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A Positive-Unlabeled Learning

A.1 Method Selection

Positive unlabeled (PU) learning refers to a class of semi-supervised learning algorithms

that learn from data which has only one class, that of positives. As mentioned before,

there are various approaches to PU learning: two-step methods, biased two-class classifiers,

statistical queries, and one-class classifiers (Zhang and Zuo 2008).

Two-step methods (Li and Liu 2003; Liu 2011; Fung et al. 2005) such as the one used

in this paper, as the name implies, comprise two steps: the first is the extraction of reliable

negatives from the unlabeled set, with the second being an iterative classification method

which trains on the positives and extracted negatives. Variations in the two-step method

come from di�erent methods of extraction of reliable negatives, such as by using nearest-

neighbour classifiers instead of Rocchio; while the variation in the second step can come from

selecting di�erent classifiers or di�erent stopping criteria for the iterative classifier.

Biased classifiers (Liu et al. 2003; Lee and Liu 2003) treat the problem as a supervised

classification problem but with the positives and unlabeled weighted di�erently. These meth-

ods generally assume that the unlabeled set contains mostly negatives (true for large sample

sizes). This assumption can be encoded by varying constraints in the optimisation method

and varying the relative error costs for false positives (lower cost) and false negatives (higher

cost), or by weighting the unlabeled sample.

Statistical queries (SQ) is an approach which models statistical properties of datasets.

Work in this area (Denis, Gilleron, and Letouzey 2005) generalises SQ-like algorithms to a

learning model for positive queries.

One-class classifiers (Schölkopf et al. 2001; Manevitz and Yousef 2001) also use binary

classifiers. They work by constructing a function which separates out the (usually relatively

small) region of feature space that has the positive class. This gives a separation in feature

space using only one class. This is accomplished by first transforming the feature space.

Then a specific formulation of a standard classifier is used which treats the origin as the only

member of the second class to give the separation in feature space.

In this work, we utilize an established two-step Rocchio-SVM method proposed by Li and
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Liu (2003) and Liu (2011). This method is a preferred choice for our purposes as it has been

widely used in web data mining. We adjust this method in three important ways. First, as

we have both categorical data and text data, we extend the method to handle both types of

features. Second, we run multiple models with varying train-validation splits to ensure that

a particular choice of train-validation split does not bias prediction. Third, we use a model

ensemble and obtain bootstrap confidence intervals for our predictions.

A.2 Assumptions

Like other two-step methods, the Rocchio-SVM method makes important distributional

assumptions about positives that are reasonable to assume in most cases, including our

study. We assume we have a set of outputs L = P fi U where P and U are disjoint, with

each item i characterized by some feature vector xi œ X where X is the global feature space.

Each output has a (hidden) true label yi = 1 if it is positive (significant) and yi = ≠1 if

it is negative (not significant), and the output (xi, yi) is sampled from a joint probability

distribution Dx,y. Our objective is to learn a function f which maps the features x œ X to the

label y œ {≠1, 1} such that the classification error is minimised. The PU learning approach

further assumes that the set of positives P is a sample from a conditional distribution Dx|y=1,

which is the global feature distribution of all the positives. In other words, we assume our

positives P and the set of unseen positives in U to be from the same distribution. This

allows us to infer other positives from the unlabeled set U .21

A.3 Algorithm

We start from a N ◊ M feature matrix X = (XT , XC) representing N outputs with M

features, where XT is the N ◊ MT term frequency (TF) matrix of textual features and XC

is the N ◊ MC categorical feature matrix. Our algorithm for modeling significance of policy

outputs has three overall steps: (i) finding reliable negatives, (ii) using an iterative classifier,

and (iii) prediction (see Table 1).
21This last assumption implies that the nature of positives does not change over the time period of

observation which is reasonable to assume in most cases, unless the observation period is very long.
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Detection of reliable negatives

The first step in our algorithm is the detection of reliable negatives RN µ U , i.e. policy

outputs that can reliably be classified as not significant. We need the set of reliable negatives

to be able to train a classifier in the next step. The standard Rocchio-SVM method uses

only real-valued (textual) features in this first step. As we have both categorical data and

text data, we adjust the standard method to handle both types of data. We find two sets of

reliable negatives RN T and RN C using textual and categorical features respectively. To find

RN T , we use the Cosine-Rocchio method (Liu 2011), a variant of an early method of text

classification (Rocchio 1971). First, we convert the rows d œ XT to a normalised TF-IDF

scheme. Let the centroid of a set of rows S = {d1, d2, . . . , dK} with K Æ N be defined as:

S̄ := 1
K

Kÿ

i=1
di (2)

We calculate the cosine distance of all rows in XT to the positive centroid P̄ , where P̄ is

the centroid of the set of rows in XT that correspond to our set of positives P . For two

normalised vectors x and y, the cosine distance cos(x, y) is defined as:

cos(x, y) = 1 ≠ x · y (3)

These distances are used to find all outputs in U that lie beyond a certain threshold

distance Ê from P̄ , where Ê is the distance of the farthest positive from the positive centroid.

This set of outputs, denoted as PNT , is our set of potential negatives. To set the relative

impact of positives and negatives, we obtain the adjusted positive centroid cP = –P̄ ≠— ¯PNT

and the adjusted negative centroid cN = – ¯PNT ≠ —P̄ , where ¯PNT is the centroid of the

potential negatives. As recommended in (Liu 2011), we set – = 16 and — = 4. Finally, we

obtain the set of reliable negatives, RN T , as those outputs which are closer to the cN than

cP .

To find reliable negatives RN C using the categorical features, we again adjust the Rocchio

method employed in Liu (2011). Most importantly, we use the median of rows in XC instead

of the centroid, since the mean would give us a feature vector that is no longer categorical.
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For a set of rows S = {d1, d2, . . . , dK}, let the median be defined as

med(S) = (med(d1,1, . . . , dK,1), . . . , med(d1,MC , . . . , dK,MC )) (4)

Also, for categorical features, the use of cosine distance is not appropriate as the vector

is binary. We use the Manhattan distance in the Rocchio instead of cosine distance, where

the Manhattan distance (also known as L1) between two vectors x, y is defined as:

L1(x, y) =
MCÿ

i=1
|xi ≠ yi| (5)

We find the potential negatives set PNC using distances to the positive median and the

threshold Ê. We set – = 1, — = 0, and hence obtain cN = med(PNC) and cP = med(P ).

Then RN C are all outputs which are closer to cN than cP .

Having found RN T and RN C , we can proceed to obtain the final set of reliable negatives

as RN = RN T fl RN C , i.e. the intersection of the reliable negatives obtained from using the

Rocchio method on the textual and categorical features.

Using an iterative SVM classifier

In the second step of the algorithm, we use the support vector machine (SVM) classifier.

SVM is a widely used binary classifier (Hastie, Tibshirani, and Friedman 2009), not least

because it is not sensitive to outliers. SVM classifies by constructing a hyperplane (plane in

high dimensions) that separates the positive and negative classes. Formally, given training

data È(x1, y1), (x2, y2), . . . , (xM , yM)Í, with yi = 1 for positive instances and yi = ≠1 for

negative instances, SVM learns a function f(x) = w ·x+b where b is a bias term. Sometimes

there may not be a separating hyperplane between the positive and negative classes; we must

then allow for some misclassified instances on either side of the hyperplane. The degree

of allowed misclassification is given by the regularization parameter C, with › denoting
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misclassification error. The SVM formulation is then an optimization problem:

minimize 1
2ÎwÎ2 + C

qM
i=1 ›i (6)

with constraint yi ◊ (w · xi + b) Ø 1 ≠ ›i, i = 1, 2, . . . , M

We run SVM iteratively using positives P , reliable negatives RN and the remaining set

of unlabeled items, Q = U ≠ RN (Liu 2011, pp. 195-7).22 In each iteration, a new classifier

is trained using P and RN , which is then used to predict labels for all documents in Q. The

documents that are classified as negative, W , are dropped from Q and are added to RN .

If W is empty, then we save the model with predictions and stop. Otherwise, a new SVM

classifier is constructed using positives P and the new augmented RN . The iterated SVM

method proceeds by augmenting the RN at each iteration, until no items in Q are classified

as negative.

At each SVM iteration, we determine the best regularization parameter C by doing a

5-fold cross validation with a grid search over a range of values.23 To perform k-fold cross-

validation, k splits of the training data are obtained, and k ≠ 1 splits are used for training

and the remaining split are used as a validation set (Hastie, Tibshirani, and Friedman 2009,

section 7.10.1). The train-validation splits are varied so that each split gets to be tested

once, giving us k training sets. For a single value of C, we can estimate model accuracy by

averaging the validation accuracy across these models. Then a grid search is performed for

all the values of C to determine the best value of C by model accuracy. This C is then used

for training.

There is some debate whether the classifier at the convergence is the best model. As

recommended in (Liu 2011), we use the prediction accuracy on a validation set of positives

to inform our choice of the best model. We thus keep a held out set of positives (20%)

as a validation set and construct the SVM classifier using the rest (80%) at each iteration.

This validation set is distinct from the validation set used for k-fold cross validation. If the

accuracy falls below a certain threshold (85%) then we stop the iteration. Our result is thus
22Before we run an SVM, we apply an IDF transformation to XT , first to the training data and then to

the validation set.
23We use a C grid of {10≠2, 10≠1, . . . , 1010}.
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the model obtained when: (i) no new negatives are obtained or (ii) the prediction accuracy

on the validation set drops below our pre-determined threshold.

Prediction

Predicting the class in a SVM is the computation of f(x). If f(x) > 0 then a policy

output is positive (has significance), otherwise it is negative (not significant).

It is possible that a particular choice of train-validation split for positives may bias the

prediction. As this is not considered in the standard Rocchio-SVM algorithm, we adjust the

method by running 100 models with di�erent train-validation splits. Thus, for each of our

policy outputs in L = {x1, x2, . . . , xN}, we get 100 predictions giving us a 100◊N prediction

matrix G = (g1, g2, . . . , gN) where gi are the columns of G. Here the elements of the matrix

are 1 or 0 corresponding to the SVM classifications of 1 and -1 respectively. The predictions

of the 100 models can be considered as a sample of predictions from a population of all

models based on a 80-20% train validation split.

We obtain the mean prediction as the proportion of the 100 models that predicted a policy

output as significant. In a further departure from the standard Rocchio-SVM algorithm, we

estimate uncertainty of this mean using the bootstrap method. We draw 1000 bootstrap

samples from the prediction vector gi for each policy output and calculate the bootstrap

means �i for an output i. This gives us a 1000 ◊ N matrix � = (�1, �2, . . . , �N), where

�i are the 1000 bootstrap means for each output. Then we calculate the 1st percentile, ai,

of �i which gives us the lower bound of a one-sided 99% confidence interval. We consider

policy output i as significant when ai Ø 0.5.

B UK Statutory Instruments

We obtain our dataset of UK Statutory Instruments from the UK Legislation site (www.

legislation.gov.uk). We used the bulk download facility available at http://leggovuk.s3-

website-eu-west-1.amazonaws.com. Legislation is published as open data in XML format

using the Crown Legislation Markup Language (CLML). We perform parsing and cleaning

of the XML data to obtain our categorical features and department, and use the text from

8



the explanatory notes as the basis for constructing text features. Each SI has a subject which

is assigned by the ministry responsible. This subject is usually picked from a pre-existing

index of SI subject headings (HMSO 2006, section 2.3.6). We downloaded SIs from 2005–

2017, with 2009–2016 being our training set, and data from the first half of 2017 our test

set. We obtain 9,838 SIs from the 2009–2016 period, and 460 SIs from the first half of 2017.

After dropping SIs which are missing some categorical features (act majortopic, department,

subject and type), we are left with 9,554 SIs from 2009–2016 and 409 SIs in 2017. These SIs

cover a variety of subjects: we show the top 20 most frequent SI subjects in Table B.1.

subject frequency
education 1014
social security 883
national health service 685
income tax 620
pension 570
road tra�c 531
local government 508
criminal law 505
corporation tax 418
children young people 381
highways 356
police 335
environmental protection 317
immigration 315
financial service markets 258
town country planning 227
healthcare associated professions 221
housing 217
defence 209
transport 206

Table B.1: Most frequent SI subjects

C What Do Lawyers Write About Online?

Although it is not possible to systematically identify why solicitors and lawyers write

about legislation on their websites in all cases, a review of what information we do have

about content marketing for the legal profession strongly indicates a consensus: they are
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concerned with new developments in law or regulations, which amount to deviations from

the status quo that would have some form of commercial impact on their clients. This con-

sensus spans general observations on the current state of the art in legal content marketing,

recommendations on content marketing from professional legal bodies, observations from

lawyers and those working in law firms themselves, to experts writing guides on content

marketing for the legal profession.

The websites and blogs of law firms, of all sizes, have become an indispensable tool for

content marketing for the legal profession. As Smith (2014, 19) notes: “Firms that blog

receive 55 per cent more website visitors than those that don’t, as well as 67 per cent more

business leads”. More significantly however, in Content Marketing and Publishing Strategies

for Law Firms, Furlong and Matthews (2014, 19) “...conservatively peg at 80 per cent the

amount of law firm content dedicated to case commentary and legislative updates, with

the other 20 per cent dedicated to practical guidelines, implementable checklists, real-life

experiences, and suggested pointers to help clients navigate unfamiliar or di�cult territory”.

This general focus on writing about legislative updates appears to be reinforced by those

working in law firms who are developing this content themselves. A marketing executive,

Danielle Bishop, at Southampton-based law firm Lamport Bassitt, one of our raters, who was

extensively quoted by Smith (2014, 67) as part of a case study on successful legal content

marketing, noted the following about the use of social media and blogs for law firms in the

UK: “There were definitely law firms out there that really inspired me [...] Pinsent Masons

and their outlaw.com site was a big influence – it’s a really great blog that is properly updated

with relevant news. If new legislation’s announced, for example, they’re letting their clients

know about it straight away through social media”. In a similar vein, Barnett and Verney

(2009, 158) cite US lawyer, Kevin O’Keefe, who runs LexBlog: “The aim is to provide the

legal blog’s readers with a constantly renewing source of news and insight about that topic

[...] Your legal blog does the work, compiling and passing along updates as they occur”.

The notion that lawyers are primarily writing about new regulatory developments and

deviations from the existing legal status quo for their clients is further strengthened when

one reads the extant work that deals with content marketing for the legal profession. Smith

(2014, 22) advises that “if a legal matter has cropped up in the media, seize the opportunity
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to explore it on your blog - your reader will enjoy a post that approaches a newsworthy topic

from a di�erent angle”. Similarly, Monk (2008, 212), when discussing law firm newsletters

that can subsequently be uploaded to a firm’s website, suggests that subjects can be intro-

duced in a “... conversational low key way, such as changes in the law and how they a�ect

your clients”. Monk (2008, 214) further recommends that a general newsletter should be

“...informative, telling clients about the latest changes in the law and how it a�ects them,

changes in the environment or taxation regimes, etc.” Barnett and Verney (2009, 177), when

considering how best to optimise online content on legal websites, suggest regular updates

that “...are most likely to take the form of client newsletters - produced at regular inter-

vals, usually monthly or quarterly – and briefing notes, which follow an event such as a key

judgement or the announcement or implementation of new legislation”.

The Law Society, the representative body for solicitors in England and Wales, also recom-

mends a focus on changes to the legal status quo when developing legal content marketing for

the first time. In Smarter Legal Marketing, published by the Law Society, Brushfield (2018,

101) suggests that legal newsletters or bulletins are “...a useful way of keeping in touch with

your contacts and provide a common marketing vehicle for legal updates”. Similarly, in a

practice management publication for The Law Society, on internet marketing for your law

firm, Adam (2002, 269) recommends a news section on your law firm’s website, which should

include “...summaries of new legislation or announcements about issues that might a�ect

your clients”.

Taken as a whole therefore, it seems clear that when it comes to online content marketing

in the legal profession, lawyers, those working in law firms who are responsible for these

websites, experts in the area of content marketing for law firms, in addition to professional

legal bodies, all generally agree that these websites should contain updates on new regulations

or legislation. That is, these websites should primarily consider deviations from the legal

status quo, which may have some form of monetary or commercial impact on their clients.

As such, we consider significant legislation in line with this understanding, as legislation that

causes notable changes or alterations to the existing legal status quo.
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D Law Firm Selection

Our sources are two reputable rankings of the legal profession: Chambers & Part-

ners and The Legal 500. Specifically, we select law firms from the section titled ‘A to

Z of Law Firms’ in Chambers UK, and from the sections titled ‘Solicitors [England and

Wales/Scotland/Northern Ireland/O�shore] A to Z’ in the The Legal 500.

Before choosing firms to include in our set of raters, we first have to ensure that our

firms have clearly defined identities. It is common for large legal firms to merge, split, or be

renamed. If such a firm transformation occurs during the time period under consideration,

then our rater can no longer be considered to have a continual existence throughout the

duration, and are considered as separate firms in our analysis. For our purposes, we assume

that a firm has been in continual existence unless both its name and website URL have

changed at the same time. Once we have established law firm identities, we first search for

firms that have been ranked in every annual edition of The Legal 500 between 2009 and

2016. We then proceed to do the same with the Chambers UK.

We start with the set of firms in the The Legal 500 2009 list and assign each firm a

unique number called the firm ID (FID). The legal directories also maintain a record of the

website associated with a firm for that particular year, and we record this information as a

set of tuples of (firm, year, website, FID, source), where source is either The Legal 500 or

Chambers. We then proceed by year and add tuples to the list, while determining the FID

in each case. The FID is determined as follows: if the firm in question has appeared before

(determined by having the same name) then the FID already assigned previously is used.

If the firm name has changed but the website has remained the same, we do the same, by

looking up the FIDs associated with that website. In both these cases, we only assign an

FID if a unique existing FID is found. In all other cases, we assign a new FID.

Once we have added all the years from The Legal 500, we proceed to do the same with

the Chambers UK rankings. In this case, we do not start from an empty list but use the list

of (firm, year, website, FID) obtained from Legal500 to build our list, while changing source

to Chambers. Our method of assigning FIDs ensures that firms which have merged or split

get a di�erent ID, and thus acts as an identifier for a firm.
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Finally, we keep only those FIDs which have appeared in all years in either Chambers or

in all years in The Legal 500 or in both. The set of websites associated with FIDs gives us

the list of raters. A single FID can have multiple websites and multiple names associated

with it, due to having changed their website address and/or names.

The list of selected law firms can be found in the online supplementary material.

E Positives and Significance

Our review of the secondary literature on web content marketing for the legal profession

(see Appendix C) shows that law firms have incentives to post content online mainly about

laws that are significant in the sense that they change the regulatory status quo by a large

margin. We would thus expect that our P set contains UK statutory instruments that fit

this description well. A face validity check indeed shows that the set P2 contains many such

laws, including for example, those regulating taxation (e.g. major changes to the income tax

code) and commerce (e.g. new obligations for service providers). Equally importantly, the

set appears not to contain laws that introduce relatively minor changes to the status quo.

We further probe the validity of our set P2 by inspecting whether laws in the P system-

atically di�er from those in the U set. While it is true that the unlabeled set contains many

‘hidden’ positives, we would expect that the positive set comprises laws that, on average,

better fit the description of laws changing the status quo by a large margin. This is exactly

what we find. In Figure E.1 (a) - (c), we compare the mean textual lengths and the propor-

tions of amendment SIs and UK-wide SIs in the P2 and U2 sets (with 95% bootstrap CIs).

This analysis reveals that SIs in the P2 set are on average longer, are less often amendment

SIs, and typically have wider geographical application than the SIs contained in the U set.

We can also show that these characteristics of the P set hold regardless of the type of law

firms from which we source positive examples. We first classify the firms in our selection by

size, o�ce location and specialization. A firm is classified as large if it has an above average

number of partners, otherwise it is small. A firm is considered London-based if its only o�ce

is located in London, regional if all of its o�ces are outside London, and mixed if its o�ces

are both in and outside London. A firm is full-service if it has an above average number of

business practice areas (according to the Legal 500 classification), otherwise it is specialized.
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Figure E.1: Laws in Sets P2 and U2 Compared
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Figure E.1 (d) - (l) show that the patterns from panels (a) - (c) hold across all firm types.

We believe these results provide a strong indication that law firms in our set share a similar

concept of significance as a major deviation from the regulatory status quo.

F Features

F.1 Feature Data Sources and Preparation

Our features are of two types: non-textual features which are derived from the attributes

of the SI, and textual features from the Explanatory Notes section of the SI. The textual fea-

tures are the term-frequency (TF) representation of the bag of bigrams from the Explanatory

Notes section. This section of an SI is typically a short text describing the legal context of

the SI and significant impact. We remove numbers and lemmatize the text. Lemmatization

refers to grouping the various forms of a word so they can be analysed as a single term. This

helps in reducing the number of unnecessary text features. For the TF representation, we

do not restrict the minimum number of SIs a bigram has to appear in, or set the maximum

number of bigrams.

The nontextual features are as follows:

• cluster-department: An SI can have multiple departments; we keep all of them. As

departments often change their name under new governments with little change in

function, we have clustered the departments in our data into coarser categories.24 The

data is encoded as multi-label binary, where each cluster is an independent binary

feature.

• act-majortopic: This feature represents the topics associated with an SI is encoded

as multi-label binary. The set of topics from an SI is obtained from the topics of

the Acts which it references. The topic of an Act is obtained from the Comparative

Agendas Project, specifically their categorisation of primary legislation into 22 major

topics from 1911 to 2015 (John et al. 2013). As this time period did not cover all the

referenced Acts in our database, we developed a system to infer the major topic of an
24DepartmentCluster.json in the replication data.
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Act (22 possible topics): (i) For each Act, we build an act subject profile which is the

set of subjects of SIs which reference the Act. (ii) For Acts which do not currently have

a topic, we find the set of Acts with known topic whose Act profiles exactly match the

profile of the Act we wish to find a topic for. (iii) For the exact matched Act profiles,

we find the corresponding topic for each of these. This gives us a set of possible topics

for the Act. (iv) If the set of possible topics has a unique mode and thus no ambiguity,

we assign this topic to the Act. In all other cases, we assign a topic of 0.

• location: The location to which the SI applies as a one-hot encoded feature. We code

the location as 0 when the legislation applies UK wide, 1 when it applies to one region,

and 2 when it applies to 2 or 3 regions.

• type: SIs are categorised into types such as orders, regulations, rules, byelaws, schemes,

among others. Of these types, nearly all SIs are typed as orders, regulations and rules.

Thus we keep the type if it is among these three, otherwise we record it as ‘other’. We

then use one-hot encoding.

• si-length: The number of words in the SI text. This feature tries to capture the e�ect

of length, as significantly short SIs could be expected to have minimal impact. This

feature enters our analysis as the total wordcount binarized on the median.

The following are binary features: (a) amendment: whether the SI is an Amendment;

(b) commencement: whether the SI is a Commencement Order, a short SI which serves

to commence an Act, or a section of it; (c) revocation: whether the SI is an Revocation;

(d) transitional: whether the SI is Transitional; (e) transitory: whether the SI is Transi-

tory; (f) laid-before-parliament: whether the SI has been laid before parliament – typically,

unimportant SIs are not laid before parliament; (g) memorandum: whether the SI has a

memorandum (EM) attached to it – a memorandum is a document attached to some SIs

which discusses the context and impact of the SI; (h) impact-assessment: whether the SI

has an impact assessment attached – the presence of an impact assessment usually suggests

that the SI has some significance.

We drop SIs which have no Acts that have been assigned a major topic.
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For categorical features, we also make an adjustment to the categorical feature matrix

XC before step 1 of the algorithm, i.e. finding reliable negatives, but use the original feature

matrix (without the adjustment) for step 2, iterative SVM. The categorical feature matrix

comprises both binary (and multi-label binary) and categorical features. We recall that we

use the Manhattan distance for finding reliable negatives for the categorical feature matrix.

As categorical features are represented as one-hot encoding, the Manhattan distance between

two di�ering SIs which only di�ered in a categorical feature would be 2. To see why, consider

that the two SIs only di�er on location. As location has three possible values, its possible

one-hot encodings are (1, 0, 0), (0, 1, 0) and (0, 0, 1). Take any two of these and apply the

formula for Manhattan distance (Eq. 5 in Appendix A), and we get 2. As binary (and multi-

label binary) features would only contribute 1 to the distance this creates an incongruity.

We resolve this by multiplying the sub-matrix of the feature matrix that corresponds to

categorical features by 1/2. Then, in the case of the location category, we would get the

possible feature representations as (0.5, 0, 0), (0, 0.5, 0) and (0, 0, 0.5), giving us a Manhattan

distance of 1.

F.2 Analysis with Partial Feature Sets

It is a reasonable question whether we need to train our PU learning model using both

categorical and textual features. In this section of Appendix F, we present results for models

trained separately on categorical features and textual features. To keep things simple, we

undertake this analysis only for the main model with the two-rater threshold (n = 2). The

main takeaway from this analysis is that, while the model trained only on categorical features

produces similar results to that trained on both categorical and textual features, the latter

o�ers a slightly more conservative classification which is closer in the overall proportion of

positives to that obtained in Page (2001). In this sense, the full feature-set may be preferable.

Table F.1 presents the key metrics for the training stage for each of the models with

partial feature sets and for the full model.25 The two partial-feature-set models show a

fairly good fit on training, although the high true positive rate of the model estimated only
25The training set and the number of actual positives di�er slightly between the two partial-feature-set

models because categorical features are missing for some SIs. See previous section in this Appendix.
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with textual features (98.9%) may be indicative of over-fitting. The true positive rate of

the model estimated only with categorical features is 86.7% and is below that for the full

model. Another metric of interest here is the number of unlabeled SIs which are classified as

positive on training. We can see from Table F.1 that the textual-feature-set model is very

conservative and classifies relatively few unlabeled SIs as significant on training, while the

categorical-feature-set model classifies a relatively large number of unlabeled SIs as positive

on training. The results for the full-feature-set model are similar to that for the categorical-

feature-set model but are somewhat more conservative. Overall, given these training metrics,

we have some preference for the full-feature-set model as it achieves a higher true positive

rate, but is slightly more conservative in its classification.

Features Actual
Positives

True Posi-
tives

True Positive
Rate (Train)

Unlabeled
Classified
as Positive

Training
Set

Textual 277 274 98.9% 830 9,838
Categorical 271 235 86.7% 3,895 9,554
All 271 251 92.6% 3,573 9,554

Table F.1: Model Metrics on Training Data (Two-Rater Threshold, n = 2)

Table F.2 shows how the partial-feature-set models perform on web citation forecasting.

This is a useful basic evaluation metric for our purposes, as it captures the performance of

our models within the primary domain of predicting citations within web content. The true

positive rate of the model estimated only with textual features is 66.7% and is much lower

than that for the two other models. This is consistent with the evidence of over-fitting in

the training stage. The full-feature-set model and the model estimated only with categorical

features have the same true positive rate of 84.6%. As expected, the full-feature-set model

is slightly more conservative in its classification of positives.
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Features Actual
Positives

True Posi-
tives

True Positive
Rate (Test)

Unlabeled
Classified
as Positive

Test Set

Textual 27 18 66.7% 46 460
Categorical 26 22 84.6% 142 409
All 26 22 84.6% 133 409

Table F.2: Model Metrics on Test Data (Two-Rater Threshold, n = 2)

G Robustness Checks

In this section of the Appendix, we check robustness of our PU model estimation to (i)

di�erent thresholds for the minimum number of firms needing to mention a law, and (ii)

varying numbers of law firms from which citations are harvested online.

G.1 Analysis with Alternative Thresholds

In the main body of the article, we consider a law to be significant if it is mentioned

on the websites of at least two di�erent law firms. Alternatively we could set a di�erent

threshold for the minimum number of firms needing to identify a law as significant. In this

section of the Appendix, we present results for two other thresholds: (i) at least one firm’s

website (n = 1) and (ii) at least three firms’ websites (n = 3). The main takeaway point from

this robustness check is that our approach performs well with alternative thresholds. It must

be noted that because we have less training data with higher values of n, the performance

of our PU algorithm declines slightly with larger values of the n parameter.

Table G.1 presents the key metrics for the training stage for each of the three thresholds.

All three models demonstrate a good model fit on training. The true positive rate obtained

from models estimated with P1 is 94.6% and that obtained with P3 is 88.7%. There is thus

little evidence of underfitting. Table G.2 presents the metrics for our first simple evaluation

test in which we examine the performance of our models in the domain of forecasting citations

within web content. All three models demonstrate a true positive rate equal to or above

75%. The rate for models estimated with P1 is 80.8% and that with P3 is 75.0%. The model

obtained from P2 has the best true positive rate of 84.6%.
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n Actual Positives True Positives True Positive Rate
1 794 751 94.6%
2 271 251 92.6%
3 142 126 88.7%

Table G.1: Model Metrics on Training Data

n Actual Positives True Positives True Positive Rate
1 52 42 80.8 %
2 26 22 84.6%
3 16 12 75.0%

Table G.2: Model Performance on Web Forecasting

We now turn to our second evaluation test in which we compare classification results for

2017 with estimates derived from human experts. Figure G.1 presents the results for each of

the three thresholds. In panels (a), (c) and (e), we compare the mean theta values (with 95%

bootstrap CIs) for SIs that the three models predict as not significant and significant. The

results from all the three models show a strong correspondence between human experts and

our clasification. Figure G.1, panels (b), (d) and (f), report model precision and recall metrics

for di�erent binarization thresholds in the range between -1 and 1 on the theta scale. The

one-rater model achieves best accuracy when one binarizes on theta values between -0.809

and -0.692 (Accuracy 0.73, Recall 0.70, Precision 0.92). The two-rater model achieves best

accuracy when one binarizes on theta values between 0.103 and 0.216 range (Accuracy 0.70,

Recall 0.67, Precision 0.64). The three-rater model has best accuracy when one binarizes on

theta values between -0.809 and -0.692 (Accuracy 0.70, Recall 0.67, Precision 0.89). Overall,

the accuracy for all three models varies between 0.70 and 0.73.

Finally, we replicate our third evaluation test in which we probe the construct validity

of our estimates. Figure G.2 presents the results for each of the three thresholds. There are

two main points to note. Figure G.2, panels (a), (c) and (e), all show a marked surge in

the production of significant SIs in February and March, the two months before the budget.

Second, Figure G.2, panels (b), (d) and (f), demonstrate that the significance of SIs, as

captured by our classification, increases strongly as one moves closer to the budget date.

We conclude that our results show robustness to di�erent threshold specifications.
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Figure G.1: Comparison with Human Raters
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(f) Three-Rater Threshold, n = 3

Figure G.2: Statutory Instruments and UK Budget Cycle
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G.2 Analysis with Alternative Firm Sets

The three PU learning models discussed in the previous section are trained using the

positive examples of laws which we obtained from Google searches performed on the websites

of all 288 law firms. Would our results change in an important way if we were to vary

the number of web pages we query? To address this point, we undertake two additional

robustness tests in which we vary the number of firms from which we harvest examples of

significant laws, while keeping the threshold constant at n = 2. The overall takeaway from

this analysis is that our results remain substantively the same.

Table G.3 presents the key training-stage metrics for the models estimated with P2 sets

obtained from varying numbers of law firms. The P2 obtained from 154 firms is our baseline

scenario. While we query the websites of 288 law firms, our Google search finds one or more

hits in the web pages of 154 firms. For the purposes of the robustness check, we replicate our

analysis with two new P2 sets obtained from smaller sets of firms drawn randomly – a set of

125 firms and a set of 75 firms. Table G.3 presents the results. All three models demonstrate

a good model fit on training, with the true positive rate between 91.3 % and 93.6%.

P Set Firms Actual Positives True Positives True Positive Rate
P2 154 271 251 92.6%
P2 125 196 179 91.3%
P2 75 109 102 93.6%

Table G.3: Model Metrics on Training Data (Two-Rater Threshold, n = 2)

In evaluating performance beyond training, we first examine the metrics for forecasting

citations within web content. Using the search results from all firms to create our test set,

we find that out of the total of 26 SIs cited on the websites of at least two law firms, all

of our three models correctly predict 22 positives, misclassifying four SIs. The true positive

rate is thus 84.6% for all models regardless of the set of firms they have been trained on.

Figures G.3 and G.4 present the metrics for the other two evaluation tests: a comparison

with estimates derived from human experts and an examination of the construct validity of

our estimates, respectively. The results are very similar across all the three models.
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Figure G.3: Comparison with Human Experts
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Figure G.4: Statutory Instruments and UK Budget Cycle
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H Textual Feature Importances

While text features constitute a majority of our features (351,177 out of 353,592 fea-

tures, 99.3%), individually, they have relatively less predictive power when compared to the

categorical features. Nevertheless, some text features do have predictive value, and the top

contributing and inhibiting text features are shown in Table H.1. The two top contribut-

ing features are ‘introduction new’ and ‘new part’, both of which signal the enactment of

novel provisions. The top inhibiting features are more di�cult to interpret, but the bigrams

‘coming force’, ‘has not’, and ‘not produced’ most likely signal the absence of additional

documentation such as memoranda or impact assessments.

Table H.1: Importances of text features

contributing feature mean rank
new part 183.78
introduction new 192.38
occupational pension 194.37
permitted development 204.77
provision relating 236.11

inhibiting feature mean rank
coming force 167.90
has not 178.29
not produced 188.12
instrument no 193.92
upper tribunal 214.25

I Expert Survey

I.1 The Human Raters

To validate our estimates, we use ratings from three human experts. In May 2019,

we recruited these experts by sending out a recruitment email to all law students at the

University of Oxford. The three expert raters were chosen from a total of ten applications.
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Our three expert raters were all graduate-level law students at the University of Oxford

who all had some professional experience working at major international law firms when

they completed our coding task. All three had previously completed undergraduate BA

degrees in law: one at Oxford and two elsewhere (both in countries with legal systems

akin to the UK). Two of our raters were current students on the Bachelor of Civil Law

at Oxford; a one-year taught graduate course in law, designed for those with common law

backgrounds. According to the University’s website, for the BCL, “The academic standard is

significantly higher than that required in a first law degree, and only those with outstanding

first law degrees are admitted.”26 Our third rater had already successfully completed the

BCL degree at Oxford and was a student on the Master of Philosophy (Law). As such, our

three expert raters were highly successful graduate law students, all of whom had completed

undergraduate law degrees and all of whom, at the time of our rating exercise, were pursuing

graduate-level legal studies at Oxford.

I.2 The Task

We asked each expert to read and rate the significance of 217 di�erent SIs. The sample

is partially random as we included 26 SIs, which a new Google search performed in February

2018 reveals to have been mentioned by at least two law firms plus a random draw of 50%

from the remaining 383 SIs. We administered the survey using the Qualtrics survey platform

between July and September 2019. Each expert rater was sent a link to the survey. Once

they clicked on this link, they were presented with the question: ‘Imagine that you are a

lawyer working for a major UK law firm and you are tasked with selecting important pieces

of legislation (Statutory Instruments) to write about for the firm’s clients. On a scale from

1 to 6, how important do you think this SI is to write about?’ Below this question, was

a hyperlink to the relevant SI and each rater then chose a rating from the following scale:

‘Extremely Important’, ‘Very Important’, ‘Important’, ‘Moderately Important’, ‘Slightly

Important’, ‘Not at all important’. A screenshot from Qualtrics illustrating the set-up of the

task can be found in Figure I.1.
26https://www.ox.ac.uk/admissions/graduate/courses/bachelor-civil-law?wssl=1, accessed April 2020.
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Figure I.1: Screenshot from Qualtrics of human expert rater survey.

I.3 Interrater Reliability

There are three main ways of assessing inter-rater reliability: 1) consensus estimates, 2)

consistency estimates and 3) measurement estimates (see Stemler 2004). Consensus esti-

mates are based on the assumption that our raters are able to come to exact agreement on

how to apply the di�erent importance scales to our sample of SIs. If our raters do come

to exact agreement, then it could be said that they share a common interpretation of the

construct and have a shared understanding of how to use the scoring rubric. Such a shared

understanding normally arises from extensive training of raters as to how to interpret and

use a particular scoring system (see Stemler 2004). We did not engage in extensive training

of our raters. Rather, we asked them to assign scores to our sample of SIs based on their

interpretation of the scale we developed. This means that using consensus estimates to assess

interrater reliability is not the appropriate approach in this context.

In fact, when we look at how our raters employed the scoring rubric, we can see that they

were not all using the numeric scale in the same manner. Table I.1 illustrates the distribution

of scores on our 1 to 6 importance scale by each of our three raters. It is evident that Rater

1 is not using the scale in a similar fashion to Raters 2 and 3. The distribution of the scores
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of Raters 2 and 3 is more similar.

Rating Rater 1 Rater 2 Rater 3 Total
1 52 134 104 290
2 41 36 39 116
3 21 22 29 72
4 34 15 21 70
5 31 8 15 54
6 38 2 9 49

Total 217 217 217 651

Table I.1: Interpretation of the rating scale across our three human raters

Table I.1 reinforces the point that consensus estimates are not suitable in this context,

given that we did not train our raters in the use of our importance scale. Our raters clearly

did not come to a unified consensus as to how to apply this scoring rubric and as Stemler

(2004, 3) points out: “consensus estimates can be overly conservative if two judges exhibit

systematic di�erences in the way that they use the scoring rubric”. This is reflected in one

of the most common consensus estimates of interrater reliability, Krippendor�’s alpha. The

alpha coe�cient displayed in Table I.2 falls within the fair to moderate range (on the Landis

and Koch (1977) scale), which is what we might expect, given the lack of rater training.

Coef. SE Lower CI Upper CI
Krippendor�’s Alpha 0.2732 0.0490 0.177 0.370

Table I.2: Krippendor�’s alpha coe�cient. Based on irrCAC package in R.

Consistency estimates on the other hand, allow for raters to have a di�erent interpretation

of the rating scale, provided that they are consistent in how they apply this scale within the

parameters of their own definition. Consistency estimates provide a means to summarize the

scores of raters, while allowing for systematic di�erences in how individual raters use and

apply the scoring scale. Because of this, it is possible to have low consensus estimates of

interrater reliability (as in Table I.2), but high consistency estimates of interrater reliability.

Table I.3 reports a simple correlation matrix for our three human raters. Two points
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stand out quite clearly. Firstly, the scores of Raters 2 and 3 correlate reasonably highly. The

scores of Rater 1, in contrast, are less strongly correlated with those of our other two raters.

Rater 1 Rater 2 Rater 3
Rater 1 1.000
Rater 2 0.3731 1.000
Rater 3 0.3825 0.6307 1.000

Table I.3: Correlation matrix for three human raters

Probably the most popular consistency estimate of interrater reliability for multiple raters

is the Cronbach’s alpha coe�cient. Cronbach’s alpha is particularly useful to ascertain the

degree to which a group of ratings underpin the measurement of a common dimension and if

the coe�cient is low, it indicates that the variance among the scores is due to error variance

as opposed to actual variance among the scores. Table I.4 reports the Cronbach’s alpha

coe�cient for our three ratings. As this table illustrates, our Cronbach’s alpha coe�cient is

0.7205, above the recommended threshold of 0.70, suggesting that our raters exhibit reason-

ably good consistency estimates of interrater reliability.

Item Obs. Sign std.r average.r std.alpha
Rater 1 217 + 0.7307 0.6307 0.7736
Rater 2 217 + 0.8340 0.3825 0.5534
Rater 3 217 + 0.8379 0.3731 0.5434
Test scale 0.4621 0.7205

Table I.4: Cronbach’s alpha, estimated with standardized items

I.4 Aggregation Methods

In order to aggregate the data from our human coders, we can turn to three di�erent

methods: a mean standardized rating; a principal components analysis of the ratings; or,

item response theory (IRT) models. We chose a graded response IRT model to derive the

theta values of latent significance for each SI from our human ratings (Clinton and Lapinski
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2006). We also validate our data with the other two methods of aggregation in Section

I.5 and the results remain the same. The IRT method is particularly useful to create a

common measure among raters while accounting for rater heterogeneity, specifically when

raters employ the same criteria, but apply di�erent thresholds and discrimination rates when

considering SIs to be significant or not (see Clinton and Lapinski 2006, 237). Among our

raters, this is particularly characteristic of Rater 1 when compared to Rater 2 and 3.

Table I.5 reports the estimated discrimination and di�culty parameters for our three

expert raters from the graded IRT model27. We can clearly see there is notable variation

in the discrimination rates and the thresholds employed by our raters. Rater 1 has a con-

siderably lower discrimination than either Rater 2 or 3. Rater 1 also has a lower threshold,

as illustrated by the di�culty parameters. Rater 1 has a 50 per cent chance of choosing

significance level 1 with ◊ at -1.378, as opposed to 2 or higher. This is notably lower than

the di�culty parameters for Raters 2 and 3 for this category. Raters 2 and 3 clearly have

a higher threshold for significance than Rater 1. This is exactly what we would anticipate,

given the distribution of scores in Table I.1 and this is what our IRT model can account for.

We can also explore whether our raters’ assessments reflect a common ‘evaluative dimen-

sion’ by estimating a two-dimensional IRT model to explore the dimensionality of our rater

scores (see also Clinton and Lapinski 2006, 241). For this we use the graded response model

option in the mirt R package with 2 dimensions. A model comparison shows a slightly

increased AIC (1808.29, up from 1804.29) and BIC (1875.89, up from 1865.13) for the two

dimensional model as compared to the one dimensional model. The slight increase in AIC

and BIC show that it is preferable to select the one dimensional model. These results suggest

that our raters understand significance in terms of a single latent dimension.

The results from the principal components analysis also indicate that our human experts

understood the importance of SIs as comprising one single dimension. As Tables I.6 and I.7

illustrate, the data from the raters has one major underlying component, with an eigenvalue

of 1.93, which captures 65 per cent of the variance. The eigenvectors in Table I.7 also
27We use the mirt R package formulation of the graded response model which does not multiply the

discrimination a with the di�culty b, the probability being of the form S(a · ◊ + b), rather than the standard
IRT formulation of S(a·(◊≠b)). Thus the di�culty parameters from the model have inverted signs compared
to the standard formulation. Here, we have presented the threshold estimates from the model with an inverted
sign to align with the standard. S(x) is the sigmoid function 1/(1 + exp(≠x)).
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Rater 1 Rater 2 Rater 3
b/se b/se b/se

Discrimination 0.993úúú 3.120úúú 2.884úúú

(0.18) (0.92) (0.79)
di� >=2 -1.377úúú 1.099úúú -0.169

(0.19) (0.40) (0.29)
di� >=3 -0.344úú 2.834úúú 1.392úúú

(0.16) (0.71) (0.40)
di� >=4 0.135 4.255úúú 2.743úúú

(0.16) (0.99) (0.62)
di� >=5 0.940úúú 6.061úúú 4.124úúú

(0.18) (1.40) (0.88)
di� =6 1.857úúú 8.710úúú 5.937úúú

(0.22) (2.05) (1.22)

Table I.5: Discrimination and di�culty parameters, (***) p < 0.001 (**) p < 0.01

demonstrates that all three human raters load positively on this dimension.

Component Eigenvalue Di�erence Proportion Cumulative
Comp1 1.9358 1.2407 0.6453 0.6453
Comp2 0.6951 0.3259 0.2317 0.8769
Comp3 0.3692 . 0.1231 1.0000

Table I.6: Principal Components Analysis

Variable Comp1 Comp2 Comp3
coder1 0.4958 0.8683 0.0165
coder2 0.6126 -0.3632 0.7021
coder3 0.6156 -0.3380 -0.7119

Table I.7: Eigenvectors

Qualitative evidence further emphasizes that our raters shared a common theoretical

understanding of legislative significance. When asked to consider what Statutory Instruments

might be significant to write about for a legal blog or website, our expert raters appeared to

adopt an understanding of importance that was rooted in the idea that important legislation

shifts the legal status quo. In September 2019, we asked our expert raters to provide a short
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qualitative rationale as to why they gave a small group of SIs the rating they did. Their

responses and their rationale for their ratings were all based on the notion of deviations

from the legal status quo. For example, when asked why they rated the 2017 Export Control

Order as extremely important, one of our expert raters suggested it was because “this order

amends the previous Export Control Order 2008 which has relevant consequences for client

transactions covered by the previous order”. Another of our expert raters, when asked

why they rated the 2017 Crime and Courts Act Order as slightly important, stated: “This

changes the rules applicable to investigations in England & Wales, as well as NI”. Another

expert rater, who considered this SI to be extremely important, noted their rationale for

this choice: “...it brings forth key changes to the 2013 act especially in terms of procedures

for investigation and discovery”. Clearly, our expert raters, when we asked them to consider

which SIs would be important to write about, based their ratings on the degree to which

each SI would alter the existing status quo. It is reassuring that not only did they share this

common understanding of importance, but also that this understanding reflected the more

general interpretation of significance adopted in the paper.

I.5 Validation

To validate our results, and as discussed in the main body of the paper, we used the

theta values from our graded response IRT model as the true (continuous) estimates of SI

significance as viewed by our human raters. We then compared the mean theta values (with

95% bootstrap CIs) for SIs that our model predicts as not significant and significant in

Figure 3(a). In Figure 3(b) in the paper, we also considered the precision and recall of our

PU learning model by examining how precision and recall change as one varies the threshold

from -1 to 1 on the theta scale. This analysis demonstrated that our model has best accuracy

when one binarizes on theta-based significance values between 0.103 and 0.216 (Accuracy

0.70, Recall 0.67, Precision 0.64).

We replicate these validation analyses with two alternative methods of aggregation: a

mean of standardized scores and principal component analysis. For our mean of standardized

scores, we firstly standardize the scores of our three human experts with a mean of 0 and a

standard deviation of 1. We then take the mean of these standardized scores as a continuous
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estimate of SI significance as viewed by our raters. Figure I.2(a) and (b) then replicate the

analyses in Figure 3, replacing theta with the mean of standardized rater scores. In Figure

I.2(a), we compare the mean of standardized scores (with 95% bootstrap CIs) for SIs that

our model predicts as not significant and significant. The mean of standardized significance

scores for the SIs predicted as not significant is -0.34 and that for the SIs predicted as

significant stands at 0.43. In Figure I.2(b), we consider how precision and recall change as

one varies the threshold from -1 to 1 on the mean of standardized scores scale. This analysis

demonstrates that our model has best accuracy when one binarizes on mean standardized

score-based values between 0.045 and 0.085 (Accuracy 0.71, Recall 0.70, Precision 0.60).

For our third aggregation method, we perform principal components analysis and then

generate scores for each rating based on the first component. In Figure I.2 (c), we compare

these PCA-based scores (with 95% bootstrap CIs) for SIs that our model predicts as not

significant and significant. The mean of PCA significance scores for the SIs predicted as not

significant is -0.58 and that for the SIs predicted as significant stands at 0.73. Figure I.2(d)

considers precision and recall. Our model achieves best accuracy when the PCA scores are

binarized at the threshold of -0.014 to 0.087 (Accuracy 0.71, Recall 0.69, Precision 0.60).

In Table I.8 we also display the confusion matrix between our human raters and our

classification. To generate this confusion matrix, we binarized our theta scores for our

human ratings where we received the optimal level of accuracy based on Figure 3(b). All

scores below or equal to the threshold of 0.103 – 0.216 were coded as zero, and all scores

above this threshold were coded as 1. From Table I.8, our confusion matrix has: Accuracy

= 0.70; True Positive Rate = 0.67; and True Negative Rate = 0.72.

Our model
0 1 Total

IRT theta 0 91 35 126
1 30 61 91

Total 121 96 217

Table I.8: Confusion matrix with theta dichotomized at threshold between 0.103 to 0.216

Table I.9 replicates the confusion matrix in Table I.8 but here we use the mean of stan-

dardized scores from our human raters and binarized these scores at the threshold where
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Figure I.2: Expert Validation with Alternative Rating Aggregation Methods
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we obtain the best accuracy (as per Figure I.2(b)), where all scores below or equal to the

threshold of 0.045 to 0.085 were coded as 0 and all scores above this threshold were coded as

1. In this instance, our confusion matrix has: Accuracy = 0.71; True Positive Rate = 0.70;

and True Negative Rate = 0.72.

Our model
0 1 Total

Mean z-scores 0 96 38 134
1 25 58 83

Total 121 96 217

Table I.9: Confusion matrix with mean standardized rater scores dichotomized at threshold
between 0.045 to 0.085

Table I.10 reports the results of a third and final confusion matrix, but this time with the

PCA-based scores of our human raters. Again, we binarize the data where we have greatest

accuracy, with all PCA scores below or equal to the threshold of -0.014 to 0.087 coded as

0, and all scores above this threshold coded as 1. With this measure, our confusion matrix

has: Accuracy = 0.71; True Positive Rate = 0.69; and True Negative Rate = 0.72.

Our model
0 1 Total

PCA scores 0 94 37 131
1 27 59 86

Total 121 96 217

Table I.10: Confusion matrix PCA scores dichotomized at threshold between -0.014 to
0.087

I.6 Error Types

In this subsection, we undertake a brief analysis of classification errors made by our model

relative to our human raters. We focus on the results presented in Table I.8. This is our

main model and it is reasonable to examine the type of errors that this model makes. In

Table I.11, we report the numbers of false negatives (FN), false positives (FP), true positives

(TP) and true negatives (TN) broken down by the type of a statutory instrument.

36



FN TN TP FP Total
All 30 91 61 35 217
Amendment 20 46 33 17 116

SI Type:
Regulations 11 36 53 34 134
Orders 15 53 8 1 77
Rules 4 2 0 0 6

Long 12 20 40 20 92

Application:
UK-wide 18 25 60 27 130
Regional 12 66 1 8 87
Commencement 6 6 0 0 12
Transitional 5 0 2 0 7

Table I.11: Error Analysis by SI Type

This table reveals that if we examine in more detail those SIs that our model misclassifies

relative to our human raters, we can clearly observe a preponderance of regulations – of all 65

SIs that our model misclassifies relative to our human coders, 45 are regulations (69%). This

same is true of SIs with UK-wide applicability which also make up 69% of all misclassified

cases. Also, a large number of misclassified cases are amendments – 57 per cent. Finally,

almost half of misclassified cases are SIs with above-average text length.

A closer inspection of individual errors suggests that our model tends to misclassify more

nuanced cases. For example, amendment orders with below-average length would largely be

classified as non-significant by both our model and human experts. But there are clearly

some such SIs which human raters view as important. Consider The Capital Allowances Act

2001 (Cars Emissions) (Amendment) Order 2017, one of the SIs which our model predicts as

negative but which human experts consider to be significant. On the surface, this SI appears

appears simply to amend the existing Capital Allowances Act 2001 (Cars Emissions) Order

but in fact, this amendment changes the emissions threshold for car lease restrictions for the

purposes of income tax and corporation tax. This means that for corporate entities with

company cars, this amendment would have consequences for their capital allowances. This
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SI is a major deviation from the status quo.

Other examples of nuanced cases include new regulations with above-average length

which, on the whole, both our model and human experts tend to classify as significant.

But there are clearly some such SIs that experts do not consider as important, while our

model classifies as significant. Consider The Town and Country Planning (Brownfield Land

Register) Regulations 2017. This SI places a duty on local planning authorities to prepare

and publish a register of previously developed land which is suitable for residential devel-

opment. The subject matter is new and the regulatory requirements are specified in great

detail. At the same time, the regulations introduce these new provisions only in England

and only within the domain of internal local government procedures.

Our model struggles to pick up theses subtle, but very important nuances. Of course, our

PU learning model is not unique in this respect. Automatic classifiers, while highly e�cient

at labelling, often struggle to discern important nuances that humans can easily interpret

and observe (see Grimmer and Stewart 2013). We can only speculate about the source of

our errors. There may be not enough training data for some important combinations of our

features. Our model may also rely too heavily on categorical features, as our textual features

come from texts that tend to use dry and bureaucratic language which reduces useful signal

in the data. As our purpose here is to o�er a proof-of-concept for a new approach, we leave

the task of further improving model performance for future work.

J Forecasting Web Citations: Misclassified SIs

Table J.1 lists the four SIs, which appeared on the websites of at least two law firms in

the first half of 2017, but which our model failed to predict as significant.

K Probability Calculation

Let the total number of SIs be N , out of which the number of SIs predicted as positives

is P . The total true positive number is T . Of the predicted positives P a subset A are true

positives. We want to compute the likelihood that A was chosen just by chance, given that
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Table J.1: Misclassified positives

si title mean ai

2017 95 The Civil Procedure (Amendment) Rules 2017 0.00 0.00
2017 80 The Bank of England and Financial Services (Consequential

Amendments) Regulations 2017
0.07 0.02

2017 402 The Town and Country Planning (Permission in Principle)
Order 2017

0.11 0.05

2017 321 The Nursing and Midwifery (Amendment) Order 2017 0.41 0.29

we have chosen P out of N . Thus the denominator in the fraction is the number of ways to

choose P out of N or NCP . Since A is a subset of P , the variation comes from the P ≠ A SIs

which are predicted positive but not true positives. Keeping A fixed, we get the numerator

then as the number of ways to choose P ≠ A out of N ≠ A times the number of ways to

choose A out of T , the true positives: N≠ACP ≠A ◊T CA. Then the likelihood of having picked

A by chance is
N≠ACP ≠A ◊ T CA

NCP
(7)

We have N = 409, P = 155, A = 22, T = 26 and this gives us a very low probability of

2.98 ◊ 10≠6.
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L SIs and UK Budget

In this part of the Appendix, we check the robustness of our analysis of the UK legislative

cycle by re-estimating it with alternative samples and model specifications.

In the main article, we limit our analysis to domestic SIs, that is, we exclude any SIs

which were adopted in 2015-2015 to implement European Union laws.28 As a member of the

European Union (until recently), the UK was required every year to implement numerous EU

directives and this process occurred mainly through the adoption of secondary legislation.

The exclusion of EU-related SIs makes sense in principle, as such SIs are adopted subject to

implementation deadlines externally determined in the EU law. As a first robustness check,

we analyze how the significance of SIs varies over the annual legislative cycle if one uses the

full sample of statutory instruments adopted in 2005–2010. We would expect our main e�ect

to hold, but to become slightly attenuated, and this is exactly what we find. See Figure L.1

(c) - (d). As expected, we also find that EU-related SIs adopted in the weeks before the

budget are no more significant than SIs adopted in other months - see Figure L.1 (e) - (f).

Our second robustness check is to truncate our SI sample to exclude election years. In

2005-2010, UK elections took place in May, and it is possible that the pattern we find in the

UK legislative cycle reflects a pre-election boost in the production of significant legislation.

To test whether this pattern still holds if one excludes election years, we remove SIs passed

in 2005, 2010 and 2015 from our sample and re-run the analysis. Figure L.1 (g) - (h) reveals

that our findings hold for non-elections years.

As a final robustness check, we re-estimate our GLM model from Figures L.1 (b), (d),

(f) and (h) including year fixed e�ects. This analysis reveals that our expected e�ect of days

until budget is robust to the inclusion of year fixed e�ects. The GLM results for all models

are presented in Table L.1.

28We identified EU-related SIs by checking if the parent primary legislation for a given SI included the
European Communities Act.
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Figure L.1: Analysis with Alternative SI Samples
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Estimate Std. Error z value p

Domestic SIs
Days till budget 0.008 0.002 5.566 0.000 ***
(Intercept) -0.185 0.054 -3.417 0.000 ***
Domestic SIs (non-election years)
Days till budget 0.010 0.002 5.488 0.000 ***
(Intercept) -0.145 0.064 2.280 0.023 *
Domestic SIs (with year FEs)
Days till budget 0.009 0.002 5.789 0.000 ***
(Intercept) 0.069 0.876 0.078 0.938
All SIs
Days till budget 0.005 0.001 3.858 0.000 ***
(Intercept) -0.098 0.051 -1.930 0.054
EU-related SIs
Days till budget -0.005 0.005 -0.954 0.340
(Intercept) 1.415 0.217 6.507 0.000 ***

Table L.1: GLM Models Results. Significance indicators: (***) p < 0.001 (**) p < 0.01
(*) p < 0.05
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