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1 Analysis of Other Cases

The main text(and associated proofs) contains a full analysis of the cases with no policy

concerns and no validation/state validation, and the case with small policy concerns and

difficulty validation. Here we first tie up the cases of difficulty and full validation with no

policy concerns, and then the other validation cases with policy concerns.

1.1 Difficulty and Full Validation with No Policy Concerns

Difficulty validation A complete description of the MSE with difficulty validation proves

challenging. However, with no policy concerns, we can show that there is never any in-

formation communicated about the state, though there can be information communicated

about the difficulty of the problem:

Proposition S.1. With no policy concerns and difficulty validation,

i. in any MSE, a∗(m) = p1 for all on-path m, and

ii. there is an MSE where the good uninformed types always admit uncertainty.

Proof. Given the payoff equivalence classes, the good and informed types must use the

same mixed strategy. In any MSE, the posterior belief about the state upon observing

an on-path message m can be written as a weighted average of the belief about the state

conditional on being in each equivalence class, weighted by the probability of being in the
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class:

Pr(ω = 1|m) = Pr(ω = 1|m, θ = g, s ∈ {s0, s1})Pr(θ = g, s ∈ {s0, s1}|m)

+ Pr(ω = 1|m, θ = g, s = s∅)Pr(θ = g, s = s∅|m)

+ Pr(ω = 1|m, θ = b)Pr(θ = b|m)

= p1Pr(θ = g, s ∈ {s0, s1}|m) + p1Pr(θ = g, s = s∅|m) + p1Pr(θ = b|m) = p1.

For each equivalence class there is no information conveyed about the state, so these con-

ditional probabilities are all p1, and hence sum to this as well.

For part ii, we construct an equilibrium where the informed types always send me (“the

problem is easy”), the good but uninformed types send mh (“the problem is hard”), and

the bad types mix over these two messages with probability (σb(me), σb(mh)). Since mh

is never sent by the informed types, sending this message admits uncertainty.

There can be an equilibrium where both of these messages are sent by the bad types if

and only if they give the same expected payoff. Writing the probability of sending me as

σb(me), this is possible if:

peπg(me, e) + (1− pe)πg(me, h) = peπg(mh, e)(1− pe)πg(mh, h),

– or, rearranged:

pe
pgpe

pgpe + (1− pg)σb(me)
= (1− pe)

pg(1− pe)
pg(1− pe) + (1− pg)(1− σb(me))

. (1)

The left-hand side of this equation (i.e., the payoff to guessing the problem is easy) is

decreasing in σb(me), ranging from pe to pe
pgpe

pgpe+(1−pg) . The right-hand side is increasing
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in σb(me), ranging from (1− pe) pg(1−pe)
pg(1−pe)+(1−pg) to 1− pe. So, if

pe
pgpe

pgpe + (1− pg)
− (1− pe) ≥ 0, (2)

then payoff to sending me is always higher. After multiplying through by pgpe + (1− pg),

the left-hand side of (2) is quadratic in pe (with a positive pe term), and has a root at
2pg−1+

√
1+4pg−4p2g

4pg
which is always on (1/2, 1), and a negative root.1 So, when pe is above

this root, the payoff to sending me is always higher, and hence there is a MSE where the

uninformed types always send this message.

On the other hand, if

(1− pe)
pg(1− pe)

pg(1− pe) + (1− pg)
− pe ≥ 0,

then the payoff for sending mh is always higher, which by a similar argument holds if

pe ≤
2pg+1−

√
1+4pg−4p2g

4pg
. However, if neither of these inequalities hold, then there is a

σb(me) ∈ (0, 1) which solves (1), and hence there is an MSE where me is sent with this

probability and mh with complementary probability. Summarizing, there is an MSE where

the bad type sends message me with probability:

σ∗b (me) =



0 pe ≤
2pg+1−

√
1+4pg−4p2g

4pg

pe(pe−pg+2pepg−2p2epg)
(1−pg)(1−2pe(1−pe)) pe ∈

(
2pg+1−

√
1+4pg−4p2g

4pg
,
2pg−1+

√
1+4pg−4p2g

4pg

)
1 pe ≥

2pg−1+
√

1+4pg−4p2g
4pg

and message mh with probability σ∗b (mh) = 1− σ∗b (mh).

This implies that, while we can learn something about the question difficulty with difficulty

1All of these observations follow from the fact that 1 + 4pg − 4p2g ∈ (1, (2pg + 1)2).
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validation alone, learning about the state (and attaining an honest equilibrium) require ei-

ther nonzero policy concerns or state validation (or both).

Full Validation with No Policy Concerns With full validation, there are four possible

validation results for each message. The expected payoff to sending messagem given one’s

type and message is:

∑
δ∈{e,h}

∑
ω∈{0,1}

Pr(δ|s, θ)Pr(ω|s, θ)πg(m,ω, δ).

No pair of types share the same Pr(ω|s, θ) and Pr(δ|s, θ), so none must be payoff equiva-

lent. As a result, all types can use distinct strategies, and off-path beliefs are unrestricted.

In an honest equilibrium, upon observing (m0, 0, e) or (m1, 1, e), the DM knows that the

expert is competent. Upon observing (m∅, ω, e) the DM knows that the expert is not compe-

tent, as a competent expert would have received and sent an informative message since the

problem is easy. Upon observing (m∅, ω, h), the DM belief about the expert competence is

the same as the prior, since if the problem is hard no one gets an informative message (and

all send m∅).2 So, the competence evaluations for the on-path messages are:

πg(m0, 0, e) = 1 πg(m1, 1, e) = 1

πg(m∅, ω, e) = 0 πg(m∅, ω, h) = pg

To make honesty as easy as possible to sustain, suppose that for any off-path message

(“guessing wrong”), the competence evaluation is zero.

The informed types get a competence evaluation of 1 for sending their honest message, so

face no incentive to deviate.
2Formally, applying Bayes’ rule gives Pr(θ = g|m∅, ω, h) =

pg(1−pe)
pg(1−pe)+(1−pg)(1−pe)

= pg .
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A good but uninformed type knows the difficulty validation will reveal δ = h, but does

not know ω. Sending the honest message m∅ gives a competence payoff of pg. However,

sending eitherm0 orm1 will lead to an off-path message/validation combination, and hence

a payoff of zero. So, these types face no incentive to deviate.

Finally, consider the bad uninformed types, who do not know what either the state or dif-

ficulty validation will reveal. If they send m∅, they will be caught as uninformed if the

problem was in fact easy (probability pe). However, if the problem is hard, the DM does

not update about their competence for either state validation result. So, the expected payoff

to sending m∅ is (1− pe)pg.

If guessing m1, the expert will be “caught” if either the problem is hard or the state is

0. However, if guessing correctly, the competence evaluation will be 1. So, the expected

payoff to this deviation is pep1. Similarly, the expected payoff to guessing m0 is pe(1 −

p1) < pep1, so m1 is the best deviation.

Honesty is possible if admitting uncertainty leads to a higher competence evaluation than

guessing m1, or:

(1− pe)pg ≥ pep1 =⇒ pe ≤
pg

pg + p1
.

If this inequality does not hold, a fully honest MSE is not possible. However, there is always

an MSE where the good but uninformed types always send m∅. In such an equilibrium, the

bad types pick a mixed strategy over m0, m1, and m∅. Whenever the DM observes an

“incorrect guess” she assigns a competence evaluation of zero. So, the informed types

never deviate (as this ensures an incorrect guess), and good uninformed types have no

reason to guess since they know the problem is hard. Returning to the derivation of the

honest equilibrium, the off-path beliefs in this MSE are justified, in the sense that the good
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types all have strict incentives to report their honest message, and the bad types are the only

ones who potentially face an incentive to send m0 or m1 when the problem is hard or m∅

when the problem is easy.

Summarizing:

Proposition S.2. With no policy concerns and full validation, there is an MSE where the

informed types send distinct messages and the good but uninformed types always admit

uncertainty. If pe ≤ pg
pg+p1

, there is an honest MSE.

Proof. The condition for the honest equilibrium is derived above. So what remains is to

show there is always an MSE where the good but uninformed type always sends m∅.

In such an equilibrium, message/validation combinations (m0, 0, e), (m1, 1, e) and (m∅, 0, h)

and (m∅, 1, h) are the only ones observed when the expert is competent. So, any other mes-

sage/validation combination is either on-path and only sent by the bad types, in which case

the competence assessment must be 0, or is off-path and can be set to 0.

The informed type observing s0 knows the validation will be (0, e), and (m, 0, e) leads to

competence assessment zero for m 6= m0. So, this type has no incentive to deviate, nor

does the s1 type by an analogous argument. The good but uninformed type knows the

validation will reveal h, and the DM observing (mi, ω, h) for i ∈ {0, 1} and ω ∈ {0, 1}

will lead to a competence assessment of zero. So this type faces no incentive to deviate.

Now consider the bad type strategy. While explicitly deriving the equilibrium strategies

here is tedious, a simple fixed point argument can be used to show existence. Write the

whole strategy with σb = (σb(m0), σb(m1), σb(m∅)), and the bad type’s expected compe-

tence assessment for sending each message when the DM expects strategy σ (averaging
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over the validation result) as:

Uθ(m∅, b, σ) ≡ pe0 + (1− pe)
pg

pg + (1− pg)σb(m∅)
,

Uθ(m0, b, σ) ≡ pe(1− p1)
pg

pg + (1− pg)σb(m0)
+ (1− pe)0, and

Uθ(m1, b, σ) ≡ pep1
pg

pg + (1− pg)σb(m1)
+ (1− pe)0.

Write the expected payoff to the bad expert choosing mixed strategy σ when the decision-

maker expects mixed strategy σ̂b as U(σ, σ̂) =
∑

i∈{0,1,∅} σb(mi)Uθ(mi; σ̂), which is con-

tinuous in all σb(mi), so optimizing this objective function over the (compact) unit simplex

must have a solution. So, BR(σ̂b) = arg maxσ U(σ; σ̂) is a continuous mapping from the

unit simplex to itself, which by the Kakutani fixed point theorem must have a solution. So,

the strategy (or strategies) given by such a fixed point are a best response for the bad type

when the decision-maker forms correct beliefs given this strategy.

1.2 Nonzero Policy Concerns

Now we the case where the expert cares about the policy made, γ > 0. Not surprisingly,

when policy concerns are “large”, there is always an honest MSE since the expert primarily

wants the DM to take the best possible action. Here we analyze how high policy concerns

have to be in order to attain this honest equilibrium, and provide some results about what

happens when policy concerns are not small but not large enough to induce honesty.

In Appendix 2, we show that with no validation and state validation, in any MSE which is

not babbling, the types observing s0 and s1 cannot send any common messages. Combined

with a relabeling argument, for all of the analysis (of these validation regimes) with policy
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concerns we can again restrict attention to MSE where the informed types always send m0

and m1, respectively, and uninformed types send at most one other message m∅.

While we do not rely on this result for the difficulty and full validation cases (where we

only focus on the existence of equilibria with certain properties), we analyze the analogous

messaging strategies in these cases to facilitate comparison.

No Validation Informed types never face an incentive to deviate from the honest equilib-

rium: upon observing sx for x ∈ {0, 1}, the DM chooses policy a∗(sx) = x, and knows the

expert is competent, giving the highest possible expert payoff.

Uninformed types, however, may wish to deviate. Upon observingm∅, the DM takes action

a = π1 = p1, which gives expected policy value 1 − p1(1 − p1), and the belief about the

competence is π∅g . So, for the uninformed experts of either competence type, the payoff for

reporting honestly and sending signal m∅ is:

π∅g + γ(1− p1(1− p1)). (3)

If the expert deviates to m ∈ {m0,m1}, his payoff changes in two ways: he looks compe-

tent with probability 1 (as only competent analysts send these messages in an honest equi-

librium, and without validation this is always on path), and the policy payoff gets worse on

average. So, the payoff to choosing m1 is:

1 + γp1. (4)

It i easy to check that the payoff to deviating to m0 is weakly lower, and so m1 is the
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binding deviation to check. Preventing the uninformed type from guessing m1 requires

π∅g + γ(1− p1(1− p1)) ≥ 1 + γp1.

Rearranging, define the threshold degree of policy concerns γHNV required to sustain hon-

esty by

γ ≥
1− π∅g

(1− p1)2

=
(1− pg)

(1− pgpe)(1− p1)2

≡ γHNV . (5)

If γ < γHNV , the uninformed types strictly prefer sending m1 to m∅ if the DM expects

honesty. Given our concern with admission of uncertainty, it is possible that there is a

mixed strategy equilibrium where the uninformed types sometimes sendm∅ and sometimes

send m0 or m1. However, as the following result shows, when policy concerns are too

small to induce full honesty, the payoff for sending m1 is always higher than the payoff

for admitting uncertainty. Moreover, since γHNV is strictly greater than zero, when policy

concerns are sufficiently small some form of validation is required to elicit any admission

of uncertainty.

Proposition S.3. When γ > 0 and no validation:

i. If γ ≥ γHNV , then there is an honest MSE,

ii. If γ ∈ (0, γHNV ), then all non-babbling MSE are always guessing (i.e., σ∗∅(m∅) = 0)

Proof. Part i is shown above.

For part ii, it is sufficient to show that if γ < γHNV , then in any proposed equilibrium where

σ∅(m∅) > 0, the payoff for an expert to send m1 is always strictly higher than the payoff to
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sending m∅.

The competence evaluation upon observing m1 as a function of the uninformed expert

mixed strategy is:

πg(m1;σ∅(m1)) =
Pr(θ = g,m1)

Pr(m1)
=

pgp1pe + pg(1− pe)σ∅(m1)

pgp1pe + (pg(1− pe) + (1− pg))σ∅(m1)

– and the belief about the state is:

π1(m1;σ∅(m1)) =
Pr(ω = 1,m1)

Pr(m1)
=

p1(pgpe + (1− pgpe)σ∅(m1))

p1pgpe + (pg(1− pe) + (1− pg))σ∅(m1)
.

When observingm∅, the DM knows with certainty that the expert is uninformed, so πg(m∅) =

π∅g and π1(m∅) = p1.

Combining, the expected payoff for an uninformed type to send each message is:

U(m1; s∅, σ∅(m1)) = πg(m1;σ∅(m1))

+ γ(1− [p1(1− π1(m1;σ∅(m1)))
2 + (1− p1)π1(m1;σ∅(m1))

2])

and

U(m∅) = π∅g + γ(1− p1(1− p1)).

Conveniently, U(m∅) is not a function of the mixed strategy.

If γ = 0, then U(mi;σi) > U(m∅) for both i ∈ {0, 1}, because πg(mi;σi) > π∅g . Further,

by the continuity of the utility functions in γ and σ∅(m1), there exists a γ∗ > 0 such that

messagem1 will give a strictly higher payoff thanm∅ for an open interval (0, γ∗). The final
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step of the proof is to show that this γ∗ is exactly γHNV .

To show this, let σcand(γ) be the candidate value of σ∅(m1) that solves U(m1; s∅, σ∅(m1)) =

U(m∅). Rearranging, and simplifying this equality gives:

σcand(γ) = − p1pgpe
1− pgpe

+ γ
p1pgpe(1− p1)2

1− pg

which is linear in γ. When γ = 0, σcand(γ) is negative, which re-demonstrates that with

no policy concerns the payoff to sending m1 is always higher than m∅. More generally,

whenever σcand(γ) < 0, the payoff to sending m1 is always higher than m∅ so there can be

no admission of uncertainty. Rearranging this inequality gives:

− p1pgpe
1− pgpe

+ γ
p1pgpe(1− p1)2

1− pg
< 0

⇔ γ <
1− pg

(1− pgpe)(1− p1)2
= γHNV ,

completing part ii.

Now that we have demonstrated any MSE is always guessing, we can prove proposition

S.3. As γ → 0, the condition for an equilibrium where the uninformed types send both m0

and m1 is that the competence assessments are the same. Writing these out gives:

πg(m0;σ∅) = πg(m1;σ∅)

pg(1− p1)pe + pg(1− pe)σ∅(m0)

pg(1− p1)pe + (pg(1− pe) + (1− pg))σ∅(m0)
=

pgp1pe + pg(1− pe)σ∅(m1)

pgp1pe + (pg(1− pe) + (1− pg))σ∅(m1)

which, combined with the fact that σ∅(m1) = 1 − σ∅(m0) (by part ii) is true if and only

if σ∅(m0) = 1 − p1 and σ∅(m1) = p1. There is no equilibrium where σ∅(m0) = 0; if so,

πg(m0;σ∅) = 1 > πg(m1;σ∅). Similarly, there is no equilibrium where σ∅(m1) = 0.
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An intuition for this result is as follows. As uninformed types send m1 more often, this has

two affects on the appeal of sending this message. First, there is a complementarity where

sending m1 more often makes the policy response to this message less extreme, which the

uninformed types like. Second, there is a substitution effect where it makes those sending

m1 look less competent. While these effects go in the opposite direction, the substitution

effect that makes sending m1 less appealing when other uninformed types do so is only

strong when policy concerns are weak, which is precisely when sending m1 is generally

preferable to m∅ regardless of the uninformed type strategy.

State Validation. Suppose there is an honest equilibrium with state validation.

As in the case with no policy concerns, upon observing message (m0, 0) or (m1, 1) the

DM knows the expert is competent and takes an action equal to the message, and upon

(m∅, 0) or (m∅, 1) takes action p1 and knows the expert is uninformed, giving competence

evaluation π∅g . So, the payoff for an uninformed type to send the equilibrium message is:

π∅g + γ(1− p1(1− p1)). (6)

By an identical argument to that made with no policy concerns, upon observing an off-

path message, the payoff equivalence of the good and bad uninformed types implies the

belief about competence in an MSE must be greater than or equal to π∅g . So, the payoff to

deviating to m1 must be at least

p1 + (1− p1)π∅g + γp1
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–and the corresponding policy concerns threshold to prevent this deviation is:

π∅g + γ(1− p1(1− p1)) ≥ p1 + (1− p1)π∅g + γp1

– which reduces to

γ ≥ p1γ
H
NV

≡ γHSV (7)

Adding state validation weakens the condition required for an honest equilibrium, partic-

ularly when p1 is close to 1/2. However, this threshold is always strictly positive, so for

small policy concerns there can be no honesty even with state validation.

As shown in the proof of the following, if this condition is not met, then as with the no

validation case there can be no admission of uncertainty. Further, since adding policy

concerns does not change the classes of payoff equivalence, the case as γ → 0 is the same

as γ = 0.

Proposition S.4. With policy concerns and state validation:

i. If γ ≥ γHSV = p1γ
H
NV , then there is an honest MSE,

ii. If γ ∈ (0, γHSV ), then all non-babbling MSE are always guessing (i.e., σ∗∅(m∅) = 0).

Proof. Part i is demonstrated above

For part ii, our strategy mirrors the proof with no validation – that is, by way of contradic-

tion, if the constraint for honesty is not met, then the payoff to sendingm1 is always strictly

higher than m∅. As above, in any MSE where σ∅(m1) > 0, the payoff for sending m∅ is
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π∅g + γ(1− p1(1− p1)). The payoff to sending m1 is:

p1πg(m1, 1) + (1− p1)π∅g + γ(1− p1(1− π1(m1, σ∅(m1)))
2 + (1− p1)π1(m1, σ∅(m1))

2).

Next, the posterior beliefs of the decision-maker are the same as in the no validation case

except:

πg(m1, 1) =
Pr(θ = g,m1, ω = 1)

Pr(m1, ω = 1)
=
p1pgpe + p1pg(1− pe)σ∅(m1)

p1pgpe + p1(1− pgpe)σ∅(m1)
=
pgpe + pg(1− pe)σ∅(m1)

pgpe + (1− pgpe)σ∅(m1)
.

The difference between the payoffs for sending m1 and m∅ can be written:

pepgp1
z(σ∅(m1); γ)

(1− pepg)(pepg(1− σ∅(m1))− σ∅(m1))(pepg(p1 − σ∅(m1)) + σ∅(m1))2

– where

z(σ∅(m1); γ) = γpepg(−1 + pepg)(−1 + p1)
2p1(pepg(−1 + σ∅(m1))− σ∅(m1))

+ (−1 + pg)(pepg(p1 − σ∅(m1)) + σ∅(m1))
2).

So any equilibrium where both m1 and m∅ are sent is characterized by z(σ∅(m1); γ) =

0. It is then sufficient to show that for γ < γHSV , there is no σ∅(m1) ∈ [0, 1] such that

z(σ∅(m1); γ) = 0.

Formally, it is easy to check that z is strictly decreasing in γ and that z(0, γHSV ) = 0. So,

z(0, γ) > 0 for γ < γHSV . To show z is strictly positive for σ∅(m1) > 0, first observe that:

∂z

∂σ∅(m1)

∣∣∣∣
γ=γHSV

= (1− pg)(1− pepg)(pepg(2− p1)p1 + (2− 2pepg)σ∅(m1)) > 0
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– and

∂2z

∂σ∅(m1)∂γ
= −pepg(1− pepg)2(1− p1)2p1 < 0.

Combined, these inequalities imply ∂z
∂σ∅(m1)

> 0 when γ < γHSV . So, z(σ∅(m1), γ) > 0 for

any σ∅(m1) when γ < γHSV , completing part ii.

Difficulty Validation. As shown in the main text, the condition for an honest equilibrium

with difficulty validation and policy concerns is.

(1− pe)pg + γ(1− p1(1− p1)) ≥ pe + γp1

γ ≥ pe(1 + pg)− pg
(1− p1)2

≡ γHDV .

As discussed in the main text, γHDV can be negative, meaning that there is an honest equi-

librium even with no policy concerns.

Proposition S.5. With policy concerns and difficulty validation:

i. If γ ≥ γHDV , then there is an honest MSE.

ii. If γ ≤ γHDV , then there is an MSE where the uninformed good types admit uncertainty,

and if pe ≥ p1
2−p1 there is an MSE where all of the good types send their honest message.

Proof. Part i is shown above. For part ii, first note the equilibrium constructed in proposi-

tion S.1 also holds with policy concerns: the policy choice upon observing both equilibrium

messages is p1, so each type’s relative payoff in this equilibrium is unaffected by the value

of γ. Since the good uninformed types always admit uncertainty in this equilibrium, this

demonstrates the first claim.

Now suppose the good types all send their honest message. By the same fixed point argu-
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ment as proposition S.2, the bad types must have at least one mixed strategy which is a best

response given the good types strategy and DM strategy. What remains is to show the good

types have no incentive to deviate from the honest message.

The message/validation combinations (m0, e), (m1, e), and (m∅, h) are on-path and yield

competence evaluations which are all strictly greater than zero.

Message/validation combinations (m0, h), (m1, h), and (m∅, e) are never reached with a

good type. So, if the bad types send those respective messages, they are on-path and the

competence assessment must be zero. If these information sets are off-path the competence

assessment can be set to zero.

Since only uninformed types send m∅, the policy choice upon observing m∅ must be

a∗(m∅) = p1. The m0 message is sent by the informed type who knows ω = 0, and

potentially also by uninformed bad types, so a∗(m0) ∈ [0, p1). Similarly, a∗(m1) ∈ (p1, 1].

So a∗(m0) < a∗(m∅) < a∗(m1).

The good and uninformed type has no incentive to deviate from sending message m∅ be-

cause for m ∈ {m0,m1}, πg(m∅, h) > πg(m,h) and v(a∗(m∅), p1) > v(a∗(m), p1).

The s0 type has no incentive to deviate to m∅ since πg(m0, e) > πg(m∅, e) = 0 and

v(a∗(m0), 0) > v(a∗(m∅), 0). Similarly, the s1 type has no incentive to deviate to m∅.

So, the final deviations to check are for the informed types switching to the message as-

sociated with the other state; i.e., the s0 types sending m1 and the s1 types sending m0.

Preventing a deviation to m1 requires:

πg(m0, e) + γv(a∗(m0), 0) ≥ πg(m1, e) + γv(a∗(m1), 0)

∆π + γ∆v(0) ≤ 0, (8)
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where ∆π ≡ πg(m1, e)−πg(m0, e) is the difference in competence assessments from send-

ing m1 versus m0 (when the problem is easy), and ∆v(p) ≡ v(a∗(m1), p) − v(a∗(m0), p)

is the difference in the expected quality of the policy when sending m1 vs m0 for an expert

who believes ω = 1 with probability p. This simplifies to:

∆v(p) = (a∗(m1)− a∗(m0))(2p− a∗(m1)− a∗(m0)).

Since a∗(m1) > a∗(m0), ∆v(p) is strictly increasing in p, and ∆v(0) < 0 < ∆v(1).

The analogous incentive compatibility constraint for the s1 types is:

∆π + γ∆v(1) ≥ 0 (9)

If the bad types never send m0 or m1, then ∆π = 0, and (8)-(9) both hold. So, while

not explicitly shown in the main text, in the honest equilibrium such a deviation is never

profitable.

Now consider an equilibrium where the bad types send bothm0 andm1, in which case they

must be indifferent between both messages:

peπg(m0, e) + γv(a∗(m0), p1) = peπg(m1, e) + γv(a∗(m1), p1)

pe∆π + γ∆v(p1) = 0 (10)

Substituting this constraint into (8) and (9) and simplifying gives:

pe∆v(0)−∆v(p1) ≤ 0 (11)

pe∆v(1)−∆v(p1) ≥ 0. (12)

If ∆v(p1) = 0 the constraints are both met. If ∆v(p1) < 0 then the second constraint is
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always met, and the first constraint can be written:

pe ≥
∆v(p1)

∆v(0)
=
a∗(m0) + a∗(m1)− 2p1

a∗(m0) + a∗(m1)
≡ p̌δ (13)

This constraint is hardest to meet when p̌δ is large, which is true when a∗(m0) + a∗(m1) is

high. The highest value this sum can take on is p1 + 1, so p̌δ ≤ 1−p1
1+p1

.

If ∆v(p1) > 0, then the first constraint is always met, and the second constraint becomes:

pe ≥
∆v(p1)

∆v(1)
=

2p1 − (a∗(m0) + a∗(m1))

2− (a∗(m0) + a∗(m1))
≡ p̂δ (14)

This is hardest to meet when a∗(m0) + a∗(m1) is small, and the smallest value it can take

on is p1. Plugging this in, p̂δ ≥ p1
2−p1 ≥ p̌δ.

For p1 ≥ 1/2, p̂δ ≥ p̌δ. Without placing any further restrictions on the value of a∗(m0) +

a∗(m1), this constraint ranges from p̂δ ∈ (1/3, 1). Still, if pe is sufficiently high, the

informed types never have an incentive to deviate when the bad types send both m0 and

m1.

If the bad types only send m1 but not m0, then the s0 types get the highest possible payoff,

so the relevant deviation to check is the s1 types switching to m0. The bad types sending

weakly preferring m1 implies pe∆π + γ∆v(p) ≥ 0, and substituting into equation 12 gives

the same pe ≥ p̂δ. Similarly, if the bad types only send m0 but not m1, then the relevant

constraint is the s0 types sending m1, for which pe ≥ p̌δ is sufficient.

Summarizing, a sufficient condition for the existence of a MSE where the good types report

honestly (for any value of γ) is pe ≤ pg/(1 + pg) (in which case γ ≤ γHDV ), or pe ≥ p1
2−p1 .

This completes part ii.
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Now to prove proposition 4 we first characterize the optimal strategy for the bad types as

γ → 0, assuming the good types send their honest message. If sending m∅, the expert will

reveal his type if δ = e, but appear partially competent if δ = h, giving expected payoff

(1− pe)
pg

pg + (1− pg)σb(m∅)
.

When sending m0, the expert will reveal his type if δ = h (as only bad types guess when

the problem is hard), but look partially competent if δ = e:

pe
pg(1− p1)

pg(1− p1) + (1− pg)σb(m0)
.

and when sending m1 the expect payoff is:

pe
pgp1

pgp1 + (1− pg)σb(m1)
.

setting these three equal subject to σb(m0) + σb(m1) + σb(m∅) = 1 gives:

σb(m∅) =
1− pe(1 + pg)

1− pg
;

σb(m0) =
(1− p1)(pe − pg(1− pe))

1− pg

σb(m1) =
p1(pe − pg(1− pe))

1− pg
.

These are all interior if and only if:

0 <
1− pe(1 + pg)

1− pg
< 1 =⇒ pg

1 + pg
< pe <

1

1 + pg
.

If pe ≤ pg
1+pg

, then there can be no equilibrium where the bad expert uses a fully mixed

strategy because he would always prefer to send m∅; and recall this is exactly the condition

for an honest equilibrium with no validation. If pe ≥ 1
1+pg

, then the bad type always
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guesses. Setting the payoff for a bad type sending m0 and m1 equal along with σb(m0) +

σb(m1) = 1 gives the strategies in the statement of the proposition.

The final step is to ensure the informed types do not send the message associated with

the other state. Recall the IC constraints depend on a∗(m0) + a∗(m1), which we can now

restrict to a narrower range given the bad type strategy:

a∗(m0) + a∗(m1) =
(1− pg)p1(1− p1)(1− σb(m∅))

pepg(1− p1 + (1− pg)(1− p1)(1− σb(m∅)))

+
pepgp1 + (1− pg)p1p1(1− σb)(m∅)
pepgp1 + (1− pg)p1(1− σb)(m∅)

=
pepg + (1− σb(m∅))(1− pg)2p1
pepg + (1− σb(m∅))(1− pg)

.

This can be interpreted as weighted average of 1 (with weight pepg) and 2p1 > 1 (with

weight (1 − σb(m∅)(1 − pg)), and so must lie on [1, 2p1]. So, (14) is always the binding

constraint, and is hardest to satisfy when a∗(m0)+a
∗(m1)→ 1, in which case the constraint

becomes p̂δ = 2p1 − 1. So, pe ≥ 2p1 − 1 is a sufficient condition for the informed types to

never deviate. For any pe > 0, this holds for p1 sufficiently close to 1/2, which completes

the proof of proposition 4.

Here is an example where the constraint on the informed types is violated. Suppose p1

is close to 1, and the bad types usually send m1, and rarely m0. Then the tradeoff they

face is that sending m1 leads to a better policy, but a lower competence payoff when the

problem is easy (when the problem is hard, the competence payoff for either guess is zero).

Now consider the good expert who observes signal s1. Compared to the bad expert, this

type has a marginally stronger incentive to send m1 (since p1 is close to 1). However, this

type knows that he will face a reputational loss for sending m1 rather than m0, while the
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bad type only experiences this loss with probability pe. So, the bad type being indifferent

means the type who knows the state is 1 has a strict incentive to deviate to m0. In general,

this deviation is tough to prevent when pe is low and p1 is close to 1, hence the condition in

the proposition.

Comparative Statics: Difficulty Validation Can be the Wrong Kind of Transparency.

As long as policy concerns are strictly positive but small, difficulty validation is more

effective at eliciting honesty than state validation.

For larger policy concerns the comparison becomes less straightforward. Figure S.1 shows

the policy concern threshold for honesty under no validation (solid line), state validation

(dashed line), and difficulty validation (dotted line) as a function of the prior on the expert

competence, when the problem is usually hard (pe = 0.25, left panel), equally likely to be

easy or hard (pe = 0.5, middle panel) and usually easy (pe = 0.75, right panel). In all

panels p1 = 0.67; changing this parameter does not affect the conclusions that follow.3 For

intuition, difficulty validation makes it hard to compensate bad experts for saying “I don’t

know," as there are fewer good experts who don’t know. For very easy problems difficulty

validation can be worse than no validation. This mirrors the result in Prat (2005), where

transparency can eliminate incentives for bad types to pool with good types by exerting

more effort.

This figure illustrates several results. First, in all cases, the policy concern threshold re-

quired is decreasing in pg, which means it is easier to sustain honesty when the prior is that

the expert is competent. This is because when most experts are competent in general, most

uninformed experts are competent as well, and so there is less of a penalty for admitting

uncertainty. Second, the threshold with state validation is always lower than the threshold

3In general, honesty is easier to sustain under all validation regimes when p1 is lower, with state validation
being particularly sensitive to this change.
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Figure S.1: Comparative Statics of Honesty Threshold
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Notes: Comparison of threshold in policy concerns for full honesty under different validation regimes as a
function of pg . The panels vary in the likelihood the problem is solvable, which is 0.25 in the left panel, 0.5
in the middle panel, and 0.75 in the right panel.
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with no validation, though these are always strictly positive as long as pg < 1. Further, for

most of the parameter space these thresholds are above two, indicating the expert must care

twice as much about policy than about perceptions of his competence to elicit honesty. On

the other hand, in the right and middle panels there are regions where the threshold with

difficulty validation is below zero, indicating no policy concerns are necessary to induce

admission of uncertainty (in fact, the expert could want the decision-maker to make a bad

decision and still admit uncertainty).

Finally, consider how the relationship between the thresholds changes as the problem be-

comes easier. When problems are likely to be hard (left panel), difficulty validation is the

best for eliciting honesty at all values of pg. In the middle panel, difficulty validation is

always better than no validation, but state validation is best for low values of pg. When the

problem is very likely to be easy, difficulty validation is always worse than state validation

and is even worse than even no validation other than for a narrow range of pg.

However, even in this case difficulty validation still can elicit honesty from good but unin-

formed experts when policy concerns are not high enough, while there is no admission of

uncertainty at all when policy concerns are not high enough with no validation and state

validation.

2 Relabeling

Some are our formal results only rely on the existence of equilibria with certain properties.

For these results the fact that we often restrict attention to the (m0,m1,m∅) message set

poses no issues: it is sufficient to show that there is an equilibrium of this form with the

claimed properties. However, propositions 2, 3, 10ii-iii, and 11, make claims that all (non-

23



babbling) MSE have certain properties.4 The proofs show that all equilibrium where the s0

and s1 types send distinct and unique messages (labelled m0 and m1) and there is at most

one other message (labelled m∅) have these properties. Here we show this is WLOG in

the sense that with no validation or state validation, any non-babbling equilibrium can be

relabeled to an equilibrium of this form.

Consider a general messaging strategy where M ⊆ M is the set of messages sent with

positive probability. Write the probability that the informed types observing s0 and s1 and

σ0(m) and σ1(m). When the good and bad uninformed types are not necessarily payoff

equivalent we write their strategies σθ,∅(m). When these types are payoff equivalent and

hence play the same strategy, we drop the θ: σ∅(m). Similarly, let M0 and M1 be the set of

messages sent by the respective informed types with strictly positive probability, and Mg,∅,

Mb,∅, and M∅ the respective sets for the uninformed types, divided when appropriate.

As is standard in cheap talk games, there is always a babbling equilibrium:

Proposition S.6. There is a class of babbling equilibria where σ0(m) = σ1(m) = σg,∅(m) =

σb,∅(m) for all m ∈M .

Proof. If all play the same mixed strategy, then πg(m, IDM2) = pg and a∗(m, IDM) = p1

for any m ∈ M and IDM . Setting the beliefs for any off-path message to be the same as

the on-path messages, all types are indifferent between any m ∈M.

The next result states that for all cases with either state validation or policy concerns, in any

non-babbling equilibrium the informed types send no common message (note this result

does not hold with difficulty validation; in fact, the proof of proposition S.1 contains a

counterexample):

4Proposition 8 also makes a claim about all equilibria, but this is already proven in Appendix B of the
published version.
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Proposition S.7. With either no validation or state validation (and any level of policy con-

cerns), any MSE where M0 ∩ M1 6= ∅ is babbling, i.e., σ0(m) = σ1(m) = σg,∅(m) =

σb,∅(m) for all m ∈M .

Proof. We first prove the result with state validation, and then briefly highlight the aspects

of the argument that differ with no validation.

Recall that for this case the good and bad uninformed types are payoff equivalent, so we

write their common message set and strategy M∅ and σ∅(m) The proof proceeds in three

steps.

Step 1: If M0 ∩M1 6= ∅, then M0 = M1. Let mc ∈ M0 ∩M1 be a message sent by both

informed types. Suppose there is another message sent only by the s0 types: m0 ∈M0\M1.

For the s0 type to be indifferent between m0 and mc:

πg(mc, 0) + γv(a∗(mc), 0) = πg(m0, 0) + γv(a∗(m0), 0).

For this equation to hold, it must be the case that the uninformed types send m0 with

positive probability: if not, then πg(mc, 0) ≤ πg(m0, 0) = 1, but v(a∗(mc), 0) < 1 =

v(a∗(m0), 0), contradicting the indifference condition.

For the uninformed types to send m0, it must also be the case that his expected payoff for

sending this message, which can be written

p1(πg(m0, 1) + γv(a∗(m0), 1)) + (1− p1)(πg(m0, 0) + v(a∗(m0), 0))
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– is at least his payoff for sending mc:

p1(πg(mc, 1) + γv(a∗(mc), 1)) + (1− p1)(πg(mc, 0) + v(a∗(mc), 0)).

The second terms, which both start with (1 − p1), are equal by the indifference condition

for s0 types, so this requires:

πg(m0, 1) + γv(a∗(m0), 1) ≥ πg(mc, 1) + γv(a∗(mc), 1).

Since m0 is never sent by the s1 types, πg(m0, 1) = π∅g , while πg(mc, 1) > π∅g . So, this

inequality requires v(a∗(m0), 1) > v(a∗(mc), 1), which implies a∗(m0) > a∗(mc). A

necessary condition for this inequality is σ∅(m0)
σ0(m0)

> σ∅(mc)
σ0(mc)

, which also implies πg(mc, 0) >

πg(m0, 0). But if a∗(m0) > a∗(mc) and πg(mc, 0) > πg(m0, 0), the s0 types strictly prefer

to send mc rather than m0, a contradiction. By an identical argument, there can be no

message in M1 \M0, completing step 1.

Step 2: If M0 = M1, then σ0(m) = σ1(m) for all m. If M0 = M1 is a singleton, the result

is immediate. If there are multiple common messages and the informed types do not use

the same mixed strategy, there must be a message m0 such that σ0(m0) > σ1(m
0) > 0 and

another message m1 such that σ1(m1) > σ0(m
1) > 0. (We write the message “generally

sent by type observing sx” with a superscript to differentiate between the subscript notation

referring to messages always sent by type sx.) The action taken by the DM upon observing

m0 must be strictly less than p1 and upon observing m1 must be strictly greater than p1,5

so a∗(m0) < a∗(m1).

5The action taken upon observing m can be written P(s1|m) + p1P(s∅|m). Rearranging, this is greater
than p1 if and only if P(s1,m)

P(s1,m)+P(s0,m) > p1 which holds if and only if σ1(m) > σ0(m).
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Both the s1 and s0 types must be indifferent between both messages, so:

πg(m
0, 0) + γv(a∗(m0), 0) = πg(m

1, 0) + γv(a∗(m1), 0)

πg(m
0, 1) + γv(a∗(m0), 1) = πg(m

1, 1) + γv(a∗(m1), 1)

Since v(a∗(m0), 0) > v(a∗(m1), 0), for the s0 to be indifferent it must be the case that

πg(m
0, 0) < πg(m

1, 0). Writing out this posterior belief:

P(θ = g|m, 0) =
(1− p1)(pg(peσ0(m) + (1− pe)σ∅(m))

(1− p1)(pgpeσ0(m) + (1− pgpe)σ∅(m)
.

Rearranging, πg(m0, 0) < πg(m
1, 0) if and only if σ0(m0)

σ0(m1)
< σ∅(m

0)
σ∅(m1)

. Similarly, it must

be the case that πg(m1, 1) < πg(m
0, 1), which implies σ1(m0)

σ1(m1)
> σ∅(m

0)
σ∅(m1)

. Combining,

σ0(m0)
σ0(m1)

< σ1(m0)
σ1(m1)

, which contradicts the definition of these messages. So, σ0(m) = σ1(m)

for all m.

Step 3: If M0 = M1 and σ0(m) = σ1(m), then M∅ = M0 = M1 and σ∅(m) = σ0(m) =

σ1(m). By step 2, it must be the case that a∗(m) = p1 for all messages sent by the informed

types. So, the uninformed types can’t send a message not sent by the informed types: if so,

the payoff would be at most π∅g+γv(p1, p1), which is strictly less than the payoff for sending

a message sent by the informed types. If there is only one message in M then the proof

is done. If there are multiple types, all must be indifferent between each message, and by

step 2 they lead to the same policy choice. So, they must also lead to the same competence

assessment for each revelation of ω, which is true if and only if σ∅(m) = σ0(m) = σ1(m).

Next, consider the no validation case. For step 1, define m0 and m1 analogously. The

uninformed types must send m0 by the same logic, and these types at least weakly prefer
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sending this to mc (while the s0 types are indifferent) requires:

πg(m0) + γv(a∗(m0), 1) ≥ πg(mc) + γv(a∗(mc), 1).

This can hold only weakly to prevent the s1 types from sending m0 (as required by the

definition). Combined with the s0 indifference condition:

πg(m0)− πg(mc) = γv(a∗(mc), 1)− γv(a∗(m0), 1) = γv(a∗(mc), 0)− γv(a∗(m0), 0),

which requires a∗(m0) = a∗(mc). Since the s1 types send mc but not m0 this requires

σ∅(m0)
σ0(m0)

> σ∅(mc)
σ0(mc)

, which implies πg(m0) < πg(mc), contradicting the s0 types being indif-

ferent between both messages.

Steps 2 and 3 follow the same logic.

Finally, we prove that any MSE where the messages sent by the s0 and s1 types do not

overlap is equivalent to an MSE where there is only one message sent by each of these

types and only one “other” message. This provides a formal statement of our claims about

equilibria which are “equivalent subject to relabeling”:

Proposition S.8. LetMU = M∅\(M0∪M1) (i.e., the messages only sent by the uninformed

types). With no validation or state validation:

i. In any MSE where M0 ∩M1 = ∅, for j ∈ {0, 1, U}, and any m′,m′′ ∈ Mj , a∗(m′) =

a∗(m′′) and πg(m′, IDM2) = πg(m
′′, IDM2)

ii. Take an MSE where |Mj| > 1 for any j ∈ {0, 1, U}, and the equilibrium actions and pos-

terior competence assessments for the messages in this set are a∗(mi) and πg(mi, IDM2)

(which by part i are the same for all mi ∈ Mj). Then there is another MSE where Mj =
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{m}, and equilibrium strategy and beliefs a∗new and πg,new such that a∗(mi) = a∗new(m), and

πg(mi, IDM2) = πg,new(m, IDM2)

Proof. For part i, first consider the message in MU . By construction the action taken upon

observing any message in this set is p1. And since the good and bad uninformed types are

payoff equivalent and use the same strategy, the competence assessment upon observing

any message in this set must be π∅g .

For M0, first note that for any m′,m′′ ∈ M0, it can’t be the case that the uninformed types

only send one message but not the other with positive probability; if so, the message not

sent by the uniformed types would give a strictly higher payoff for the s0 types, and hence

they can’t send both messages. So, either the uninformed types send neither m′ nor m′′, in

which case the result is immediate, or they send both, in which case they must be indifferent

between both. As shown in the proof of proposition S.7, this requires that the action and

competence assessment are the same for both m′ and m′′. An identical argument holds for

M1, completing part i.

For part ii and M∅, the result immediately follows from the same logic as part i.

For M0, if the uninformed types do not send any messages in M0, then the on-path re-

sponse to any mj
0 ∈ M0 are a∗(mj

0) = 0 and πg(m
j
0, 0) = 1. Keeping the rest of the

equilibrium fixed, the responses in a proposed MSE where the s0 types always send m0 are

also a∗new(m0) = 0 and πg,new(mj
0, 0) = 1. So there is an MSE where the s0 types all send

m0 which is equivalent to the MSE where the s0 types send multiple messages.

If the uninformed types do send the messages in M0, then part i implies all messages must

lead to the same competence evaluation, which implies for any m′0,m
′′
0 ∈ M0, σ∅(m

′
0)

σ0(m′
0)

=

σ∅(m
′′
0 )

σ0(m′′
0 )
≡ r0. In the new proposed equilibrium where M0 = {m0}, set σ0,new(m0) = 1 and
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σ∅,new(m0) = r0. Since σ∅,new(m0)

σ0,new(m0)
=

σ∅(m
′
0)

σ0(m′
0)

, a∗new(m0) = a∗(m′0) and πg,new(m′0, 0) = 1, and

all other aspects of the MSE are unchanged.

3 Alternative Signal Structure

In this section, we consider two alternative signal specifications.

3.1 More general binary signal structure

Here is a more general formulation of the signal structure. We again assume a binary

incumbent type θ ∈ {g, b} and problem difficulty δ ∈ {e, h}. Now assume that the signal

is given by:

s =


sω with probability P (θ, δ)

s∅ o.w
(15)

where P (g, δ) ≥ P (b, δ) (with the inequality strict for at least one δ) and P (θ, e) ≥ P (θ, h)

(with the inequality strict for at least one θ). That is, more competent experts are (weakly)

more likely to get an informative signal for either problem difficulty, and easy problems are

(weakly) more likely to result in an informative signal. We assume that at least one of the

inequalities is strict so that both variable “matter”.

All other aspects of the model are the same as in the main text.

The analysis in the main text is a special case of these assumptions where P (θ, δ) is equal

to 1 if θ = g and δ = e and zero otherwise. With the more general signal structure, there
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are now up to 6 potential types, as a function of the expert signal and competence. A type

of competence θ who observes sx, x ∈ {0, 1} (if such a signal is possible for type θ; recall

this is not possible in the main formulation for θ = b types) knows that ω = x, and his

posterior belief about the problem difficulty is:

Pr(δ = e|sx, θ) =
pepxpθP (θ, e)

pepxpθP (θ, e) + phpxpθP (θ, h)
=

pepθP (θ, e)

pepθP (θ, e) + phpθP (θ, h)
. (16)

Since P (θ, e) ≥ P (θ, h), Pr(δ = e|sx, θ) ≥ pe, and if P (θ, e) > P (θ, h) the inequality

is strict. That is, since each type is (weakly) more likely to observe an informative signal

when the problem is easy, they are (weakly) more likely to believe the problem is easy

given an informative signal.

Also important for what comes, both types have an equal belief about the problem difficulty

if and only if P (g,e)
P (g,h)

= P (b,e)
P (b,h)

. This condition might hold. For example, suppose P (b, h) =

1/4, P (b, e) = 1/2, P (g, h) = 1/2, and P (g, e) = 1. Then both types are twice as likely

to receive an informative signal when the problem is easy, and hence learn the same about

the problem difficulty from getting an informative signal. However, this is a knife-edged

condition, and if P (g,e)
P (g,h)

> P (b,e)
P (b,h)

the competent type will update about the easiness of the

problem more sharply and if P (g,e)
P (g,h)

< P (b,e)
P (b,h)

the bad type will update more in the positive

direction.

A type of competence θ who observes s = s∅ maintains his prior belief about the state

(Pr(ω = 1|s∅) = p1) and his belief about the problem difficulty becomes:

Pr(δ = e|s∅, θ) =
pepθ(1− P (θ, e))

pepθ(1− P (θ, e)) + phpθ(1− P (θ, h))
. (17)

Following a similar logic as the above, both sides will (weakly) come to believe the problem

is less likely to be easy when getting an uninformative signal. These updates are equal if
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and only if 1−P (g,e)
1−P (g,h)

= 1−P (b,e)
1−P (b,h)

As with the example in the main text, MSE helps quickly pin down which types can send

different messages in equilibrium.

No policy concerns, no validation The analysis with no policy concerns or validation is

identical: all types are payoff equivalent, and any equilibrium is babbling.

No policy concerns, state validation With state validation, types who observe different

signals have different beliefs about ω, but types observing the same signal are still payoff

equivalent regardless of their competence.6 However, this will never induce honesty for a

similar reason as the main model. In an honest equilibrium, the posterior belief about the

expert competence when observing (m1, ω = 1) is:

Pr(θ = g|m1, ω = 1) =
p1pg(peP (g, e) + phP (g, h))

p1pg(peP (g, e) + phP (g, h)) + p1pb(peP (b, e) + phP (b, h))
> pg,

(18)

where the inequality follows from the assumption that our assumption that P (g, δ) ≥

P (b, δ) for both δ and one of the inequalities is strict, and hence (peP (g, e) + phP (g, h)) >

(peP (b, e) + phP (b, h)).

Similarly, Pr(θ = g|m1, ω = 1) > pg and Pr(θ = g|m∅) < pg. Given the Markov

strategies requirement, Markov consistency implies that the worst inference the DM can

make about the expert competence upon observing something off path is Pr(θ = g|s =

6Depending on the P function they might have different views of the problem difficulty for some signals,
but since there is no difficulty validation this does not affect their expected payoff for any possible DM
strategy.
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s∅) = Pr(θ = g|m∅). So, the expected utility of sending m1 is:

p1Pr(θ = g|m1, ω = 1) + (1− p1)Pr(θ = g|s∅) > Pr(θ = g|m∅) (19)

and hence this is a profitable deviation. So, there is no honest MSE with state validation

alone.

Difficulty validation and small policy concerns With difficulty validation and small

policy concerns, no two types with different beliefs about the difficulty of the problem

are always payoff equivalent. So, as long as P (g,e)
P (g,h)

6= P (b,e)
P (b,h)

and 1−P (g,e)
1−P (g,h)

6= 1−P (b,e)
1−P (b,h)

, the

Markov strategies and Markov consistency requirements have no bite, making it possible

to punish those who guess incorrectly with a belief that they are competent with probability

zero.

However, an important aspect for this to make honesty possible is for sending an infor-

mative message when the problem is hard is actually off-path. In a proposed honest equi-

librium with just difficulty validation, if P (θ, h) > 0 for some θ, then not only are mes-

sage/validation combinations (m1, h) and (m1, h) on path, but tend to be reached when the

expert is competent.

So, an important assumption to make difficulty (and small policy) concerns effective at

inducing honesty is that P (θ, h) = 0 (as was true in the main model). In words, this

implies that there are not only relatively hard or easy questions that the expert might be

asked, but there are impossible questions. We think in most domains this is reasonable,

particularly if we interpret informative messages as stating that the state is zero or one with

certainty.

If so, the key constraint for sustaining an honest equilibrium is that good and bad un-
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informed experts face no incentive to guess. The payoff to admitting uncertainty (i.e.,

sending m∅) for type θ is:

Pr(δ = e|s∅, θ)Pr(θ = g|s∅, δ = e) + Pr(δ = h|s∅, θ)Pr(θ = g|s∅, δ = h). (20)

The Pr(δ|s∅, θ) are derived above, and the second halves are:

Pr(θ = g|s∅, δ) =
pg(1− P (g, δ))

pg(1− P (g, δ) + (1− pg)(1− P (b, δ))
. (21)

The payoff to guessing m1 (which is a better deviation than m0 as long as p1 ≥ 1/2.) is

the probability that his guess is correct and the problem is easy (since an informative signal

with a hard problem is off path), times the competence evaluation in this circumstance:

p1Pr(δ = e|s∅, θ)Pr(θ = g|s1,m1, δ = e), (22)

where

Pr(θ = g|s1,m1, δ = e) =
pgP (g, e)

pgP (g, e) + (1− pg)P (b, e)
. (23)

So, as γ → 0, the condition for an honest equilibrium is that:

Pr(δ = h|s∅, θ)Pr(θ = g|s∅, δ = h) ≥

Pr(δ = e|s∅, θ)(p1Pr(θ = g|s1,m1, δ = e)− Pr(θ = g|s∅, δ = e)) (24)

for θ ∈ {g, b}. While the algebra is messier, the core idea is just like in the main case. The

trade-off here is that if the problem turns out to be easy it can be more profitable to guess,

while when the problem turns out to be hard it is better to admit uncertainty.
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Full Validation, no policy concerns Finally, consider the full validation case. Because

of state validation it is possible for experts with different views about the state to send

different messages, and as long as P (g,e)
P (g,h)

6= P (b,e)
P (b,h)

and 1−P (g,e)
1−P (g,h)

6= 1−P (b,e)
1−P (b,h)

it is possible to

set any off path beliefs to zero.

This allows for the possibility of an honest equilibrium even without the assumption that

some problems are impossible, since in an honest equilibrium incorrect guesses are never

on path, and unlike the case with just state validation can be punished with an off-path

belief that the expert must be the bad type, regardless of what the difficulty validation says.

The utility for admitting uncertainty in such an honest equilibrium is again given by equa-

tion (20). The expected utility for guessing 1 (assuming that sending an informative signal

when validation reveals that δ = h is on-path) is:

p1(pePr(θ = g|s1, δ = e) + phPr(θ = g|s1, δ = h)) (25)

so an honest equilibrium is possible if:

pe(Pr(θ = g|s∅, δ = e)− p1Pr(θ = g|s1, δ = e))

+ ph(Pr(θ = g|s∅, δ = h)− p1Pr(θ = g|s1, δ = h)) ≥ 0. (26)

As p1 → 1, this inequality never holds, but for smaller p1 it is possible.
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3.2 Continuous expert competence and question difficulty

Now let the competence of the expert θ and the difficulty of the problem δ both be uniform

on [0, 1]. Let the private signal to the expert be:

s =


s0 ω = 0, θ > βδ

s1 ω = 1, θ > βδ

s∅ o/w

where β > 0.

If β < 1, then even the hardest problems (δ = 1) are solvable by a strictly positive pro-

portion of experts. If β > 1, then there are some problems which are so difficult that no

expert can solve them. For reasons which will become apparent, we focus on the case

where β > 1, and so δ = 1/β < 1 is the “least difficult unsolvable problem”.

The expert learns s and θ, which is always partially informative about δ. In particular, an

expert who gets an informative signal knows that δ ∈ [0, θ/β], and an expert who does not

get an informative signal knows that δ ∈ [θ/β, 1]. An interesting contrast with the binary

model is that better experts don’t always know more about the problem difficulty: when

they learn the state, the range of possible values of δ is increasing in θ. However, when

the expert learns the state (particularly with state validation) knowing the difficulty is not

particularly relevant. On the other hand, when the expert is uninformed those who are more

competent can restrict the difficulty of the problem to a smaller interval.

As with the binary model, we search for honest equilibria in the sense that the expert fully

separates with respect to their signal (if not with respect to their competence). Here we

only consider the case with no policy concerns.
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No validation, State validation, Difficulty validation Even though the state space is

much larger in this version of the model, with no validation (and no policy concerns) all

types are still payoff equivalent. So any MSE must be babbling.

Similarly, with state validation there are now multiple types (differentiated by θ) who learn

the state and multiple types who do not learn the state. However, since the knowledge of

the state is the only payoff-relevant component of the type space, all types observing a

particular s must play the same strategy in an MSE. So, by the same logic as the binary

model, there is no honest MSE.

Difficulty validation alone (and again with no policy concerns; with small policy concerns

honesty might possible for some parameters) also hits the same problem as in the binary

model. Among the informed types with competence θ, those observing s0 and those ob-

serving s1 are payoff equivalent, and so no information can be communicated about the

state. It is possible that information about the difficulty of the problem can be conveyed.

Full Validation Now consider the full validation case. No pairs of types are payoff equiv-

alent, since even those observing the same signal have different beliefs about what the

difficulty validation will reveal for each value of θ. So, it is possible to use punitive off-

path beliefs where those who guess incorrectly or when no expert could solve the problem,

which is possible when β > 1.

We now show an honest equilibrium can be possible in this case. First, consider the on-path

inferences by the DM. When seeing a correct message and difficulty δ, the DM knows the

expert competence must be on [βδ, 1], and so the average competence assessment is:

πg(m1;ω = 1, δ) = πg(m0, ω = 0, δ) =
βδ + 1

2
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which is at least 1/2, and increasing in δ.

Upon observing m∅ and δ, there are two possible cases. If δ > 1/β, then no expert could

have solved the problem, and so there is no information conveyed about the expert compe-

tence. If δ < 1/β, then the DM learns that the expert competence is uniform on [0, βδ].

Combining:

πg(m∅, ω, δ) =


1/2 δ > 1/β

βδ
2

δ ≤ 1/β

.

All other message and validation combinations are off-path, and can be set to zero.

Now consider the expert payoffs.

An informed expert (of any competence) gets a payoff of βδ+1
2

> 1/2 for sending the

equilibrium message, 0 for sending the other informed message (i.e., m1 rather than m0

when s = s0), and πg(m∅, ω, δ) ≤ 1/2 for sending m∅. So these types never deviate.

Uninformed experts know the difficulty – which again will be revealed to the DM – is

uniform on [θ/β, 1]. Note that for all but the (measure zero) θ = 1 types, 1/β lies on

this interval. So, all but the most competent experts don’t know for sure if the problem is

solvable by some experts, though very competent experts can become nearly certain the

problem is unsolvable.

We can write the expected competence for admitting uncertainty to be the probability that

δ ≥ 1/β times 1/2, plus the probability that δ < 1/β times the average competence

assigned on this interval. Since the competence assessment is linear in δ on this interval,

ranging from β(θ/β)
2

= θ
2

to 1/2, this average is θ+1
4

. Combining, the expected competence
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for sending m∅ is:

Eδ[πg(m∅, ω, δ)] = Pr(δ ≤ 1/β)
θ + 1

4
+ Pr(δ > 1/β)

1

2

=
1/β − θβ
1− θ/β

θ + 1

4
+

1− 1/β

1− θ/β
1

2

=
1− θ
β − θ

θ + 1

4
+
β − 1

β − θ
1

2

which is increasing in θ.

Next consider the payoff for sendingm1; as before, this is the “better guess” since it is more

likely to be matched by the state validation. This will lead to a competence evaluation of

βδ+1
2

if ω = 1 (probability p1) and if δ < 1/β (probability 1−θ
β−θ ), and 0 otherwise. Since

the guessing correct payoff is linear in δ and the belief about δ conditional on a solvable

problem is uniform on [θ/β, 1/β], the average competence assessment when getting away

with a guess is:

θ+1
2

+ 1

2
=

3 + θ

4
.

So the payoff to this deviation is:

p1
1− θ
β − θ

3 + θ

4

which is decreasing in θ.

So, the binding constraint is that the θ = 0 prefers sending m∅, which again reinforces the
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assumption made about off-path beliefs. Honesty is possible when:

1

β

1

4
+
β − 1

β

1

2
≥ p1

1

β
(3/4)

β ≥ (3/2)p1 + 1/2.

Since p1 ∈ [1/2, 1], this threshold ranges from 5/4 to 2. That the threshold in β is strictly

greater than 1 means that there must be some possibility of getting caught answering an

unanswerable question. The threshold is lower when p1 is lower since this makes guessing

less attractive as one is more likely to be caught guessing wrong.
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