the selected first name, last name, and year of birth triple, generate a birthdate

based on the modeled birthdate distribution p̂b|f,l,y.

4. Repeat the above three steps until the size of the sample equals the size of the voter

file.

5. Randomly select k vote records in the synthetic dataset and add copies of them to the
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synthetic dataset.

This procedure preserves the correlation between first names and dates of birth, including

year. By randomly and independently selecting last names, we add additional variance to

the dataset. Before duplicating any records, all observed matches are purely coincidental,

and thus the full synthetic dataset has exactly k true double votes.

On each synthetic dataset, we carry out our full double vote estimation procedure, in-

cluding fitting a model to estimate the distribution of pb|f,l,y. Figure A.5 shows the result of

this exercise on 100 synthetic datasets generated as above for a range of values for k. We

find that our estimates are generally well aligned with the true number of double votes in

these datasets. We also find that our analytic standard errors are, if anything, slightly too

conservative. Specifically, among the 100 synthetic datasets, the analytic 95% confidence

intervals always contained the correct value, and the 80% confidence intervals contained the

correct value in 98 of the 100 instances.

We use an analogous simulation procedure to generate bootstrap estimates of variance

for our empirical double vote estimate. Specifically, we generate 100 synthetic datasets as

above, with k equal to our double vote point estimate, and then compute the variance of

our 100 estimates on the synthetic datasets. This procedure can be viewed as a parametric

bootstrap, as we use our estimated birthday model and point estimate of double votes to

generate the bootstrap samples.

A.6 Estimating Errors in Recorded Voting

Ansolabehere and Hersh (2010) present the best evidence constructed to date on the

accuracy of vote records in voter files. For each county in a given election, Ansolabehere

and Hersh calculate the absolute value of the deviation between number of vote records in

the voter file minus the total number of ballots cast in the certified aggregate returns. They

aggregate these deviations over all of the counties in the state and divide by the total number
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Figure A.5: Estimated number of duplicate records in a simulation compared to actual
number of records duplicated.

of votes cast in the state. From this analysis, Ansolabehere and Hersh conclude that about

two percent of voter registrations are incorrectly classified as having voted or abstained.

There are two primary limitations of this analysis. First, Ansolabehere and Hersh’s

method does not allow us to distinguish between false negatives and false positives, leaving

open the possibility that there are few false positives. Second, their method also would

understate the amount of measurement error in counties in which some registrations are

wrongly classified as abstaining, while others are wrongly classified as voting.

We use the data collected from our Philadelphia poll book audit to estimate the rate at

which registrations not used to vote are incorrectly given an electronic vote record (i.e., a false

positive). There were 17,587 electronic registration records that did not have an electronic

record of voting in these precincts.22 In 33 of these cases, we found the registration had

22A few additional records could not be validated because pages were missing in the poll books.
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a record of being used in the poll book. We also found 144 cases in which a registration

was listed as voting in the electronic records, but had no record of having voted in the poll

book (i.e., a signature discrepancy) and 29 cases of a registration being listed as voting in

the electronic records, but not being listed in the poll book (i.e., a registration discrepancy).

This suggests the false positive rate fp is 144+29
17,587+144+29�33 = 0.0098.

Of course, we cannot be certain that these records are all false positives. It could be the

case that the electronic voting records are correct and the poll book fails to note it. One way

to indirectly assess this possibility is to compare the rates at which voter registrations with

signature and registration discrepancies were recorded as voting in the elections leading up to

2010. If the previous vote history of these registrants is similar to the previous vote history

of registrants who did not vote in 2010, this would suggest that many of these records are

false positives. Conversely, if the previous vote history of these registrants is similar to the

previous vote history of registrants who did vote in 2010, this would suggest that registrants

with signature and registration discrepancies represent errors in the poll book, and thus are

not false positives.

Table A.1 suggests that some, but not all, of the signature and registration discrepancies

are false positives. To benchmark the past turnout of those who did and did not vote in

2010, we first calculate the 2006 turnout rate of those we know to have voted and not voted

in 2010. Table A.1 shows that 62% of 2010 voters also turned out in 2006, while only 17% of

those who abstained in 2010 participated in 2006. The 2006 turnout behavior of those with

signature or registration discrepancies in 2010 falls somewhere in between, at 44% and 26%,

respectively. We see similar patterns for 2007, 2008, and 2009 turnout as well. The fact that

those with discrepancies between the electronic records and poll books previously voted at a

rate somewhere in between those who abstained and those who voted in 2010 suggests that

the false positive rate is both greater than zero and less than 1.0%.

These audit results are meant only to be illustrative, not representative, of the false

positive rate in the population. There are some reasons why the false positive rate in
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Table A.1: Examining Past Vote History of 2010 Signature and Registration Errors

Dep. var.: Electronic record of general election voting in

2006 2007 2008 2009

(1) (2) (3) (4)

2010 electronic voting record .448 .395 .436 .248
(.005) (.005) (.005) (.004)

Signature discrepancy -.174 -.159 -.084 -.135
(.042) (.039) (.033) (.029)

Registration discrepancy -.361 -.396 -.123 -.189
(.079) (.048) (.076) (.048)

Potential false negative .224 .250 .357 .133
(.085) (.082) (.067) (.062)

Constant .170 .083 .461 .018
(.003) (.002) (.004) (.001)

Note: N = 29,263 registered voters in the 47 precincts that were audited.

Philadelphia may be larger than the rate in the general population. Ansolabehere and Hersh

(2010) found that there were more discrepancies than average in Pennsylvania between the

number of ballots cast and the number of vote records in the voter file. And while a majority

of jurisdictions either used Philadelphia’s poll-book-and-bar-code approach or a voter sign-in

sheet with no bar codes, a small, but growing number of jurisdictions, use an electronic poll

book, particularly in states with early voting.23 Because electronic poll books remove the

step in which poll books are translated into electronic records, use of such technology is

likely to reduce the number of false positives.

However, there are also reasons why we might expect there to be fewer false positives

in Philadelphia than in the general population. Because of the size of the jurisdiction, the

Philadelphia Voter Registration O�ce has a large, professionalized, and experienced sta↵

that it can draw upon when scanning the poll books. And while there is more potential for

error using the poll-book-and-bar-code approach than using electronic poll books, even more

23The Election Administration and Voting Survey suggests about 15% and 25% of voters used such

technology in 2008 in 2012, respectively.
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error is likely to occur in places that manually key-in the information contained in the poll

book. It is also the case that there are false positives that our audit would not detect. For

example, a poll worker could sign in a voter under the wrong registration. Consistent with

this, Hopkins et al. (2017) report that 105 individuals had to resort to filing a provisional

ballot in Virginia during the 2014 midterm election after they arrived at their polling place

to find their registration was wrongly marked as having been used to vote earlier in the day.

Because we only have a rough sense of the rate of false positives, it is hard to say anything

definitive about how many of the potential double votes can be explained by measurement

error. Ultimately, all we can conclude is that measurement error likely explains a sizable

portion, and possibly nearly all, of the surplus double votes that we observe in the national

voter file.

A.7 Estimating the Number of Deadwood Registrations

As described above, the voter file incorrectly indicates some registrations were used to

vote even though they were not, which can in turn a↵ect estimates of double voting. To

adjust for such errors, we need an estimate of the number of deadwood registrations for

voters (c), as discussed in Section 4.3.

We follow a strategy similar to the one used in Theorem 1. While we cannot observe c

directly, we can compute T , the number of observed cases in which two registration records

in di↵erent states share the same first name, last name, and date of birth, and exactly

one of them is recorded as having voted in the given election. As before, the estimator

approximately subtracts from T the number of cases we would expect to observe due to

chance in which a vote record and a non-voting registration record in di↵erent states share

the same first name, last name, year of birth, and birthday given our estimates of pb|f,l,y.

Our estimate of c involves four key assumptions that are analogous to our earlier ones.

First, we assume that registration records are fully accurate. Second, we assume that each

individual is at most registered in two states. Third, we assume that our estimate of the
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birthday distribution, modeled as before, is accurate. Lastly, we assume individuals are

listed in the poll books for a state if they have voted in that state in at least one of the two

previous elections.

We start by decomposing c as the sum

c =
X

f

X

l

X

y

cf,l,y, (24)

where cf,l,y is the number of voters with first name f , last name l, and year of birth y who have

a duplicate registration. Denote by B1, . . . , Bq the birthdays for unique registration records

with first name f , last name l, and birth year y. We assume these observed birthdays

are q � 1 samples from a discrete probability distribution Df,l,y with values b1, . . . , bn and

PrDf,l,y
(b) = pb|f,l,y. We further assume each of these registration records corresponds to

one of u states we are analyzing named S1, . . . ,Su. We can enter cross-state duplicate

registrations into our framework by assuming that there are k (with 0  k  q) duplicate

records with birthdays Bq+1, . . . , Bq+k, generated as Bq+i = Bi and scattered in S1, . . . ,Su.

Finally, we indicate whether observation Bi for 1  i  q + k has been recorded as having

voted or not by a flag fi. In terms of this notation, cf,l,y is the number of duplicate pairs

{(Bi, Bq+i) | 1  i  k} such that exactly one of the elements of the pair has voted, and Tf,l,y

is the number of pairwise matches among the q+ k observations such that the two elements

of the pair are from di↵erent states and exactly one of them has voted. Theorem 2 below

provides an estimator for cf,l,y based on Tf,l,y, pb|f,l,y, and the number of recorded votes in

each state.

Theorem 2. Let vl be the number of observations that voted in state Sl (vl =
P

Bi2Sl
fi),

and v̄l the number of observations without a vote in that state (v̄l =
P

Xi2Sl
(1� fi)). Define

the estimator

ĉf,l,y =

 
Tf,l,y �

 
uX

l=1

vl

uX

l=1

v̄l �
uX

l=1

vlv̄l

!
X

i

p2bi|f,l,y

!, 
1�

X

i

p2bi|f,l,y

!
. (25)
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Then Eĉf,l,y = cf,l,y and

Var(ĉf,l,y) 
 

uX

l=1

vl

uX

l=1

v̄l �
uX

l=1

vlv̄l

!2 " P
i p

2
bi|f,l,y

1�
P

i p
2
bi|f,l,y

#
. (26)

Proof. To simplify the notation, we represent Tf,l,y by T , Df,l,y by D, pbs|f,l,y by ps, and cf,l,y

by c. Let us first define Q to be the set of pairs (Bi, Bj) where 1  i < j  q+ k, Bi and Bj

belong to di↵erent states, and exactly one of them has its binary voting flag set to one. In

other words

Q = { (Bi, Bj) | 1  i < j  q + k , 1  @u  l : {Bi, Bj} ⇢ Su , fi � fj = 1 }.

Here, fi � fj = 1 means exactly one of fi and fj is set to one.

Based on this notation, T is the number of pairs (Bi, Bj) 2 Q such that Bi = Bj, and c

is the number of cases for 1  i  k where (Bi, Bq+i) 2 Q.

Let Ai,j indicate whether Bi = Bj. Then by the linearity of expectation,

ET = E

0

@
X

(Bi,Bj)2Q

Ai,j

1

A =
X

(Bi,Bj)2Q

EAi,j. (27)

For all the (Bi, Bj) pairs in Q for which j = q+ i, Bi = Bj by construction, so EAi,j = 1. By

definition, the number of these pairs is c. For the remaining |Q|� c pairs, EAi,j = PrD(Bi =

Bj) =
P

s p
2
s. Consequently,

ET = c+ (|Q|� c)
X

s

p2s

= c

 
1�

X

s

p2s

!
+ |Q|

X

s

p2s.

To compute |Q|, we first count all the (Bi, Bj) pairs where i < j and exactly one of fi and fj is

set to one. This count is equal to number of ways we can choose a pair with first element from
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observations with flag set to one (
Pu

l=1 vi observations) and second element from observations

with flag set to zero (
Pu

l=1 v̄i observations), which sums up to
Pu

l=1 vl
Pu

l=1 v̄l. Then we

eliminate the pairs where Bi and Bj are from the same set. For each set Sl, we need to

eliminate vlv̄l such pairs. Therefore,

|Q| =
uX

l=1

vl

uX

l=1

v̄l �
uX

l=1

vlv̄l.

By substituting |Q| and rearranging terms, we now have that Eĉ = c.

To compute the variance of ĉ, we first decompose variance of T as

Var(T ) =
X

(Bi,Bj)2Q

Var(Ai,j) + 2
X

R

Cov(Ai,j, Ak,l) (28)

where R is the set of (i, j, k, l) indices such that each distinct unordered pair from elements

in Q appears in the sum exactly once. For Ai,j we can write,

Var(Ai,j) = EAi,j � (EAi,j)
2 . (29)

For all the (Bi, Bj) pairs in Q for which j = q + i, EAi,j = 1. Therefore, for those pairs

Var(Ai,j) = 0. There are c such pairs in Q, and for the remaining |Q|� c pairs, Var(Ai,j) =
P

s p
2
s � (

P
s p

2
s)

2. Consequently,

X

(Bi,Bj)2Q

Var(Ai,j) = (|Q|� c)

0

@
X

s

p2s �
 
X

s

p2s

!2
1

A . (30)

Next we consider the covariance terms Cov(Ai,j, Ak,l). By Cauchy-Schwarz’s inequality,

Cov(Ai,j, Ak,l) 
q
Var(Ai,j)Var(Ak,l). (31)

If either (Bi, Bj) or (Bk, Bl) are among the c pairs in Q for which one observation is a
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copy of another, then Var(Ai,j)Var(Ak,l) = 0. For all the other cases, Var(Ai,j)Var(Ak,l) =
⇣P

s p
2
s � (

P
s p

2
s)

2
⌘2
. Therefore,

X

R

Cov(Ai,j, Ak,l) 
✓
|Q|� c

2

◆0

@
X

s

p2s �
 
X

s

p2s

!2
1

A . (32)

Combining equations for terms in Var(T ), we can write,

Var(T )  (|Q|� c)2

0

@
X

s

p2s �
 
X

s

p2s

!2
1

A . (33)

Consequently,

Var(ĉ) = Var(T )/

 
1�

X

s

p2s

!2

 (|Q|� c)2
 P

s p
2
s

1�
P

s p
2
s

�
.

To make the bound on Var(ĉ) independent of c, we substitute |Q|� c by |Q| and replace it

with the previously calculated count, which yields to

Var(ĉ) 
 

uX

l=1

vl

uX

l=1

v̄l �
uX

l=1

vlv̄l

!2  P
s p

2
s

1�
P

s p
2
s

�
.

A.8 Measurement Error Linking Vote Records to Crosscheck Data

We calculated the frequency with which votes are cast using the registration records

flagged by Crosscheck by merging the Crosscheck data with the Target Smart national voter

file by exactly matching records in the two data sources on first name, middle name, last

name, date of birth, and state. Doing so potentially could cause us to under- or overestimate

the rate at which the registrations flagged by Crosscheck were used to vote. We would
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underestimate turnout if records for the same person did not exactly match on one of these

five variables. Conversely, we would overestimate turnout if a registration identified by

Crosscheck matched with a district person’s vote record in the Target Smart data. To get

a sense of which, if either, of these sources of measurement error are a bigger issue, we

take advantage of the fact that we know a registrant’s voter registration number if they are

registered to vote in Iowa. Thus, we compare the vote history we estimate when we match

to Target Smart to the vote history we estimate when we directly link the Crosscheck data

to the Iowa voter file using the voter registration number.

Table A.2 suggests that measurement error in turnout does not a↵ect our conclusion that

few likely double votes were identified in the Crosscheck data. Columns 3 and 4 replicate

our 2012 analysis when Iowa turnout is linked to the Crosscheck data from the voter file

using Iowa’s voter registration number. While we find one additional case of a likely double

vote, we also find more than a hundred additional cases in which only the Iowa registration

was used to cast a vote. We expand upon this analysis in columns 5 and 6 by limiting the

sample of states paired to Iowa to those states in which fewer than 10% of 2012 voters have

a birthday on the first of the month. We do this because we expect there to be fewer cases

in which we fail to match a vote record to a registration record in these states. We find that

7 of the 1,076 potential double votes were actually double votes in these states. Moreover,

we find 1,994 cases in which only the voter registration record with the earlier registration

date was used to cast a ballot.
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Table A.2: Robustness Checks on 2012 Analysis in Table 1

Target Smart (TS) or Vote File (VF)
to Measure Iowa Turnout TS VF VF
Drop States with > 10%
First of Month Birthdays No No Yes
SSN4 Match Yes No Yes No Yes No

Which Reg. Used to Vote:
Both 7 1476 8 1489 7 1069

One (earlier reg. date) 2542 1678 2694 1748 1994 1117
One (later or unknown reg. date) 9430 2581 9883 2657 7843 2225

Neither 14008 3178 13402 3019 8817 2085

A.9 Additional Tables and Figures
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  Grid of Potential Duplicate Voters Within States 
  by DOB   Last Name   First Name 

2012 AZ  AR  CO  IL  IA  KS  KY  LA  MI  MS  MO  NE  OK  SD  TN  
AZ    2,829 24,863 16,014 7,153 3,687 688 2,062 27,617 2,220 7,569 3,306 4,006 2,449 3,614 

AR  2,829   4,557 6,950 2,430 2,686 691 5,957 5,085 6,477 11,049 995 7,403 433 7,180 

CO  24,863 4,557   19,902 10,850 10,035 1,054 5,065 17,086 3,309 12,498 8,927 8,306 3,937 6,153 

IL  16,014 6,950 19,902   31,882 6,311 2,467 5,207 49,260 10,766 39,658 3,803 4,834 1,500 12,469 

IA  7,153 2,430 10,850 31,882   4,706 526 1,558 7,019 1,797 11,563 10,954 2,031 4,865 2,806 

KS  3,687 2,686 10,035 6,311 4,706   401 1,369 4,461 1,397 31,082 4,196 6,575 905 2,205 

KY  688 691 1,054 2,467 526 401   873 2,267 1,085 1,195 233 576 117 1,905 

LA  2,062 5,957 5,065 5,207 1,558 1,369 873   6,851 17,744 5,254 810 2,829 277 4,422 

MI  27,617 5,085 17,086 49,260 7,019 4,461 2,267 6,851   7,527 12,960 2,416 4,067 1,265 16,956 

MS  2,220 6,477 3,309 10,766 1,797 1,397 1,085 17,744 7,527   5,607 780 2,364 305 21,661 

MO  7,569 11,049 12,498 39,658 11,563 31,082 1,195 5,254 12,960 5,607   4,244 7,539 1,300 7,804 

NE  3,306 995 8,927 3,803 10,954 4,196 233 810 2,416 780 4,244   1,126 2,608 1,108 

OK  4,006 7,403 8,306 4,834 2,031 6,575 576 2,829 4,067 2,364 7,539 1,126   402 2,858 

SD  2,449 433 3,937 1,500 4,865 905 117 277 1,265 305 1,300 2,608 402   537 

TN  3,614 7,180 6,153 12,469 2,806 2,205 1,905 4,422 16,956 21,661 7,804 1,108 2,858 537   
Totals 108,077 64,722 136,542 211,023 100,140 80,016 14,078 60,278 164,837 83,039 159,322 45,506 54,916 20,900 91,678 
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Figure A.6: Distribution of potential duplicate voters in 2012 according to internal docu-
ments circulated by the Interstate Crosscheck Program.
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