Online Appendix:

Corruption information and vote share: A meta-analysis and lessons for experimental design

Trevor Incerti

- A.1: Lab experiments
- A.2: Excluded studies
- A.3: Meta-analysis and heterogeneity by type of experiment
- A.4: Robustness checks
- A.5: Publication bias
- A.6: Information quality

A.7: Additional conjoint replications using predicted probabilities

A Appendix

•

A.1 Lab experiments

Study	Country	ATE
Arvate and Mittlaender (2017)	Brazil	Negative
Azfar and Nelson (2007)	USA	Negative
Rundquist, Strom and Peters $(1977)^1$	USA	Negative
Solaz, De Vries and de Geus (2019)	UK	Negative

Table A.1: Lab experiments

 1 The candidate is always corrupt in the Rundquist, Strom and Peters (1977) experiment. A "corruption" point estimate is therefore not provided in the coefficient plot below.

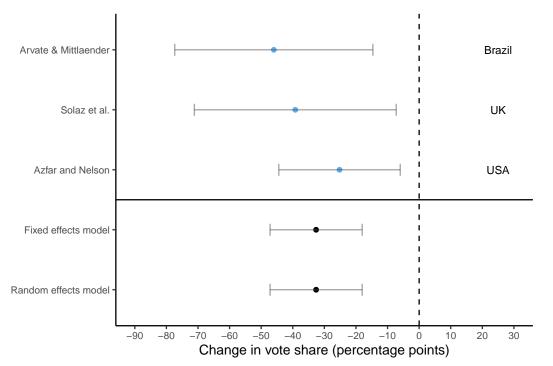


Figure A.1: Lab experiments: Average treatment effect of corruption information on vote share

A.2 Excluded studies

Study	Type	Reason for exclusion
Anduiza, Gallego and Muñoz (2013)	Survey	Lack of no-corruption control group
Botero et al. (2015)	Survey	Lack of no-corruption control group
De Figueiredo, Hidalgo and Kasahara (2011)	Survey	Outcome is hypothetically changing actual vote
Green, Zelizer, Kirby et al. (2018)	Field	Outcome is favorability rating, not vote share
Konstantinidis and Xezonakis (2013)	Survey	Lack of no-corruption control group
Muñoz, Anduiza and Gallego (2012)	Survey	Lack of no-corruption control group
Rundquist, Strom and Peters (1977)	Lab	Lack of no-corruption control group
Winters and Weitz-Shapiro (2016)	Survey	Data identical to Weitz-Shapiro and Winters (2017)
Winters and Weitz-Shapiro (2015)	Survey	Data identical to Winters and Weitz-Shapiro (2013)
Weschle (2016)	Survey	Lack of no-corruption control group

 Table A.2: Excluded experiments

A.3 Meta-analysis and heterogeneity by type of experiment

Table A.S. Meta-analysis by type of experiment			
Value	Estimate	95% CI	
Field: weighted fixed effects	-0.002	-0.006 to 0.001	
	(0.002)		
Field: random effects	-0.003	-0.021 to 0.014	
	(0.009)		
Survey: weighted fixed effects	-0.319	-0.326 to -0.312	
	(0.004)		
Survey: random effects	-0.322	-0.382 to -0.262	
	(0.031)		

Table A.3: Meta-analysis by type of experiment

Note: Standard errors in parenthesis. Figures rounded to nearest thousandth decimal place.

Value	Estimate	95% CI
Estimate	-0.21 (0.035)	-0.279 to -0.141
Estimated total heterogeneity	0.034 (0.009)	0.016 to 0.053

Table A.4: Random effects meta-analysis (all studies)

Note: Standard errors in parenthesis. Figures rounded to nearest thousandth decimal place.

Table A.5: Mixed effects meta-analysis with survey experiment moderator

Value	Estimate	95% CI
Constant	-0.007	-0.074 to 0.06
	(0.034)	
Survey experiment moderator	-0.315	-0.398 to -0.232
	(0.043)	
Residual heterogenity with moderator	0.011	0.005 to 0.017
	(0.003)	
Heterogenity accounted for	68.023%	

Note: Standard errors in parenthesis. Figures rounded to nearest thousandth decimal place.

"Heterogeneity accounted for" is calculated as: $\frac{\text{(Total heterogeneity - Residual heterogeneity)}}{\text{(Total heterogeneity)}}$

A.4 Robustness checks

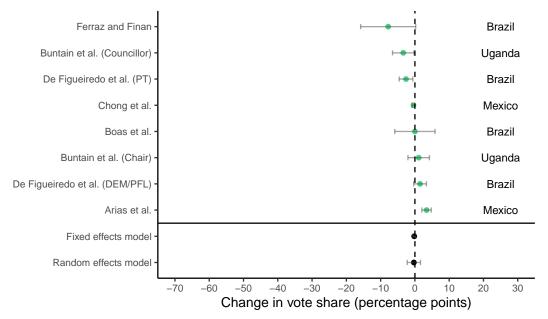


Figure A.2: Field experiments: Average treatment effect of corruption information on incumbent vote share (excluding Banerjee et al. (2010) and Banerjee et al. (2011))

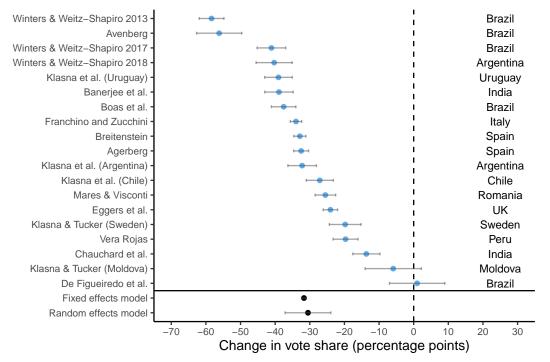


Figure A.3: Survey experiments: Average treatment effect of corruption information on incumbent vote share (including De Figueiredo, Hidalgo and Kasahara (2011))

ValueEstimate95% CIField: weighted fixed effects-0.002-0.006 to 0.002Field: random effects-0.003-0.022 to 0.016

Table A.6: Meta-analysis (all field experiments excluding Banerjee et al. (2010) and Banerjee et al. (2011))

Table A.7: Random effects meta-analysis (all studies excluding Banerjee et al. (2010) and Banerjee et al. (2011))

Value	Estimate	95% CI
Estimate	-0.226	-0.296 to -0.155
Estimated total heterogeneity	$(0.036) \\ 0.033 \\ (0.01)$	0.015 to 0.052

Note: Standard errors in parenthesis. Figures rounded to nearest thousandth decimal place.

Table A.8: Mixed effects meta-analysis with survey experiment moderator (ex-	
cluding Banerjee et al. (2010) and Banerjee et al. (2011))	

Value	Estimate	95% CI
Constant	-0.009	-0.086 to 0.067
	(0.039)	
Survey experiment moderator	-0.313	-0.405 to -0.221
	(0.047)	
Residual heterogenity with moderator	0.012	0.005 to 0.019
	(0.004)	
Heterogenity accounted for	64.751%	
~ .		

Table A.9: Meta-analysis (all survey experiments including De Figueiredo, Hidalgo and Kasahara (2011)

Value	Estimate	95% CI
Survey: weighted fixed effects	-0.317 (0.004)	-0.324 to -0.31
Survey: random effects	-0.305 (0.034)	-0.371 to -0.239

A.5 Publication bias

Study	Experiment Type	Published	Reported p-value	Replicated p-value
Winters and Weitz-Shapiro 2013	Survey	Yes	0.000	0.000
Avenberg	Survey	Yes	0.000	
Winters and Weitz-Shapiro 2017	Survey	Yes	0.000	0.000
Winters and Weitz-Shapiro 2018	Survey	Yes	0.000	0.000
Klasna et al. (Uruguay)	Survey	No	0.000	0.000
Banerjee et al.	Survey	Yes	0.000	
Boas et al.	Survey	Yes	0.000	0.000
Franchino and Zucchini	Survey	Yes	0.000	0.000
Breitenstein	Survey	Yes	0.000	0.000
Agerberg	Survey	Yes	0.000	
Klasna et al. (Argentina)	Survey	No	0.000	0.000
Klasna et al. (Chile)	Survey	No	0.000	0.000
Mares and Visconti	Survey	Yes	0.000	0.000
Eggers et al.	Survey	Yes	0.000	0.000
Klasna and Tucker (Sweden)	Survey	Yes	0.000	
Vera Rojas	Survey	Yes	0.000	
Chauchard et al.	Survey	Yes	0.000	0.000
Arias et al.	Field	Yes	0.000	
De Figueiredo et al. (PT)	Field	No	0.011	
Chong et al.	Field	Yes	0.032	
Buntain et al. (Councillor)	Field	Yes	0.034	
Ferraz and Finan	Natural	Yes	0.058	
De Figueiredo et al. (DEM/PFL)	Field	No	0.116	
Klasna and Tucker (Moldova)	Survey	Yes	0.155	
Banerjee et al. (2011)	Field	No	0.268	
Banerjee et al. (2010)	Field	No	0.708	
Buntain et al. (Chair)	Field	Yes	0.754	
Boas et al.	Field	Yes	1.000	

Table A.10: P-values by study

Notes: Publication status as of November 2019. All p-values rounded to the nearest thousandth decimal place. Reported p-value is the p-value associated with the corruption ATE directly reported in the paper if available. If not available, p-values are reconstructed from point estimates, standard errors, and sample size in regression tables. Replicated p-values are shown for all studies which were fully replicated.

	Dependent variable:	
	Pub	olished
	OLS	Logit
Reference: P less than 0.01	0.80***	1.39**
	(0.12)	(0.65)
P less than 0.05	-0.13	-0.69
	(0.29)	(1.38)
P less than 0.1	0.20	15.18
	(0.47)	(2, 399.54)
P greater than 0.1	-0.13^{-1}	-0.69
Ŭ	(0.19)	(0.96)
Observations	28	28
Note:	*p<0.1; **p<0.05; ***p<0.01	

Table A.11: Do p-values predict publication status?

Table A.12: Regression tests for funnel plot asymmetry

Studies included	p value
All	0.0004
All with moderator	0.923
Field	0.954
Survey	0.862

Table A.13: Trim and fill estimates by subgroup

Value	Estimate	95% CI
All experiments: random effects	-0.237	-0.307 to -0.168
	(0.035)	
Field: random effects	-0.003	-0.021 to 0.014
	(0.009)	
Survey: random effects	-0.322	-0.382 to -0.262
	(0.031)	

		0 0 1	
Value	Estimate	95% CI	
All experiments	0.008 (0.027)	-0.045 to 0.062	
Field experiments	-0.002 (0.006)	-0.013 to 0.009	
Survey experiments	-0.317 (0.032)	-0.38 to -0.254	

Table A.14: PET-PEESE estimates by subgroup

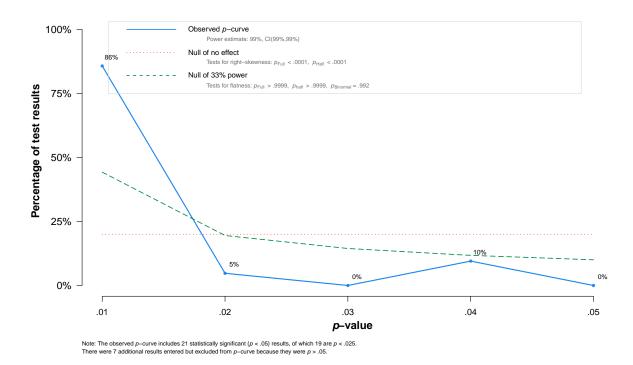


Figure A.4: P-curve: all experiments

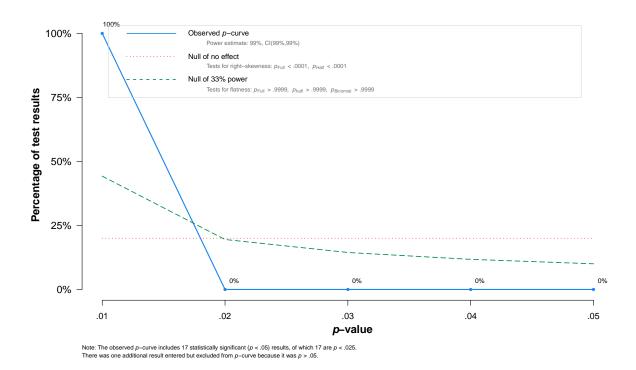


Figure A.5: P-curve: survey experiments

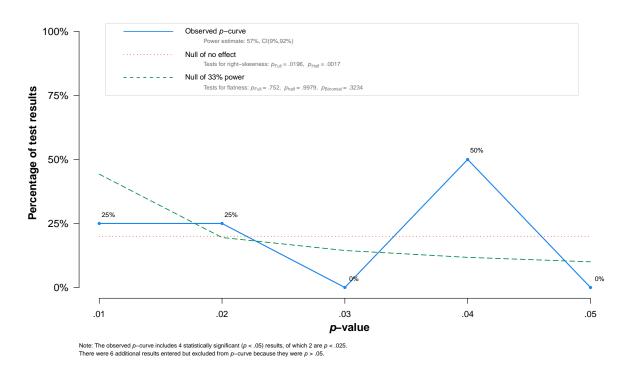


Figure A.6: P-curve: field experiments

.

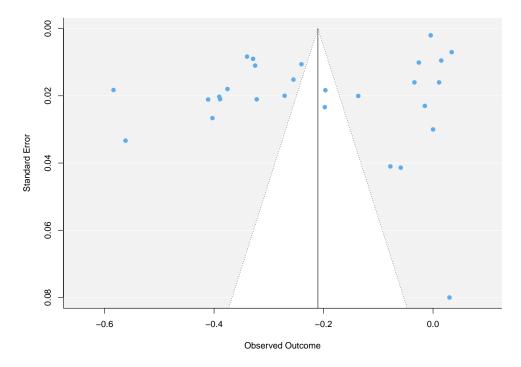


Figure A.7: Funnel plot: all experiments

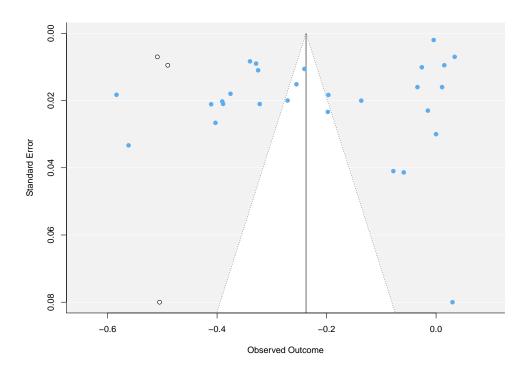


Figure A.8: Funnel plot including trim and fill "missing" studies: all experiments Note: Actual studies in blue and estimated missing studies in white.

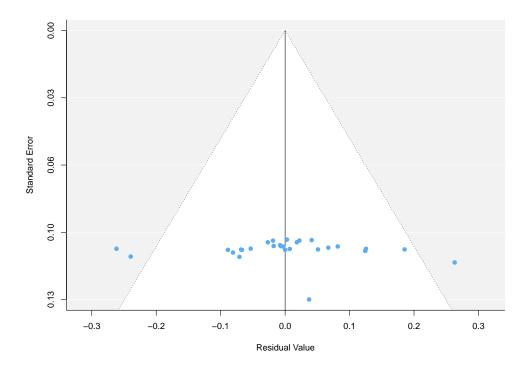


Figure A.9: Funnel plot: all experiments with field experiment moderator

.

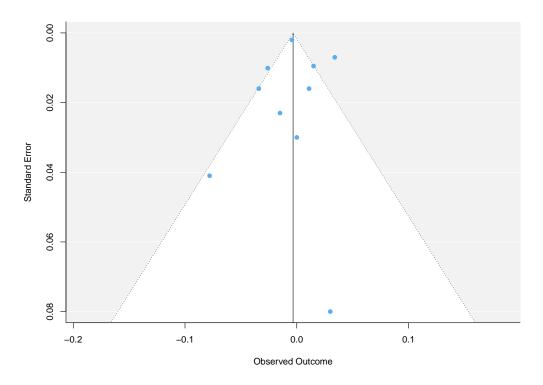


Figure A.10: Funnel plot: field experiments

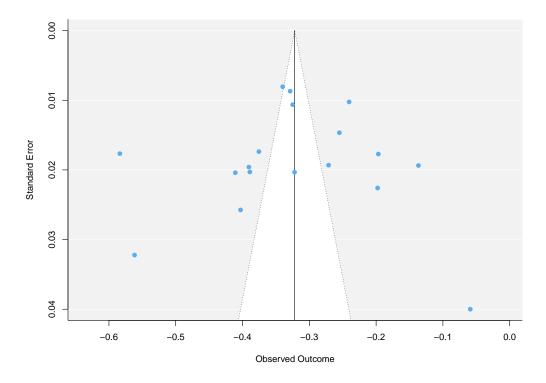


Figure A.11: Funnel plot: survey experiments

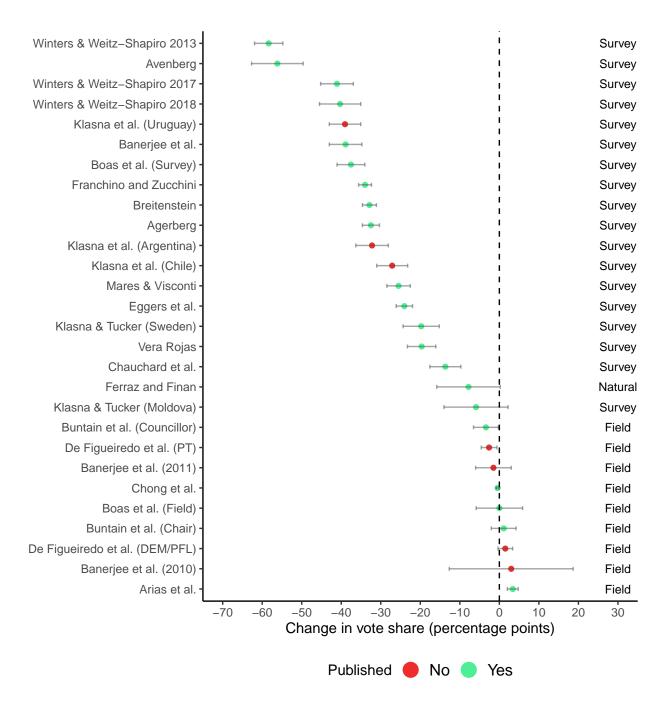


Figure A.12: All experiments by publication status: Average treatment effect of corruption information on vote share and 95% confidence intervals

•

A.6 Information quality

.

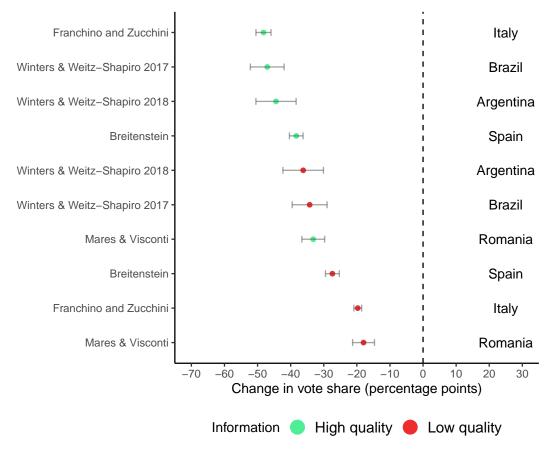
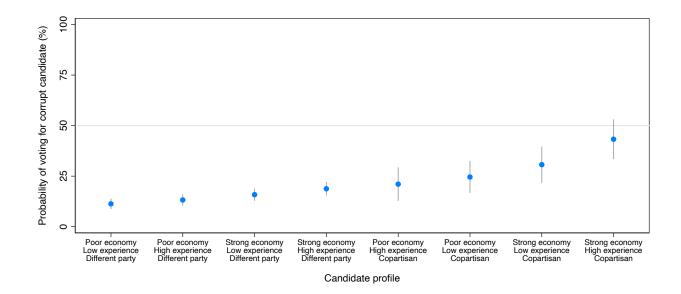



Figure A.13: Survey experiments by information quality: Average treatment effect of corruption information on vote share and 95% confidence intervals

A.7.1 Breitenstein (2019)

Figure A.14: Breitenstein (2019) conjoint: can the right candidate overcome corruption (clean challenger)?

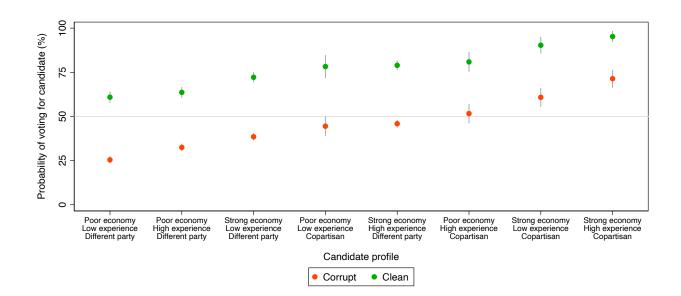


Figure A.15: Breitenstein (2019) conjoint: probability of choosing candidate (by clean or corrupt)

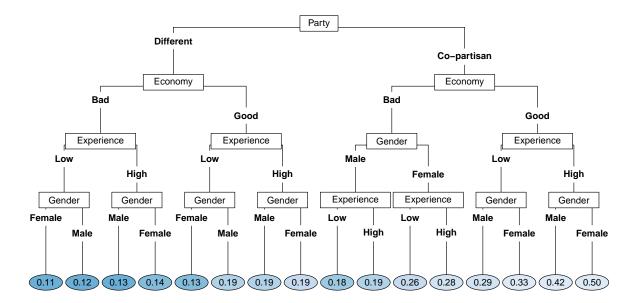


Figure A.16: Breitenstein (2019) conjoint decision tree: predicted probabilities of voting for corrupt politician with clean challenger

A.7.2 Franchino and Zucchini (2015)

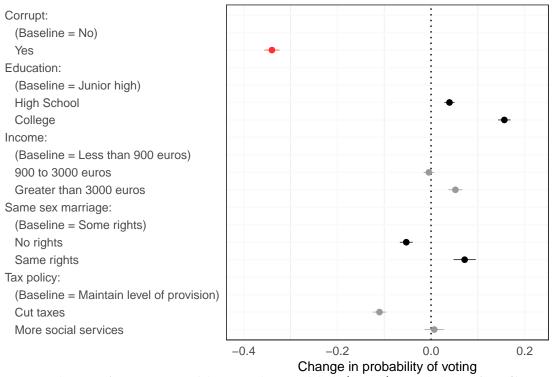


Figure A.17: Franchino and Zucchini (2015) conjoint: AMCEs

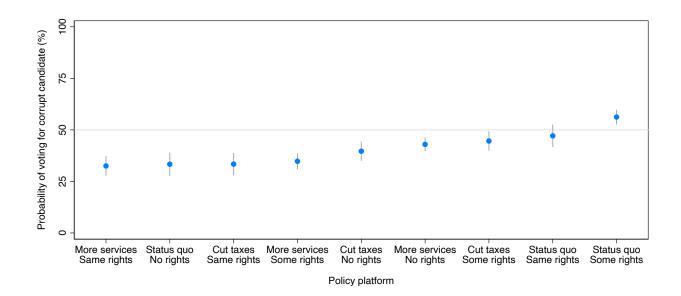


Figure A.18: Franchino and Zucchini (2015) conjoint: can policy positions overcome corruption (conservative respondents)?

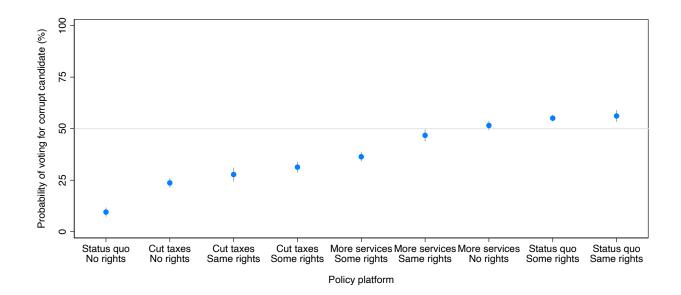


Figure A.19: Franchino and Zucchini (2015) conjoint: can policy positions overcome corruption (liberal respondents)?

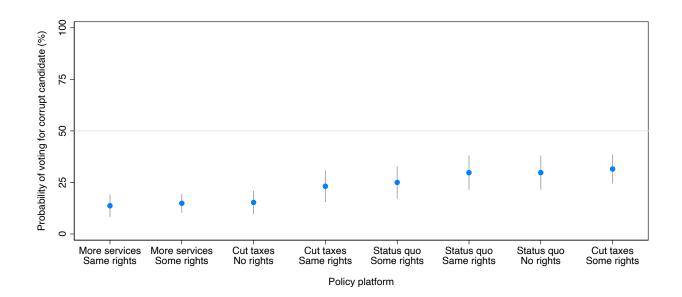


Figure A.20: Franchino and Zucchini (2015) conjoint: can policy positions overcome corruption (conservative respondents and clean challenger)?

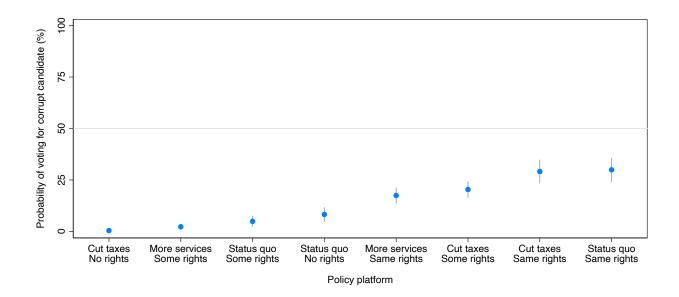


Figure A.21: Franchino and Zucchini (2015) conjoint: can policy positions overcome corruption (liberal respondents and clean challenger)?

A.7.3 Mares and Visconti (2019)

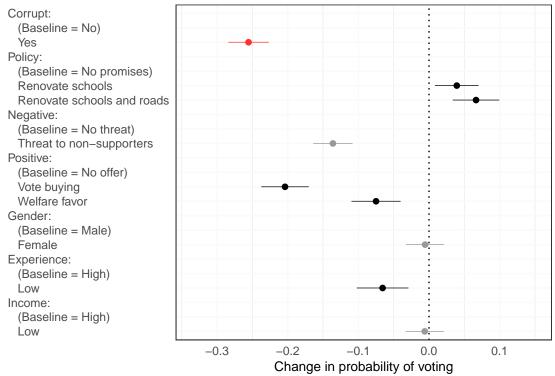


Figure A.22: Mares and Visconti (2019) conjoint: AMCEs

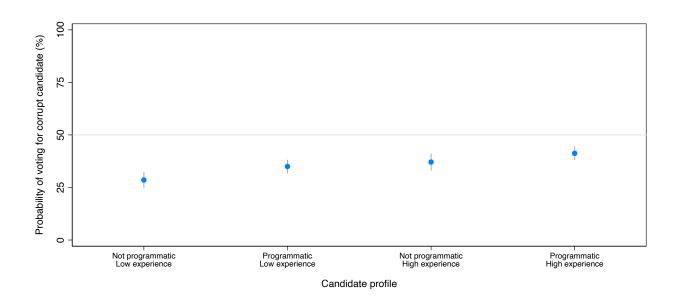


Figure A.23: Mares and Visconti (2019) conjoint: can programmatic offerings and experience overcome corruption?

Note that the primary goal of Mares and Visconti (2019) is to determine the degree to which respondents punish various illicit electoral activities. The experiment therefore includes a number of other negative attributes in addition to corruption, such as vote buying, clientelistic offerings, and threats of violence against political opponents. Due to uniform randomization, calculating predicted probabilities that do not include these attributes therefore marginalizes over a number of other illicit activities that respondents view negatively and reduces overall vote probability. Conditioning on the candidate not engaging in illicit activities other than corruption reveals probabilities of voting for corrupt candidates over 50%.

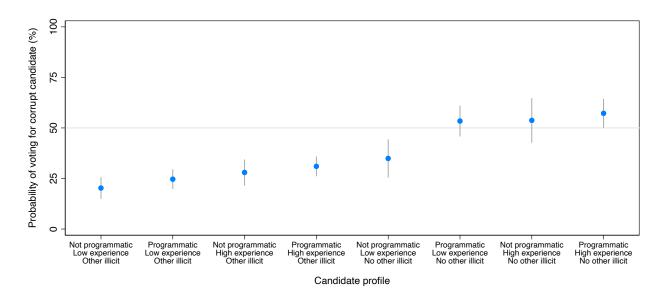


Figure A.24: Mares and Visconti (2019) conjoint: can programmatic offerings and experience overcome corruption (conditional on other illicit activities)?

A.7.4 Chauchard, Klašnja and Harish (2019)

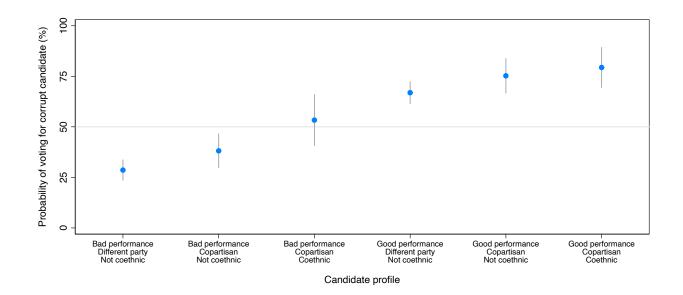


Figure A.25: Chauchard, Klašnja and Harish (2019) conjoint: can performance, partisanship, and coethnicity overcome corruption?

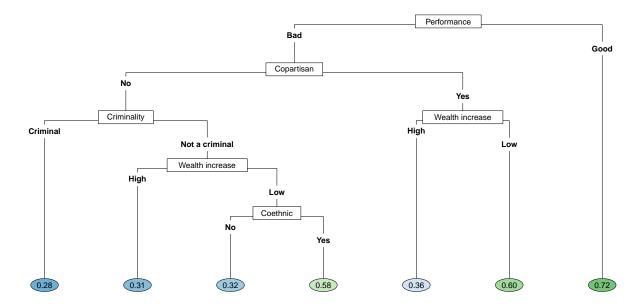


Figure A.26: Chauchard, Klašnja and Harish (2019) conjoint decision tree: predicted probabilities of voting for corrupt politician