
Supplementary Materials for “Re-Evaluating Machine Learning
for MRP Given the Comparable Performance of (Deep) Hierarchi-
cal Models”

A Models and Inference

This appendix provides information on the model specification noted in the main text as
well as brief derivations of the new technical contributions and their importance to efficient
estimation.

The main paper presents an example with an intercept and two random effects. It is
often convenient to represent the model in a “general design” notation (Zhao et al. 2006).
Using the results in Goplerud (2022), I present a model with an arbitrary number of random
effects using both the general design (Equation A.1) and Gelman and Hill (2006) notation
(Equation A.2). In both cases, I use conditionally conjugate Inverse-Wishart priors on the
variance components Σj, a flat prior on the fixed effects β, and the conventional normal
prior on the random effects. zb

i,j represents the covariates for individual i for random effect
j, e.g. zb

i,j = 1 for a random intercept. Each random effect j ∈ {1, · · · , J} has gj levels
(e.g., 50 states) and a dimensionality of dj (e.g., dj = 1 for a random intercept). Thus, Σj is
a dj × dj symmetric matrix. Each observation i distributed as a binomial random variable
with ni trials and yi successes; in this paper, ni = 1 as the outcome is binary.

yi|β,α ∼ Binom(ni, pi), pi =
exp(ψi)

1 + exp(ψi)
, ψi = xT

i β + zT
i α

αj|Σj ∼ N
(
0, Igj ⊗Σj

)
, Σj ∼ IW(νj,Φj), p(β) ∝ 1

zi,j = mi,j ⊗ zb
i,j, αT = [αT

1 , · · · ,αT
J], zT

i = [zT
i,1, · · · , zT

i,J]

(A.1)

yi|β, {{αj,g}
gj
g=1}Jj=1 ∼ Binom(ni, pi), pi =

exp(ψi)

1 + exp(ψi)
, ψi = xT

i β +
J∑

j=1

[
zb
i,j

]T
αj,g[i]

αj,g|Σj ∼ N(0dj ,Σj), Σj ∼ IW(νj,Φj) ∀(j, g), p(β) ∝ 1

(A.2)

As posed, this problem is difficult to estimate even with variational techniques. A key
move in Goplerud (2022) is to use Polya-Gamma data augmentation (Polson, Scott and Win-
dle 2013) to augment the posterior with one Polya-Gamma variable ωi for each observation
(diagonally stacked into Ω). Polson, Scott and Windle (2013) note the following result for
Polya-Gamma variables where a Polya-Gamma variable ωi has two parameters b, c and the
identity below holds for any positive a and b.

1

exp(ψ)a

[1 + exp(ψ)]b
= 2−b

∫
exp(sψ − ψ2/2ω)fPG(ω|b, 0)dω, s = a− b/2 (A.3a)

ω ∼ PG(b, c) := ω =
1

2π2

∞∑
k=1

Zk

(k − 1/2)2 + c2/(4π2)
, Zk

i.i.d.∼ Gamma(b, 1) (A.3b)

After augmenting the likelihood for each observation with its corresponding Polya-Gamma
variable, the relevant portion of the augmented posterior is shown below.

p(y,Ω|α,β) ∝ exp

(
sT [Xβ +Zα]− 1

2
[Xβ +Zα]T Ω [Xβ +Zα]

) N∏
i=1

fPG(ωi|ni, 0)

(A.4)

This is amenable to a Gibbs Sampler for all coefficients, including the Polya-Gamma
random variables. Goplerud (2022) notes that this also means it is amenable to closed form
mean-field variational inference with no further assumptions nor integration required. This
result holds for any number and configuration of random effects, slopes, etc. I repeat the
relevant result and algorithm (Result 1 and Algorithm 1) below. Please see that paper for
full details and extensive simulations on this algorithm.

Result A.1 (Existence of CAVI (Scheme I from Goplerud 2022)). Consider the factorization
assumption:

Scheme I: “Strong Factorization” — X1 = q(β)
∏J

j=1 q(αj)q(Σ)q(Ω)
For the model in Equation A.1 and for each choice of Xk above, each step of the CAVI

algorithm can be implemented exactly in closed form, with no additional assumptions. For
each Xk, the optimal approximation for q(β,α) is multivariate normal, q(Σ) is the product
of J independent Inverse-Wishart densities, and q(Ω) is the product of N independent Polya-
Gammas.

This paper uses the following algorithm (Algorithm 1 from Goplerud 2022) for inference
on the above model. Note that it immediately allows any of the traditional deep MRP
models (i.e., adding many additional random intercepts and/or slopes) to be fit easily.

The remainder of this Appendix outlines the various technical extensions to Goplerud
(2022) in this paper: the Huang-Wand prior, SQUAREM, Parameter-Expansion, and splines.

A.1 Huang-Wand Prior

The choice of prior for a hierarchical model is a non-trivial task. Existing non-Bayesian
software typically employs a flat improper prior (e.g., the Laplace approximation in lme4;
Bates et al. 2015), although this has been shown to have some theoretical and empirical
problems (e.g., Gelman 2006; Chung et al. 2015). A popular choice in the case of a single
variance parameter is the half-t prior popularized by Gelman (2006) that has a tractable
form. Huang and Wand (2013) generalize this by allowing it govern multivariate variance

2

Algorithm A.1 CAVI from Goplerud (2022)

Set Priors of Inverse-Wishart: {νj,Φj}Jj=1; Set Number of Iterations: T

Initialize Variational Parameters: {b̃i, c̃i}Ni=1 (for Polya-Gamma); µ̃β, Λ̃β, µ̃α, Λ̃α (for
β,α); {ν̃j, Φ̃j}Jj=1 (for Σj)
For t in 1, · · · , T

1. Update Polya-Gammas - q
(
{ωi}Ni=1

)
: b̃i = ni, c̃i =

√
Eq(α,β) [(xT

i β + zT
i α)2]

2. Update q(β) ∼ N(µ̃β, Λ̃β):

Λ̃β =

(
N∑
i=1

Eq(ωi)[ωi]xix
T
i

)−1

, µ̃β = Λ̃βX
T

(
N∑
i=1

(
yi −

ni

2

)
− Eq(ωi)[ωi] · zT

i Eq(α)[α]

)

3. Update q (αj) ∼ N(µ̃α,j, Λ̃j,α), where Tj stacks the block diagonal expectation of
the precision on the random effects (Σ−1

j):

Λ̃α,j =

(
Tj +

N∑
i=1

Eq(ωi)[ωi]zi,jz
T
i,j

)−1

, Tj = Eq(Σj)

[
Igj ⊗Σ−1

j

]

µ̃α,j = Λ̃α,jZ
T
j

 N∑
i=1

(
yi −

ni

2

)
− Eq(ωi)[ωi] ·

xT
i Eq(β)[β] +

∑
ℓ:{1,··· ,J}\j

zT
i,ℓEq(αℓ)[αℓ]

4. Update q

(
{Σj}Jj=1

)
: ν̃j = νj + gj, Φ̃j = Φj +

∑gj
g=1Eq(αj,g)

[
αj,gα

T
j,g

]
5. Check for convergence, evaluate ELBO (see Goplerud 2022).

parameters (e.g., for a random slope and intercept). Their prior is shown below in both
its mixture and marginal formulations (p. 441) where Σ is a positive definite matrix of
dimensionality p× p.

Σ|{ak}pk=1 ∼ InverseWishart (ν + p− 1, 2ν · diag(1/a1, · · · , 1/ap)) ;
ak ∼ InverseGamma(1/2, 1/A2

k); ∀k ∈ {1, · · · , p}
(A.5a)

p(Σ) ∝ |Σ|−(ν+2p)/2 ·
p∏

k=1

[
ν(Σ−1)kk + 1/A2

k

]−(ν+p)/2
(A.5b)

They note some desirable properties; first, the marginal distributions on the standard
deviations of Σ have the half-t formulation proposed by Gelman (2006). Further, if ν = 2,
then the prior implies a uniform distribution on the correlations between any two components
of the prior. Second, for larger Ak, the prior can be made increasingly less informative while
still remaining proper. Thus, it provides a way to stabilize the model slightly while not
heavily distorting the posterior inferences.

In terms of variational inference, Huang and Wand (2013) show it can be easily put

3

into a coordinate ascent variational framework. Specifically, if one modifies the factorization
assumption in Result A.1 above to assume independence between Σj and {aj,k}

dj
k=1, the

resulting approximate posterior has an Inverse-Wishart distribution on Σj and independent
Inverse-Gamma distributions on {aj,k} because of the conditional conjugacy. Result A.2
presents the updates for an algorithm with this prior.

Result A.2 (CAVI with Huang-Wand Prior). Consider the model in Equation A.1 where the
prior on Σj is replaced with a Huang-Wand prior (Equation A.5) with hyper-parameters νj

and Aj,k. The augmented posterior can be expressed as: p
(
β,α, {ωi}Ni=1, {Σj, {aj,k}

dj
k=1}Jj=1|y

)
.

Consider the following proposed factorization:

XHW = q(β)
J∏

j=1

[[
q(αj))q({aj,k}

dj
k=1)

]
q(Σj)

]
q(Ω)

Each step of CAVI can be implemented in closed form with no additional assumptions.
The approximating distributions on β, α, Ω, Σj have the same distributional form as in
Result A.1. The factorization on q({aj,k}) is the product of independent Inverse-Gamma
densities.

The algorithm can be estimated as follows: Replace Step 4 in Algorithm A.1 as follows:

• Update q({Σj}Jj=1): ν̃j = νj+dj−1+gj; Φ̃j = 2νj·diag
(
Eq(aj,k)[1/aj,k]

)
+
∑gj

g=1Eq(αj,g)[αj,gα
T
j,g]

• Update q({aj,k}): q(aj,k) ∼ InverseGamma(ãj,k, b̃j,k)

ãj,k =
νj + dj

2
and b̃j,k = 1/A2

j,k + νj
[
Eq(Σj)[Σ

−1
j]
]
k,k

Given the tight coupling of Σj and aj,k and the relatively cheap cost of the updates,
the accompanying software performs this update a handful of times at each iteration, i.e.
approximating optimizing both simultaneously. In all applications in this paper, I set νj = 2
and Aj,k = 5. To illustrate the importance of this prior and the reasonableness of the
variational approximation, consider the following stylized example: Conditional on the ran-
dom effects αj,g, does the Huang-Wand prior, its variational approximation, or the default
Inverse-Wishart in Goplerud (2022) (i.e., ν = d + 1,Φ = I or a0 = 1, b0 = 1/2 for the
Inverse-Gamma) capture the true value well? To test this, I considered a scenario where
Σj = 0.001 (i.e., very small) and Σj = 4 (i.e., large). I drew twenty samples from the cor-
responding normal, i.e. gj = 20, and estimated the posterior or variational approximation.
Figure A.1 shows the results.

The mis-calibration of the Inverse-Wishart prior is obvious when Σj = 0.001, the result-
ing posterior is far too large—implying considerable under-shrinkage/regularization on the
random effect estimates. This corroborates the concern in the main text that, especially for
irrelevant random effects, the Inverse-Wishart prior will perform poorly. By contrast, the
Huang-Wand prior is reasonably well-calibrated in both scenarios. The variational approxi-
mation is also rather good; it can correctly shrink irrelevant random effects by setting Σj to
a small value, while closely approximating the true value for large ones.

4

Figure A.1: Comparison of Posterior Estimates

0

25

50

75

100

0.05 0.10 0.15
Posterior on Σj (Sqrt−Scale)

D
en

si
ty

(a) Σj = 0.001

0.0

0.5

1.0

1.5

2.5 5.0 7.5 10.0 12.5
Posterior on Σj (Sqrt−Scale)

D
en

si
ty

(b) Σj = 4

Method: Huang−Wand Inverse Gamma VI

The solid orange line shows the posterior estimates with an Inverse-Gamma(1, 0.5) prior. The dot-dashed
black line shows the posterior from the Huang-Wand prior; the dashed blue line shows the variational
approximation.

A.2 SQUAREM

The models used in this paper employ a simple acceleration technique that maintains the
monotonic convergence. Originally developed for Expectation-Maximization algorithms,
SQUAREM (Varadhan and Roland 2008) is a squared iterative method that proceeds as
follows in the application to variational inference. Noting that one can group all of the
variational parameters into a block called θ, the SQUAREM algorithm can be adapted from
Table 1 in Varadhan and Roland (2008) as shown below.

The above algorithm has many desirable properties; first, the final backtracking step (Step
7) ensures that it cannot decrease the objective and thus maintains monotonic convergence
of the variational algorithm. Second, it is rather inexpensive to compute—it only requires
the evaluation of the objective function at the proposed parameter vector θ∗ after performing
three steps of the algorithm. Thus, the implementation of SQUAREM attempts to accelerate
the model every three steps. In practice, it usually succeeds after no more than a few
backtracking steps.

One additional modification is required for the above application: Given that many of
the variational parameters are bounded (e.g., positive or symmetric matrices), I transform
all parameters to live on an unbounded scale before applying SQUAREM. This ensures that
all proposed θ∗ are valid regardless of the choice of α. For positive-constrained parameters, I
take the log; for matrices, I take either the Cholesky decomposition or the LU decomposition
and perform element-by-element SQUAREM where elements that are constrained to be
positive are logged.

5

Algorithm A.2 SQUAREM (from Table 1 of Varadhan and Roland 2008)

1. Begin with initial parameters θ(0)

2. Perform one step of CAVI (i.e., one step from Algorithm A.1) to get θ(1).
3. Perform a second step of CAVI (i.e., one step from Algorithm A.1 using θ(1) as initial
values) to get θ(2).
4. Define the following quantities: r = θ(1) − θ(0);v = (θ(2) − θ(1))− r
5. Calculate the step-length for SQUAREM α using the following formula:

α = min (−||r||2/||v||2,−1)

6. Propose a new θ∗ such that θ∗ = θ(0) − 2αr + α2v
7. Evaluate whether the new θ∗ increases the objective (ELBO). If it does, set θ∗ as the
new parameter estimates. If not, propose a new α← (α− 1)/2 and try again. Note that
if α = −1, then θ∗ = θ(2).

A.3 Parameter-Expansion

Another way to improve the speed of estimation is parameter expansion. It proceeds as
follows: Note that Equation A.1 assumes a mean-zero prior on the random effect αj,g:
αj,g ∼ N(0,Σj). Goplerud (2022) provides the following definition of a parameter expansion
below where the random effects are linearly transformed, and all other parameters adjusted,
such that the log-posterior remains unchanged.

Definition A.1 (Expansions for Hierarchical Models). Define a set of expansion parameters
ξ that consists, for each j, of a mean shift µj ∈ Rdj and a scale shift Rj ∈ Rdj×dj such that
Rj is invertible. I use superscript X to denote the “expanded” parameters. The mapping
between θX and θ for a fixed ξ is denoted as tξ(θ

X) and listed below. Mj is a p× dj matrix
such that [Mj]a,b = 1 if the covariate corresponding to [zi,j]b is the same as the covariate
for [xi]a. All other elements of Mj are zero. For simplicity, assume that each element of zi

corresponds to some variable in xi, i.e. that each column of Mj has exactly one non-zero
element.

[
β,α, {Σj}Jj=1,Ω

]
= tξ([β

X ,αX , {ΣX
j }Jj=1,Ω

X]) =

β = βX +

∑J
j=1MjRjµj

αj,g = Rj

(
αX

j,g − µj

)
Σj = RjΣ

X
j R

T
j

Ω = ΩX

The augmented model is listed below for an important special case treated in detail (“Mean
Expansion”) in the empirical analysis. The full expansion (“Translation Expansion”) is also
listed.

6

• Mean Expansion: Assume all Rj = Idj .

ln p(yi|ωi,β
X ,αX) ∝ sT [XβX +ZαX]− 1/2[XβX +ZαX]TΩ[XβX +ZαX]

p(βX) ∝ 1, αX
j,g|ΣX

j ,∼ N
(
µj,Σ

X
j

)
, p(ΣX

j) ∼ IW (νj,Φj)

• Translation Expansion:

ln p(yi|ωi,β
X ,αX) ∝ sT [XβX +ZRαX]− 1/2[XβX +ZRαX]TΩ[XβX +ZRαX]

R = blockdiag
(
{Igj ⊗Rj}Jj=1

)
, p(βX) ∝ 1, αX

j,g|ΣX
j ∼ N

(
µj,Σ

X
j

)
p(ΣX

j) ∼ IW (νj,R
−1
j ΦjR

−T
j)

With this definition, Goplerud (2022) applied a procedure known as PX-VB (Parameter-
Expanded Variational Bayes; Jaakkola and Qi 2007) to improve convergence. His restatement
of the result from Jaakkola and Qi (2007) is provided below:

Lemma A.1 (Parameter Expanded Variational Bayes - Jaakkola and Qi 2007). Given some
factorization assumption X , the following procedure converges no slower than the associated
CAVI algorithm and maintains a monotonic improvement of the ELBO.

1. Perform one step of CAVI (e.g., Algorithm A.1, Steps 1-4) giving q(θ) and ELBOq(θ).

2. Noting q(θ) ∼d q(θX) when ξ = ξNull and thus ELBOX−ξNull

q(θ) = ELBOq(θ), maximize

the ELBOX−ξ
q(θ) over ξ.

ξ̂ = argmax
ξ

ELBOX−ξ
q(θ) = argmax

ξ
Eq(θ)[ln p

X(y,θ|ξ)]− Eq(θ)[ln q(θ)]

Note that ELBOX−ξ̂
q(θ) ≥ ELBOq(θ).

3. Apply the reduction function to recover a distribution on the original, non-expanded
space. Equivalently, transform q(θ) by applying a change-of-variables using tξ̂(θ).

q′(θ) =

∫
tξ̂(θ)q(θ)dθ

Note that ELBOq′(θ) = ELBOX−ξ̂
q(θ) and ELBOq′(θ) ≥ ELBOq(θ).

Using this result, Goplerud (2022) assumes that there is only a mean-expansion, i.e. αX
j,g

has some non-zero mean, and derives a closed-form update for the parameter expansion step.
This involves centering each random effect to be mean-zero and adjusting the corresponding
fixed effects to keep the expected linear predictor constant.

This paper extends this work further by analyzing a PX-VB method for the transla-
tion expansion where αX

j,g is not only given a non-zero mean but is multiplied by some
matrix Rj. Assume that the random effects have been adjusted to be mean zero and
thus the only expansion term is {Rj}Jj=1. Examining the objective (ELBO) and collecting

7

terms—given the factorization (Scheme I from Goplerud (2022)) assumed in this paper–
results in the following objective. I use ρ to denote the stacked vectorized Rj matrices:
ρT =

[
vec(R1)

T , · · · vec(RJ)
T
]
. To build a more tractable algorithm, I also update the

mean parameter of the variational distribution on β (µ̃β) simultaneously to the expansion
parameters. For simplicity, I focus on the random effects in Equation A.1, but splines are
included similarly.

ELBOX−ξ
q(θ) ∝ sT (Xµ̃β +Bρ)− 1

2
(Xµ̃β +Bρ)T Eq(Ω)[Ω] (Xµ̃β +Bρ)+

− 1

2
ρT

(
N∑
i=1

Eq(ωi)[ωi]K
T
i Ki

)
ρ +

J∑
j=1

−νj· ln|Rj| −
1

2
tr
(
R−1

j Φj

[
R−1

j

]T
Eq(Σj)[Σ

−1
j]
)

where bij = Eq(αj,g[i])[αj,g[i]]⊗ zb
i,j bTi = [bTi1, · · · , bTiJ] B =

 bT1
· · ·
bTN

LT

ijLij = Var(αj,g[i]); kij =
(
Lij ⊗ [zb

ij]
T
)

Ki = [ki1, · · · ,kiJ]

(A.6)

Note that the third line (−νj ln |Rj| · · ·) represents the contribution of the prior; if this
did not exist, then there is a closed-form update for the expansion parameters ρ. However,
for most choices of prior, this is intractable. Thus, I rely on a “one-step-late” idea for
parameter expansion; Van Dyk and Tang (2003) apply a similar logic in the parameter-
expanded EM case. The idea is to take the gradient but evaluate the gradient with respect
to the intractable prior term as its null value, i.e. Rj = Idj . By setting the modified gradient
equal to zero, one obtains the following update for (ρ, µ̃β) where 0p is a vector of zeros with
the dimensionality of β.

ρ̂, ˆ̃µβ ≜ 0 = [XB]Ts−[
[XB]TEq(Ω)[Ω][XB] +

(
0p×p 0p×

∑
j d

2
j

0∑
j d

2
j×p

∑N
i=1Eq(ωi)[ωi]K

T
i Ki

)](
µ̃β

ρ

)
+[

0T
p , {vec

(
−νjI + Eq(Σj)[Σ

−1
j]Φj

)T}Jj=1

]T
(A.7)

However, because of the one-step-late approximation, it is not guaranteed that these pro-
posed updates (ρ̂, ˆ̃µβ) will improve the objective. Thus, to ensure monotonic convergence, if
it does not increase the objective, the software performs a few steps of numerical optimiza-
tion (e.g., L-BFGS-B). Given availability of an analytic gradient and the modest size of the
problem (the size of µ̃j plus

∑
j d

2
j), this is fairly inexpensive. In the case of a Huang-Wand

prior, better performance is obtained by profiling out the b̃j,k parameters and performing

8

parameter expansion on this objective.

A.4 Splines

Consider the case of a single spline on a covariate xi such as presidential two-party vote
share. I follow Ruppert, Wand and Carroll (2003)’s presentation of splines as a hierarchical
model as shown below. I present the simplest case of truncated linear functions as deviations
from a globally linear trend; other extensions (e.g., to penalized B-splines; Eilers and Marx
1996) are straightforward.

The accompanying software follows the common strategy of using max (Nx/4, 35) knots
where Nx is the number of unique values of {xi} and the knots placed at equally spaced
quantiles of the distribution of {xi} (e.g., Ruppert, Wand and Carroll 2003); user-defined
choices are possible.

yi ∼ Bern(pi); pi =
exp(ψi)

1 + exp(ψi)
; ψi = β0 + β1xi +

K∑
k=1

γk (xi − κk)+ ;

γk ∼ N(0, σ2
γ); p(β0, β1) ∝ 1; σ2

γ ∼ p0(σ
2
γ); (xi − κk)+ =

{
0 if xi < κk

xi − κk if xi ≥ κk

(A.8)

Note that as σ2
γ → 0, i.e. the estimated random effect variance declines, the model

collapses to one with a simple linear effect on the predictor xi. As σ2
γ becomes large, the

estimated effect becomes increasingly “wiggly”. As in a normal random effect model, the
data (and prior) thus determines the smoothness of the effect on xi. Given that this model
has one additional hierarchical term, it fits into the general design framework noted above
(Equation A.1). If a spline on a second variable wi were desired, it would be governed by a
different variance parameter (e.g., σ2

γ′) and enter as a second additional hierarchical term.
One important extension is to allow “factor-by-curve” splines, i.e. interactions between

a spline and a categorical factor (Ruppert, Wand and Carroll 2003). This would allow,
for example, the effect of presidential vote share to vary by education in a smooth fashion.
In the most common formulation (again see Ruppert, Wand and Carroll 2003), the linear
“fixed” component of the spline is not regularized and thus a baseline category is omitted.
As that may over-fit, I present a slightly modified version where (i) the linear component is
regularized and (ii) the smooth components share a variance component. The linear predictor
for the binomial model is shown below. I focus on a single continuous covariate xi and some
factor j that has gj levels where zi ∈ {1, · · · , gj} denotes the value for observation i.

9

ψi = β0 + β1xi +
K∑
k=1

[
γk,Global(xi − κk)+

]
+

Gj∑
g=1

I(zi = g)

[
(α0,g + α1,gxi) +

K∑
k=1

γk,g (xi − κk)+
]
;

γk ∼ N(0, σ2
γ,Global); [α0,g, α1,g]

T ∼ N(0,Σα); γk,g ∼ N(0, σ2
γ)

p(β0, β1) ∝ 1; σ2
γ,Global ∼ p0(σ

2
γ,Global); Σα ∼ p0(Σα); σ2

γ ∼ p0(σ
2
γ)

(A.9)

The model consists, therefore, of (a) a linear effect on xi, (b) deviations from this linear
effect by group g as a random slope/intercept combination, (c) a smooth effect on xi, and
(d) deviations from this smooth effect by group g. This formulation scales nicely to the
case where the same continuous covariate (e.g., two-party vote share) has factor-by-curve for
multiple factors (e.g., by education and ethnicity). The implementation is shown below.

• Add a random slope for the continuous variable xi to each of the grouping factors, e.g.
(1 + x | g) + (1 + x | g2), etc.

• Add a global spline term corresponding to {γk,Global}Kk=1. This adds one additional
random intercept.

• Add derivations from the global spline term for each group for each of the interacting
factors. This adds an additional random intercept for each grouping factor.

Thus, it is clear that this can be fit into the standard architecture of Goplerud (2022)
for variational inference in logistic binomial models. The results are similar to existing work
on variational inference for splines. In this paper, I assume independence between each of
the spline-based random effects. I save for future explorations more detailed factorization
schemes that, for example, allow dependencies between the deviations of the spline terms.

A.5 Importance of Acceleration Techniques

This section briefly illustrates the key need for acceleration techniques when the Huang-Wand
prior is employed. The main issue when using this prior is that the model may require many
more iterations to reach convergence. While there is some additional cost to estimating the
Huang-Wand prior, the major concern is that estimation with this prior can often require
hundreds of additional iterations to converge.

Thus, techniques that reduce the number of iterations considerably can be highly desirable—
even if they increase the cost per iteration. As the discussion above notes, the cost of using
SQUAREM is dominated by a handful of extra evaluations of the ELBO and a small number
of matrix decompositions to extrapolate parameters on an unbounded scale; this is relatively
inexpensive overall. The parameter expansion can be somewhat more expensive; however,
note that it involves solving a least squares system that is only a function of the size of the
fixed effects and the dimension dj of the random effects. As this is relatively small (as only
gj, i.e. the number of levels, is often large), it can be done relatively inexpensively.

10

Table A.1: Comparing the Impact of Acceleration Techniques

(a) Number of Iterations

N IW HW Accelerated HW
250 227.98 1465.17 21.66
500 262.28 1651.98 23.11
1000 183.12 1392.8 22.21
2000 106.9 1134.54 23.09

(b) Estimation Time (seconds)

N IW HW Accelerated HW
250 18.47 274.59 7.77
500 24.03 327.52 8.55
1000 20.18 300.66 8.8
2000 15.1 279.14 10.34

Note: “IW” stands for Inverse-Wishart. “HW” stands for Huang-Wand. “Accelerated HW” uses the two
acceleration techniques discussed in the main text. See Appendix B for more details.

Table A.1 illustrates this quantitatively; first, the left panel shows the number of itera-
tions required for convergence across the simulations used in Appendix B. We see that the
number of iterations is considerably larger—often by a multiple of 5-to-10—when comparing
Inverse-Wishart (“IW”) versus the Huang-Wand (“HW”) prior. This has a correspond-
ing effect on run-time (the right panel); while the Inverse-Wishart model can be estimated
quickly in around 15-25 seconds, the Huang-Wand prior takes considerably longer (275-330
seconds). Yet, after applying acceleration techniques, the number of iterations can be re-
duced considerably—actually smaller than the original (non-accelerated) Inverse-Wishart
model—with a run time that is comparable to the original choice of prior.

B Simulations for Deep Hierarchical Models

This section provides two sets of simulations to illustrate the importance of deep MRP on
purely synthetic data. The first focuses on the “prediction” part of MRP and shows the
impact of ignoring important interactions or non-linear effects. The second replicates the
purely synthetic simulations in Ornstein (2020).

B.1 Simulation 1: Importance of Using Deep MRP

To illustrate the importance of deep MRP, this sub-section provides some simulations on
synthetic data; they are designed to show the impact of ignoring important interactions or
non-linear effects for the “prediction” part of MRP (i.e., predictive accuracy on held-out
data similar to the original survey). Equation A.10 shows the data generating process; each
model includes three continuous covariates with (possibly) non-linear functional forms1 as
well as two random effects (one with 5 levels and one with 50 levels) and their interaction.
All observations are assigned to random effect groups fully at random.

1These are adapted from mgcv’s documentation on gamSim.

11

xi,0 ∼ Unif(0, 1); xi,1 ∼ N(0, 1); Pr(xi,2 = k) = 0.01 ∀k ∈ {0, 1/99, · · · , 1} (A.10a)

f0(x0) =
1

3
· (exp(2x0)− 3.75887) ; f1(x1) =

1

2
x1;

f2(x2) = 1/4 · (0.2 · x211 · (10 · (1− x2))6 + 10 · (10 · x2)3 · (1− x2)10)− 1
(A.10b)

αg ∼ N(0, 1); αg′ ∼ N(0, 1) (A.10c)

αg,g′ = 0 · γg,g′ + νg,g′(1− γg,g′); γg,g′ ∼ Bern(pinter); νg,g′ ∼ N(0, 4) (A.10d)

ψi = f0(xi,0) + f1(xi,1) + f2(xi,2) + αg[i] + αg′[i] + αg[i],g′[i] (A.10e)

yi ∼ Bern(pi); pi =
exp(ψi)

1 + exp(ψi)
(A.10f)

The effects of three continuous predictors, f0, f1, f2, are shown below across the range of
plausible values.

Figure A.2: Effects of Continuous Predictors

f0(x0) f1(x1) f2(x2)

0.00 0.25 0.50 0.75 1.00 −2 −1 0 1 2 0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

Covariate

The contribution of the interactive random effect, indexed by αg,g′ for level g of the first
factor and level g′ of the second factor, is designed to be large to highlight the important
of missing a possibly crucial interactive effect. The one difference from a typical simulation
environment is that there is some probability pinter that the random effect αg,g′ is zero. This
allows to capture scenarios where the interaction is critically important (pinter is small) or
whether it is more irrelevant (pinter is large) as only a small proportion of observations have
some non-zero effect. In my analysis, I explore two relatively extreme cases where pinter = 0.25
(most interactions matter) and pinter = 0.99 where most interactions are irrelevant.

The prior expectation is that models that are not able to estimate interactions (e.g.,
simple MRP) should do considerably worse for pinter = 0.25 whereas ignoring the interactions
should impose little cost in terms of predictive performance for pinter = 0.99.

12

This simulation, therefore, is designed to capture the features that deep hierarchical
models are designed to address and allows for a comparison where simple hierarchical models
are expected to do poorly. It also allows us to compare this against popular alternative
machine learning approaches to see how they compare.

I generate datasets of size N ∈ {250, 500, 100, 2000} and a corresponding test dataset
of an identical size for the same data generating process. The key quantity the simulations
consider is the out-of-sample predictive accuracy on the test data. I consider six models,
outlined below.

• Linear: This model includes only the two primary random effects, i.e. ψi = βInt +
β0xi,0 + β1xi,1 + β2xi,2 + αg[i] + αg′[i]. It is fit using lme4.

• Interaction: This model adds the interactive random effect, i.e. αg[i],g′[i] to the above
model. It is fit using lme4.

• Deep: This model adds splines for each continuous predictor to the model in addition
to αg[i],g′[i]. It is fit using the variational approach.

• Deep (IW): This model uses an Inverse-Wishart prior instead of the Huang-Wand prior.

• BART: This model is fit using bartMachine on the default settings.

• Ensemble: This includes an ensemble of a random forest, BART, and LASSO (with
interactions between the two random effects). It does not include any hierarchical
models.

Figure A.3 presents the root mean-square error (RMSE) on the out of sample predic-
tions across each level of sparsity and sample size. The results are averaged across 1,000
simulations.

Consider first the panel where interactions are highly important pinter = 0.25. In this
case, a simple hierarchical model that includes neither interactions nor splines (“Linear”)
does very poorly compared to other models. Adding the interactions improves performance
considerably, and a model that includes both splines and interactions performs the best.
Note that, in this case, BART performs about the same as the simple hierarchical model for
small sample sizes, but its advantage grows as it is given more data. However, it is always
beaten by considerable margins compared to hierarchical models that include interactions.

Consider now a case where the interactions are mostly irrelevant (pinter = 0.99). In this
case, simple hierarchical models and the hierarchical model with interactions do about the
same as there is little cost to ignoring the (rare) interactions. By contrast, BART does
noticeably better in this setting as it is able to capture the non-linearity of the continuous
predictor effectively. At the smallest sample size, however, all three methods perform about
the same. It is worth noting that the hierarchical model with interactions and splines again
does the best insofar as it can effectively capture the smooth non-linear functional forms
using splines even at small sample sizes. Even though the model includes interactions that
are irrelevant, this does not materially harm its performance as they are likely aggressively
regularized. Indeed, experimentation with a clearly “overfit” hierarchical model (i.e., allow-
ing the splines to vary across the categorical factors—a feature that is not present in the data

13

Figure A.3: Performance of Models on Simulated Data

●

●

●

●

●

●

●
●

pinter = 0.25 pinter = 0.99

250 500 1000 2000 250 500 1000 2000
0.40

0.42

0.44

0.46

Sample Size

R
M

S
E

Method:
● Linear

Interaction

Deep

Deep (IW)

BART

Ensemble

generating process) does about the same suggesting that, in many cases, the regularization
in hierarchical models is reasonably robust against preventing severe overfitting even when
the model is simpler than the exact one specified.

Finally, we note that the use of the Inverse-Wishart prior (“Deep (IW)”) in Goplerud
(2022) results in slightly worse performance across both simulation settings and most sample
sizes. This agrees qualitatively with the results in Appendix D that shows the “Deep (IW)”
model performs worse for small sample sizes in both performance on held-out data and error
for MRP.

I also conducted an analysis of ensembles using this synthetic formulation. I find that of
an ensemble that includes LASSO, random forest, BART, and the hierarchical methods, the
same story found in the main paper holds—the deep methods are given increasing weight as
N increases and are the dominant method for large sample sizes. Yet, as Figure A.3 shows,
an ensemble that excludes hierarchical models performs considerably worse than the deep
hierarchical model on its own.

B.2 Simulation 2: Full Replication of MRP

This second set of simulations uses the data-generating process from the simulations in
Ornstein (2020). Unlike most applications of MRP, the data generating process has a linear
outcome and is designed to show the power of machine learning that can capture non-linear
continuous effects—as they are given meaningful continuous predictors (e.g., “latitude” and
“longitude”) that are not made available to the MRP model. Thus, it is an interesting
question how deep MRP fares in this challenging scenario where the importance of continuous
predictors is especially stark.

I thus exactly replicate the analysis in Ornstein (2020), although I run 200 simulations

14

for each parameter configuration instead of ten. The generative model is shown below. The
two key parameters are θ (controlling the amount of non-linearity and interactivity) and ρ
(controlling the correlation between the features). Note that zi are unobserved and the MRP
models rely on only the observable xi,1, xi,2, unit membership g[i], and unit-level continuous
predictor λg[i]. Some of the machine learning methods (KNN, GBM, Forest) incorporate
latg and longg directly. This exactly follows Ornstein (2020). Thus, this is a difficult test for
MRP given that it does not include certain clearly important variables and, rather, only a
discretized proxy. The group g is assigned to be equal size such that observations with the
smallest value of zi,4 are assigned to Unit 1, the next set of observations are assigned to Unit
2. Each unit has Ng observations. There are 200 units.

yi = zi,1 + zi,2 + zi,3 + θ(D0
g[i]zi,1zi,2 −D1

g[i]zi,1zi,3) + ϵi; ϵi ∼ N(0, 25) (A.11a)

[zi,1, zi,2, zi,3, zi,4]
T ∼ N(0,Σ); Σi,j = I(i = j) + ρI(i ̸= j) (A.11b)

xi,j = f(zi,j) j ∈ {1, 2}; f(z) = 1 + I(z ≥ 0) + I(z ≥ 1) + I(z ≥ 1) (A.11c)

D0
g =
√
2−

√
lat2g + long2g; D1

g =

√
lat2g + long2g

2
(A.11d)

latg, longg ∼ Unif(0, 1); λg =
1

Ng

∑
i:g[i]=g

f(zi,3) (A.11e)

The simulation proceeds by drawing a “population” of 15,000 observations for each of the
200 units. Then, a sample of some size (e.g., 1,500) is taken at random for the “survey”. A
model is fit to that sample, and then the results are post-stratified with the true population
average as the ground truth. Please see Ornstein (2020) for further details.

For MRP, I include random effects for xi,1, xi,2 and unit g. I also include the unit-level
continuous predictor λg linearly. Deep MRP adds the “two-way” interactive model in the
main text, i.e. interactions between xi,1 and xi,2, xi,1 and unit g, xi,2 and unit g.

Figure A.4 shows the weights from the corresponding ensemble of five methods. We see, as
expected, that deep MRP receives increasing weight as the sample size increases. It is almost
always the highest or second highest-weighted method, although it is less important when
both ρ (correlation between covariates) and θ (interactivity) are extremely high. This is again
likely because, when examining the cross-validated error used when fitting the ensemble,
Deep MRP performs well at all parameter configurations and sample sizes. In many cases,
it has the lowest RMSE and, even in case where it is given low weight in the ensemble, it
is highly competitive and is never more than five percentage points worse than the main
high-performing competitor of KNN.

Next, I examine the performance of Simple MRP, Deep MRP, the top-performing machine
learning method (KNN), and the ensemble in terms of average RMSE for the post-stratified
estimates. I also show an ensemble that does not include any hierarchical models. We see
that there is little difference between simple MRP and deep MRP for small-to-moderate
amounts of heterogeneity and that both perform noticeably better than the ensemble that
does not include any hierarchical models—even at a sample size of 2,000. Thus, for those
scenarios, (deep) MRP appears to be a critical component of the ensemble’s performance.

15

Figure A.4: Average Weight in Ensemble

In the cases where the hierarchical models perform less well (i.e., large heterogeneity θ and
correlation ρ), we see that while performing less well than KNN, deep MRP improves upon
simple MRP.

Figure A.5: Average RMSE for Post-Stratified Estimates

Overall, even in a challenging case where the simulations are designed to be very difficult
for MRP given the importance of continuous predictors, MRP still performs well.

16

C Estimation Time

This section provides a direct comparison of the estimation times of the algorithms considered
across the various simulations in this paper. Table A.2 reports the estimation time for three
settings (purely synthetic simulations [Appendix B.1], ensembles [main paper], and BART
[main paper]). It shows that, in all cases, deep MRP estimated with variational inference
is highly competitive in terms of time need for estimation. All of the models are estimated
using a single core and 8 GB of memory. All times are the average time in seconds, averaged
across all models estimated for a particular sample size.

Across a variety of sample sizes and different model complexities, we see that deep MRP
(i.e., including many interactions) is highly competitive in terms of estimation time with
other ML methods. When comparing against BART (Panel C), we see that even the most
complex variational model is within 15 seconds of BART on average. For the largest data
sizes (e.g., 10,000), we see that the variational methods are actually faster than BART.2

Look beyond BART, the ensemble analysis (Panel B) shows that the variational meth-
ods are considerably faster than other standard machine learning techniques (e.g., random
forests, K-nearest neighbors, etc.). The reason for this speed gain is that those models require
tuning of the hyper-parameters (Ornstein 2020) such as the number of variables included in
each tree for a random forest. By contrast, hierarchical models do not require explicit tun-
ing of the amount of regularization as it is estimated internally in the model. This provides
considerable savings in terms of cost of estimation.

In the synthetic examples, I also compare the variational model against the same model
(i.e., three splines and interaction random effects) estimated using mgcv (via gamm4). It is
considerably faster, especially as the sample size grows.

D Additional Empirical Results: Ensemble

This section outlines additional empirical results for the ensemble analysis replicating Orn-
stein (2020). The only substantial modification is adjusting the replication archive where a
linear hierarchical model is used in the ensemble instead of a logistic hierarchical model.

I briefly describe how the ensemble was created using the standard “stacking” procedure—
see Ornstein (2020) for a detailed discussion. I split the data into K = 5 folds. For each fold
k, the model is estimated using the other folds and an out-of-sample prediction is obtained
for each observation in fold k. Thus, out-of-sample predictions are constructed for the entire
training dataset and each model. Those out of sample predictions are then used to construct
the ensemble weights. The constituent models are then fit on the entire training dataset and
a weighted average of their predictions is constructed. This is then post-stratified.

The power of the ensemble versus its constituent methods is illustrated in Figure A.6. It
shows the percentage gap in mean absolute error (MAE) versus the ensemble of five methods
reported in Figure 2. For model k, the table reports (MAEk −MAEEns) /MAEEns ·100 where
MAEEns reports the MAE for the five-model ensemble in the main text. A positive number

2Note that the time needed for the variational methods for this panel include the time for predicting on
the census data.

17

Table A.2: Timing of Methods

(a) Synthetic (Appendix B.1)

N Simple Inter Deep BART GAMM4
250 0.26 0.62 7.77 2.25 10.14
500 0.3 0.9 8.55 2.66 19.61
1000 0.47 1.38 8.8 4.94 34.86
2000 0.79 2.2 10.34 9.85 59.35

(b) Ensemble (Main Text)

N
Methods in Ornstein (2020) Variational Methods for MRP

MRP LASSO KNN Forest GBM Simple Deep Spline Combined Deep (IW)
1500 2.33 0.94 160.88 94.63 1232.07 3.51 15.93 7.32 22.91 10.55
3000 3.52 1.47 201.14 202.22 1384.28 3.58 17.73 7.94 25.4 11.26
5000 5.13 2.15 235.51 252.15 1484.34 3.79 20.48 8.74 29.05 11.9
7500 7.31 3.04 296.54 322.59 1618.11 4.12 23.84 9.8 33.42 13.27
10000 9.85 3.84 362.99 396.81 1769.78 4.54 27.19 10.98 37.64 15.08

(c) BART (Main Text)

N Simple Deep Spline Combined BART
1500 4.1 18.94 8.39 26.04 13.2
3000 4.31 22.64 9.3 30.73 21.05
4500 4.55 26.87 10.3 35.64 30.01
6000 4.99 31.92 11.71 41.72 41.04
7500 5.15 34.97 12.44 45.97 50.87
10000 5.53 41.26 13.88 52.82 68.76

Note: All times are in seconds and averaged across all surveys and/or simulations. In Panel (a), “Simple”
and “Inter” refer to models estimated using lme4 with no interactions or interactions, respectively. “Deep”
refers to a model fit using the variational methods in this paper that include the random effect for interaction
as well as splines for each continuous covariate. “GAMM4” represents the model with interaction random
effects and splines fit with gamm4. In Panel (b), the methods correspond to the four variational models
estimated in the main text; see Table 1 in the main document for details. Appendix D provides more details
on the other methods. In Panel (c), the methods correspond to the models described in the main text and
below (Appendix E).

18

Figure A.6: Relative Mean Absolute Error of Ensembles and Constituent Methods

Deep (IW)

Combined

Spline

Deep

Simple

GBM

Forest

KNN

LASSO

MRP

All Methods

Ornstein

1500 3000 5000 7500 10000
Size

M
et

ho
d

0 10 20 30

% Worse than
Ensemble:

Note: This plot reports the percentage point gap in mean absolute error between an ensemble of five
methods and alternative specifications. Figure 2 describes the abbreviations. Diagonal stripes indicate that
the ensemble in the main text out-performs this competitor by at least 5%.

(blue) indicate the model performs worse than the ensemble; a negative indicates that it
beats the ensemble.

I also show the performance of the original ensemble reported in Ornstein (“Ornstein”)
and an ensemble that includes ten methods (the five in Ornstein; five variational MRP
specifications - “All Methods”). Recall that “MRP” refers to a simple MRP fit with the
Laplace approximation and flat prior using glmer.

A key implication of Figure A.6 shows that individual models usually perform noticeably
worse than the ensemble in almost all circumstances and by often non-trivial margins (e.g.,
more than 5%). Put another way, every constituent method performs more than 5% worse
than the ensemble at some sample size examined.

I next show the ensemble weights that come from the ‘All Models” ensemble that puts
together many different MRP specifications into a single ensemble. The six MRP models
(MRP with Laplace approximation and flat prior [“MRP”] and the five variational models)
are given, collectively, around 40-50% of the weight.

The table also shows an expected but important trade-off between simple and deep MRP;
as sample size increases, the deep MRP models (e.g., “Deep” and “Combined”) are given
increasing weight whereas the traditional MRP models (e.g., “MRP” and “Simple”) are given
decreasing weight. This is reasonable as the ensemble upweights more complex methods as
the amount of data increases. The relatively weak performance of the spline-based methods
(e.g., “Spline” and “Combined”) may be due to the limited variation in the continuous
variables as they are measured at the state-level.

19

Table A.3: Weights Given to Models in Ensemble

Sample
Size

Methods in Ornstein (2020) Variational Methods for MRP

MRP LASSO KNN Forest GBM Simple Deep Spline Comb.
Deep
(IW)

1500 0.119 0.071 0.207 0.042 0.285 0.107 0.061 0.040 0.014 0.053
3000 0.125 0.049 0.176 0.050 0.220 0.139 0.095 0.056 0.029 0.060
5000 0.094 0.047 0.168 0.045 0.210 0.140 0.114 0.073 0.032 0.078
7500 0.065 0.039 0.147 0.032 0.239 0.111 0.167 0.061 0.050 0.088
10000 0.050 0.041 0.138 0.038 0.247 0.102 0.167 0.057 0.060 0.098

Note: This table shows the ensemble weights averaged across all simulations. The first five columns include
a hierarchical model fit with a flat prior and Laplace approximation (MRP), LASSO, k-Nearest Neighbors
(KNN), a random forest (Forest), and a gradient boosting machine (GBM). The next four columns report
hierarchical models estimated with variational inference and a Huang-Wand prior; “Comb.” stand for the
“Combined” model. The final column (“Deep [IW]”) reports the results of the deep model using the Inverse-
Wishart prior discussed in the main text.

E Additional Empirical Results: BART

This section outlines additional empirical results for the analyses comparing MRP against
BART. I begin by explaining the error in the replication data for Bisbee (2019) and then
provide additional analyses re-examining the main analyses in the paper.

E.1 Explanation of the Prediction Error

I began by examining the replication code on the paper’s Dataverse.3 The problem arises in
the predict stage on the lines colored in red and blue.

mrp.form <- as.formula("y ~ pvote + religcon + (1|age) + (1|educ) + (1|gXr)

+ (1|stateid) + (1|region)")

...

temp<-catch.warning(glmer(mrp.form,

family=binomial(link="logit"),

data=sample.data))

model<-temp$value
mrp.warn<-ifelse(is.null(temp$warning)==T, 0, 1)

ranvars <- names(ranef(model))

full.ranefs <- rep(list(NA),length(ranvars))

i = 1

3See doi:10.7910/DVN/LMW871, Version 1.1

20

doi:10.7910/DVN/LMW871

for(rv in ranvars) {

full.ranefs[[i]]<- data.frame(effect = rep(NA,length(unique(census.data[,rv

]))))}

rownames(full.ranefs[[i]]) <- as.character(c(unique(census.data[,rv])))

for(j in as.character(unique(census.data[,rv])))\{

full.ranefs[[i]][j,1] <- ranef(model)[rv][[1]][j,1]}

}

full.ranefs[[i]][,1][is.na(full.ranefs[[i]][,1])] <- 0

i = i+1

}

names(full.ranefs) <- ranvars

if(length(fixef(model)) > 1) {

fevars <- names(fixef(model))[2:length(fixef(model))]

feres <- apply(sapply(fevars, function(fe) fixef(model)[fe]*census.data[,fe

]),1,sum)

} else {

feres <- 0

}

Create a prediction for each cell in Census data

res <- 0

for(rv in ranvars) {

temp <- full.ranefs[[rv]][census.data[,rv],1]

res <- res+temp

}

mrp.p <- invlogit(fixef(model)["(Intercept)"]

+ res

+ feres)

The problem is that when unique is called in R, it does not sort the values. Thus,
unique(census.data[,rv]) depends on the order of the rows in the data. For example, if
the first values of some column x were, “1, 1, 3, 2, 4, 5,...”, then unique would return “1, 3,
2, 4, 5”. This creates a discrepancy between the code in red and blue when the predictions
are assigned to post-stratification cells.

This causes a critical problem: Arbitrarily reshuffling the row order on the test data will
give different predictions. The effect is to randomly inject noise by sometimes arbitrarily
giving certain post-stratification cells the wrong random effect depending solely on the order
of the rows in the test data (census data). A safe method for predicting would be to use
the inbuilt predict function from the lme4 package. In my replication analysis, I call this
second function on the identical fitted model from lme4.

mrp.p.correct <- predict(model, newdata = census.data, allow.new.levels =

TRUE, type = ’response’)

21

I have also found that modifying the red line to include a sort appears to solve the
problem, although I have not tested this extensively.

rownames(full.ranefs[[i]]) <- as.character(

c(sort(unique(census.data[,rv])))

)

In terms of raw impact, across all sample sizes, simulations, surveys and states, the mean
absolute error of the custom prediction method is 0.043; the mean absolute error using the
inbuilt predict function is 0.029—nearly 50% smaller versus the incorrect method. As
another test, if the custom prediction function in the replication archive was correct, these
predictions should be perfectly correlated. Figure A.7 shows the relationship between the
state-level predictions between the two models. They are not identical; the correlation is
0.97. While this is high, note the visual inspection shows considerable variability.

Figure A.7: Comparing Prediction Methods

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Bisbee 2019 Prediction

C
or

re
ct

 P
re

di
ct

io
n

1e+05 2e+05
Number of Observations:

This raises the question of why are the predictions so highly correlated given the possi-
bility of this error to inject considerable noise. The explanation is as follows: The structure
of the Buttice and Highton (2013) data (i.e., the provided order of the rows) means that, for
most random effects, unique usually returns a sensible result. Specifically, if one calls the
relevant unique on each factor, it returns an order that often is the correct numerical order.
The factor region is never in the correct order, the factor gXr (gender and race) is out of
order for about 50% of the surveys, and the factor educ is out of order in a few instances.
In those cases, if lme4 estimates the corresponding σ2

j to be degenerate and equal to zero,
the mis-aligned factors are estimated to have zero effect and the problem does not arise.4

4If one uses a package such as bglmer that puts a prior on the coefficients, then the error should occur
every time.

22

I conjectured that the problem can be made much worse by shuffling the rows of the test
data (census data) to make factors mis-aligned with a much higher probability. To illustrate
the problem, I drew a random sample of 1,500 observations from Survey 1. I fit a single
simple MRP model using lme4. I then perform predictions and post-stratification as follows:
I first randomly shuffled the rows of the census data (test data) and then used both prediction
methods. As expected, identical results are obtained using predict across all permutations.
Using the code provided above, however, the results are quite variable. The distribution
of the post-stratification error is shown in Figure A.8 where the correct prediction error is
shown with a vertical bar in red. A dashed vertical bar shows the prediction error from the
unpermuted data using the custom prediction method. It demonstrates that, if the test data
came in with some random order, the problem would likely have been even more severe.

Figure A.8: Random Permutations of Census Data

0

100

200

300

400

0.03 0.04 0.05 0.06 0.07
MAE

C
ou

nt

E.2 Additional Results for BART

In this section, I replicate other results in Bisbee (2019): (i) presenting fuller results on the
mean absolute error, (ii) comparing the correlation between methods and the truth, (iii)
showing the sensitivity to omitting state-level predictors, and (iv) sensitivity to sample size.

First, I replicate Table 2 to include all four variational methods. As above, it shows
that the spline-based methods perform slightly worse than those without splines. There
is also some interesting comparisons between the two simple formulations fit with either
the Laplace approximation and flat prior (“MRP”) and with the Huang-Wand prior and
variational inference (“Simple”). For small sample sizes, the variational method does better
by about 1.5 percentage points, although it does slightly worse as sample size becomes very
large. This suggests a more nuanced role for the prior and its interaction with sample size
that future work into MRP should explore.

23

Table A.4: Relative Mean Absolute Error versus BART

Sample Size
Method 1500 3000 4500 6000 7500 10000
MRP (Bisbee 2019) 22.55 26.29 30.95 35.18 38.78 44.25
MRP 4.52 1.66 1.22 1.07 1.07 1.08
Simple 3.08 0.12 0.21 0.61 1.15 1.84
Deep 2.61 -1.04 -1.05 -0.59 0.14 1.11
Spline 5.57 1.51 1.09 1.43 2.04 2.78
Combined 5.04 0.28 -0.32 -0.01 0.66 1.49

Note: This table reports percentage gap in mean absolute error between BART and the alternative methods;
positive numbers indicate that BART out-performs its competitor. Figures 2 and 3 describe the methods.

Following Bisbee (2019), I show the relationship between the correlation of each method’s
estimates against the truth. As before, the corrected simple MRP and deep MRP show quite
similar correlations to BART.

Figure A.9: Visualizing Performance (Correlation): MRP versus BART

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

MRP (Bisbee 2019) MRP Deep

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

MRP Correlation

B
A

R
T

 C
or

re
la

tio
n

Note: Each plot compares the correlation from an MRP method (on the horizontal axis) to the MAE from
BART (on the vertical axis). The 45-degree line is shown. Points above the line indicate that MRP performs
worse. The three methods shown are the simple MRP with flat prior, Laplace approximation, and prediction
method in Bisbee (2019) (“MRP (Bisbee 2019)”), the simple MRP with the same specifications but a correct
prediction (“MRP”), and a deep MRP fit with a Huang-Wand prior and variational inference (“Deep”).

Table A.5 show the percentage gap in correlation versus BART averaged across the 89
surveys and six sample sizes: (ρk − ρBART) /ρBART ·100 where ρBART indicates the correlation
of the estimates from the BART model and the true state-level values, averaged across 200

24

simulations. A negative number indicates that BART out-performs the other method. As
expected from the main text, BART slightly out-performs the MRP models, although at
the smallest sample size of 1,500, deep MRP has a slight edge. In general, however, the
differences are rather small. For most sample sizes, the difference in correlation between
BART and MRP is between about 0-4%.

Table A.5: Relative Correlation versus BART

Method 1500 3000 4500 6000 7500 10000
MRP (Bisbee 2019) -15.32 -16.96 -17.55 -17.84 -17.59 -17.49
MRP -4.48 -4.22 -4.24 -4.13 -3.88 -3.63
Simple -1.09 -2.12 -3.14 -3.68 -3.99 -4.28
Deep 0.38 -0.47 -1.66 -2.31 -2.91 -3.44
Spline -3.29 -3.40 -3.96 -4.36 -4.63 -4.88
Combined -1.61 -1.59 -2.25 -2.76 -3.25 -3.66

Note: This table reports the table reports the relative gap (percentage points) in correlation against the
truth between BART and the alternative methods named in each row: (ρk − ρBART) /ρBART · 100. Negative
numbers indicate that BART out-performs its competitor. The method names are as described in Figures 2
and 3.

The next result in Bisbee (2019) is about the robustness of BART to mis-specification.
The test is as follows: Remove the two contextual predictors (presidential vote share and
religiosity) and see how the mean absolute error changes (increases) and correlation changes
(decreases). The claim presented in the paper is that there are relatively minor changes to
BART in this mis-specified model whereas it dramatically impacts the performance of MRP.
Figure A.10 shows this is not the case. Both the corrected simple MRP and deep MRP lie
near the 45-degree line and seem to have similar performance to BART (i.e., similar expected
degradations in performance).

An additional claim about BART is that it can “do more with less data” (Bisbee, 2019,
p. 1063). This is tested by examining how the mean absolute error at the state-level changes
with the number of observations for that state. Bisbee (2019) does this by comparing the
regression coefficients on (scaled) number of observations and absolute error between BART
and MRP.

While a reasonable strategy, it has the limitation of conflating two points: As the above
results suggest, (traditional) MRP often has a slight disadvantage in performance versus
BART. The separate method-by-method regression has the disadvantage of comparing the
slope with respect to the number of samples but ignoring the intercept. Indeed, one might
expect that since MRP performs less well at baseline, it might be reasonably expected to
have a steeper slope. This is not necessarily evidence that it performs worse with less data,
but rather that it can “catch up” to BART quickly as the state-level sample size increases.
To illustrate this, Figure A.11 proceeds as follows: for each simulation-state estimate, it takes
the number of observations in each state and uses this to predict the state absolute error.
It uses a smooth curve to plot the relationship by the four methods under consideration in
this Appendix.5 I present results for 1,500 for simplicity. The two dashed lines indicate the

5Specifically, given the skewed distribution of the sample size per state, I use geom smooth(..., method

25

Figure A.10: Sensitivity to Mis-Specification

●●
●

●

●●

●
●

●●
●●

●

●●

●

●

●●●
●

● ●●●
●●●

●

●●●

●

●

●
●

●●

●

●●

●

●●●
●

●

●

●
●

●●
●
●

●●

●

●
● ●●●

●●
● ● ●

●
● ●

●
●●
●

●

●

●
●● ●●

●●●
●

●●
●

●
●●
●

●

●●

●
●

●●
●●
●

●●

●

●

●●●
●

●●●●
●●●

●

●●●

●

●

●
●

●●

●

●●

●

●●●
●

●

●

●
●

●●●
●

●●

●

●
●●●●
●●
●●●●
●●

●
●●
●

●

●

●
●●●●

●●●
●

●●
●

●
●●
●

●

●●

●
●

●●
●●
●

●●

●

●

●●●
●

●●●●
●●●

●

●●●

●

●

●
●

●●

●

●●

●

●●●
●

●

●

●
●

●●
●
●

●●

●

●
●●●●
●●

●●●●
●●

●
●●
●

●

●

●
●●●●

●●●
●

●●
●

●

MRP
(Bisbee 2019) MRP Deep

−
0.

06

−
0.

04

−
0.

02

0.
00

−
0.

06

−
0.

04

−
0.

02

0.
00

−
0.

06

−
0.

04

−
0.

02

0.
00

−0.06

−0.04

−0.02

0.00

MRP Sensitivity

B
A

R
T

 S
en

si
tiv

ity

(a) MAE

●

●

●
●

● ●●

●

●
●

●

●●

●
●

●

●

●●
●

●

●

●
●●

●●●
●●

●
● ●

●
●●

●
●

●

●
●

●

●
●●

●

●

●●
●●

●

●
●

● ●

●

●

●

●
●

●

●
● ●

●

●

●

●●

●

●●
●

● ●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●●●

●

●
●
●

●●

●
●

●

●

●●
●

●

●

●
●●

●●●
●●

●
● ●

●
●●

●
●

●

●
●

●

●
●●

●

●

●●
● ●

●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●

● ●

●

●●
●

●●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●●●

●

●
●
●

●●

●
●

●

●

●●
●

●

●

●
●●

●●●
●●

●
●●

●
●●

●
●

●

●
●

●

●
●●

●

●

●●●●
●

●
●

●●

●

●

●

●
●

●

●
●●

●

●

●

● ●

●

●●
●

●●
●●

●

●

●
●

●
●

●

●
●

●

●

MRP
(Bisbee 2019) MRP Deep

0.
0

0.
4

0.
8

1.
2

0.
0

0.
4

0.
8

1.
2

0.
0

0.
4

0.
8

1.
2

0.0

0.4

0.8

1.2

MRP Sensitivity
B

A
R

T
 S

en
si

tiv
ity

(b) Correlation

Note: This figure reports the change in MAE or correlation between the main specification and one that
removes the state-level continuous predictors. Negative values for MAE indicates that doing so hurts per-
formance; positive values for correlation indicates that doing so hurts performance.

25-75th percentile range of observed state-level sample sizes.
It shows limited evidence in favor of BART. While BART does perform slightly better

for the smallest sample sizes, when we are in the range of most observations (around 10-
39 observations per state), the differences are very minor in the curves. An interesting
point to note is also that the curves seem to decline more quickly (i.e., improve faster as
sample size for a state increases) for the MRP models than with BART. In total, however,
the differences between BART and all correctly specified MRP models are rather small in
substantive magnitude.

Finally, I replicate one figure from the supporting information in Bisbee (2019). Specif-
ically, a claim made is that “one possible explanation for BARP’s superior performance
across sample sizes is the method’s insulation from particularly challenging surveys”. This
is demonstrated by the inability of MRP to well-predict certain of the eighty-nine surveys
even with large amounts of data. Figure A.12 replicates the plot in the supplemental infor-
mation by plotting the mean absolute error by sample size as separate lines for each of the
eighty-nine surveys. It shows that corrected simple MRP and deep MRP both show visually
similar patterns to BART, i.e. declining error as sample size increases.

Overall, therefore, this suggests that while BART has a slight edge under certain circum-
stances (e.g., for very small numbers of observations per state), there is limited evidence of
it being systematically better than MRP. It does not appear to be substantially more robust
to mis-specification nor have materially better performance in the simulations considered in
Bisbee (2019).

= ’gam’, formula = y ∼ s(log(x), k =5)).

26

Figure A.11: State-Level Sample Size and Absolute Error

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200

State−Sample Size

A
bs

ol
ut

e
E

rr
or

Method: BART MRP (Bisbee 2019) MRP Deep

Note: This figure plots a smooth regression between the number of state-level observations and the observed
absolute error in the state prediction. The curve for each method is shown in the corresponding color.

Figure A.12: Performance of Methods by Survey

BART MRP (Bisbee 2019) MRP Deep

2500 5000 7500 10000 2500 5000 7500 10000 2500 5000 7500 10000 2500 5000 7500 10000

0.02

0.04

0.06

0.08

Sample Size

M
ea

n
A

bs
ol

ut
e

E
rr

or
 (

M
A

E
)

Note: The figure plots the mean absolute error (MAE) for each survey across the six sample sizes. Results
are averaged across 200 simulations for each survey and sample size.

27

F Software

This appendix provides a brief demonstration of how to use the accompanying software avail-
able at https://cran.r-project.org/package=vglmer or https://github.com/mgoplerud/
vglmer; it can be installed directly into R using, e.g., install.packages("vglmer") for the
CRAN version or devtools::install_github("mgoplerud/vglmer") for the most up-to-
date version. Broadly speaking, the package has been designed to be as similar as possible
to lme4 in terms of how random effects are specified. A similar syntax to mgcv is used for
estimating splines. The default options use a Huang-Wand prior as well as both acceleration
techniques; these can be modified as shown below. Please note this may change in future
versions of the package.

For simplicity, I rely on a dataset from the pscl package on the votes of members of
Congress for the Iraq War. The first model illustrates the flexibility of the accompanying
software from this paper (vglmer) as it includes multiple random effects, random intercepts
and random slopes, as well as splines. The second example illustrates how default options
could be modified if desired.

Fitting Ensembles

library(SuperLearner)

Fitting variational hierarchical models ("variational + glmer")

library(vglmer)

Load data from pscl on the Iraq War Vote

iraq_data <- pscl::iraqVote

iraq_data$region <- state.region[match(iraq_data$state.abb, state.abb)]

head(iraq_data)

#> y state.abb name rep state.name gorevote region

#> 1 1 AL SESSIONS (R AL) TRUE Alabama 41.59 South

#> 2 1 AL SHELBY (R AL) TRUE Alabama 41.59 South

"v_s(gorevote)" estimates a non-linear effect using penalized splines.

fit_vglmer <- vglmer(y ~ v_s(gorevote) + (1 | region) +

(1 + gorevote | rep), data = iraq_data, family = ’binomial’)

fit_vglmer <- vglmer(y ~ v_s(gorevote) + (1 | region) +

(1 + gorevote | rep), data = iraq_data,

Manually specify a Huang-Wand prior

control = vglmer_control(prior_variance = ’hw’),

family = ’binomial’)

From this model, output can be extracted in a highly similar way to lme4. Predictions
can also be done in a straightforward fashion.

Terms can be extracted in a similar fashion to lme4

ranef(fit_vglmer)

28

https://cran.r-project.org/package=vglmer
https://github.com/mgoplerud/vglmer
https://github.com/mgoplerud/vglmer

#> $region

#> id (Intercept)

#> 1 Northeast 0.2501737

#> 2 South 0.2967595

#> 3 North Central -0.3242042

#> 4 West -0.2227290

#>

.... [Other Random Effects Not Shown for Space]

fixef(fit_vglmer)

#> (Intercept) gorevote

#> 8.7964438 -0.1423059

vcov(fit_vglmer)

#> (Intercept) gorevote

#> (Intercept) 2.18534247 -0.0449548442

#> gorevote -0.04495484 0.0009501862

Predict and turn into probability scale

plogis(

predict(fit_vglmer, newdata = iraq_data, allow_missing_levels = TRUE)

)

Finally, a key implication of the paper is that hierarchical models perform well in en-
sembles. The accompanying package extends the popular SuperLearner package in R to
accommodate hierarchical models that can take a formula as an argument. Thus, one can
easily specify an ensemble that includes both simple and deep MRP, and use a data-driven
procedure to select the optimal combination.

The formula must be added manually like any other tuning parameter for

SuperLearner (e.g., using "create.Learner" or manually as below)

SL_v1 <- function(...){

SL.vglmer(formula = y ~ v_s(gorevote) + (1 | region) +

(1 + gorevote | rep), ...)

}

fit_SL <- SuperLearner(Y = iraq_data$y,

X = iraq_data[,c(’gorevote’, ’region’, ’rep’)],

family = binomial(), verbose = TRUE,

SL.library = c(’SL.ranger’, ’SL.glmnet’, ’SL.bartMachine’, ’SL_v1’))

References

Bates, Douglas, Martin Mächler, Ben Bolker and Steve Walker. 2015. “Fitting Linear Mixed-
Effects Models Using lme4.” Journal of Statistical Software 67(1):1–48.

29

Bisbee, James. 2019. “BARP: Improving Mister P Using Bayesian Additive Regression
Trees.” American Political Science Review 113(4):1060–1065.

Buttice, Matthew K. and Benjamin Highton. 2013. “How Does Multilevel Regression
and Poststratification Perform with Conventional National Surveys?” Political Analysis
21(4):449–467.

Chung, Yeojin, Andrew Gelman, Sophia Rabe-Hesketh, Jingchen Liu and Vincent Dorie.
2015. “Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierar-
chical Models.” Journal of Educational and Behavioral Statistics 40(2):136–157.

Eilers, Paul H.C. and Brian D. Marx. 1996. “Flexible smoothing with B-splines and penal-
ties.” Statistical Science 11(2):89–121.

Gelman, Andrew. 2006. “Prior Distributions for Variance Parameters in Hierarchical Mod-
els.” Bayesian Analysis 1(3):515–533.

Gelman, Andrew and Jennifer Hill. 2006. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press.

Goplerud, Max. 2022. “Fast and Accurate Estimation of Non-Nested Binomial Hierarchical
Models Using Variational Inference.” Bayesian Analysis 17(2):623–650.

Huang, Alan and Matt P. Wand. 2013. “Simple Marginally Noninformative Prior Distribu-
tions for Covariance Matrices.” Bayesian Analysis 8(2):439–452.

Jaakkola, Tommi S. and Yuan Qi. 2007. Parameter Expanded Variational Bayesian Methods.
In Neural Information Processing Systems 2007.

Ornstein, Joseph T. 2020. “Stacked Regression and Poststratification.” Political Analysis
28(2):293–301.

Polson, Nicholas G., James G. Scott and Jesse Windle. 2013. “Bayesian Inference for Lo-
gistic Models Using Pólya–Gamma Latent Variables.” Journal of the American Statistical
Association 108(504):1339–1349.

Ruppert, David, Matt P. Wand and Raymond J. Carroll. 2003. Semiparametric Regression.
Cambridge University Press.

Van Dyk, David A. and Ruoxi Tang. 2003. “The One-Step-Late PXEMAlgorithm.” Statistics
and Computing 13(2):137–152.

Varadhan, Ravi and Christophe Roland. 2008. “Simple and Globally Convergent Methods for
Accelerating the Convergence of Any EM Algorithm.” Scandinavian Journal of Statistics
35(2):335–353.

Zhao, Yihua, John Staudenmayer, Brent A. Coull and Matt P. Wand. 2006. “General Design
Bayesian Generalized Linear Mixed Models.” Statistical Science 21(1):35–51.

30

	Models and Inference
	Huang-Wand Prior
	SQUAREM
	Parameter-Expansion
	Splines
	Importance of Acceleration Techniques

	Simulations for Deep Hierarchical Models
	Simulation 1: Importance of Using Deep MRP
	Simulation 2: Full Replication of MRP

	Estimation Time
	Additional Empirical Results: Ensemble
	Additional Empirical Results: BART
	Explanation of the Prediction Error
	Additional Results for BART

	Software

