[Supplementary material]

Subsistence and health in Middle Neolithic (9000–7000) southern China: new evidence from the Dingshishan site

Simei Zhu^{1,2,3}, Fajun Li^{4,*}, Xianglong Chen⁵, Xianguo Fu⁵, Yaowu Hu^{6,7,*}

¹ Key Laboratory of Vertebrate Evolution and Human Origins, Chinese Academy of Sciences, P.R. China

² Department of Archaeology and Anthropology, University of the Chinese Academy of Sciences, P.R. China

³ History College, Zhengzhou University, P.R. China

⁴ Department of Anthropology, Sun Yat-Sen University, P.R. China

⁵ Institute of Archaeology, Chinese Academy of Social Sciences, P.R. China

⁶ Department of Cultural Heritage and Museology, Fudan University, P.R. China

⁷ Institute of Archaeological Science, Fudan University, P.R. China

* Authors for correspondence: 🖂 lifajun@mail.sysu.edu.cn & ywhu@fudan.edu.cn

Supplementary methods

Collagen extraction

The protocol for collagen extraction from human bones followed a modified version of Richards and Hedges (1999) and is introduced in brief as follows. About 2.0g of each bone sample was demineralized in 0.5M HCl at 4°C for a few days and the acid refreshed several times until the remains became soft and no bubbles could be observed. Afterwards, the residues were washed to neutrality with distilled water and soaked in 0.125M NaOH for 20 hours. Then washed to neutrality again, the remains were gelatinized at 70°C for 48h in a 0.001M HCl (pH = 3), filtered and lyophilised for 48h to obtain a dried collagen.

Elemental and isotopic measurements

The purified collagen (about 1mg) was measured at the Department of Archaeology and Anthropology at the University of the Chinese Academy of Sciences, using an IsoPrime 100 IRMS (Elementar, UK) coupled with an Elementar Pyro Cube elemental analyser, with Sulfanilamide, IAEA-600, IAEA-N-2, IAEA-CH-6, USGS 40 and USGS 41 as reference materials. The stable isotope ratios were expressed as δ per thousand (permil or ‰) relative to international standards for carbon (VPDB) and nitrogen (AIR). The measurement errors were less than ±0.2‰ for both δ^{13} C and δ^{15} N values. All the sample information and isotopic results are listed in Table S2.

Osteological observation and analysis

The sex and age estimation for all the human skeletons as well as demographic analysis were conducted following the standards put forward by Wu (1984) and Shao (1985). An abridged life table was made according to the method described by Liu (1981). Furthermore, mortality probability and average life expectancy of humans was calculated (Liu 1981).

Site	Materials	Radiocarbon	Typological	Reference	
		dates	analyses		
Dingsishan	_	_	10 000 BP	Guangxi team	
(phase 1)				<i>et al.</i> (1998)	
Dingsishan	Shell	11 041–11 965 BP	8000–7000 BP		
(phases 2 &					
3)					
Dingsishan	_	_	6000 BP		
(phase 4)					
Huiyaotian	Canarium seed	8590–8430 BP	Similar to	Li et al. (2007,	
	Canarium seed	8385–8315 BP	Dingsishan phase	2017a)	
	Human tooth	9030–8975 BP	2		
Baozitou	Shell	10 730±200BP	8000–7000 BP	Guangxi team	
	Shell	10 565±200BP		<i>et al.</i> (2003);	

Table S1. Results of ¹⁴ C dating an	d typological analyses	for Dingsishan	and other
Dingsishan cultural sites.			

	Shell	9625±120BP		Chen (2016)
	Shell	10 155±200BP		
	Shell	9985±200BP		
	Shell	10 720±260BP		
	Bone	5155±300BP		
Liyupo	Canarium	7430–7315 BP	7000 BP	Chen (2016);
	Charcoal	8025–7960 BP		Li et al.
	Human bone	7430–7320 BP		(2017b)
	Human bone	6944–6741BP		
	Human tooth	7667–7580 BP		
Jiangxian	Shell	9385±140BP	9000–7000 BP	Chen (2016)
	Shell	9245±140BP		
	Shell	8950±130BP		
Ganzao	_	_	7000 BP	Chen <i>et al</i> .
				(2015)

Table S2. Stable isotope values of collagen extract	ed from human	bones with g	good
preservation.			

Period	Tomb number	Sex	Age (years)	Bone part	%C	%N	C/N	δ ¹³ C (‰)	δ ¹⁵ N (‰)	Yield (%)
2	M23	F	35±	Long bone	16.0	6.1	3.1	-21.2	12.7	1.0
2	M24	М	25–30	Long bone	27.7	9.8	3.3	-21.8	11.4	0.7
2	M19	F	50±	Long bone	36.2	12.9	3.3	-21.0	12.3	0.6
2	M20	F	17–19	Long bone	31.9	11.8	3.2	-19.0	11.6	0.9

2	M309	F	45±	Long bone	16.5	6.0	3.2	-21.3	12.4	1.5
2	M21	?	0–5 months	Rib	29.7	11.1	3.1	-21.2	13.4	2.3
2	M17	F	Adult	Rib	20.2	7.5	3.2	-21.1	12.4	1.4
2	M24	М	25-30	Rib	34.3	12.6	3.2	-21.2	11.4	0.7
2	M20	F	17–19	Rib	35.0	12.8	3.2	-19.2	12.1	1.1
2	M309	F	45±	Rib	24.5	8.8	3.3	-21.7	12.2	1.0
2	M36	М	45–50	Rib	44.1	15.8	3.3	-21.7	12.1	0.6
3	M18-1	F	Adult	Rib	28.7	10.1	3.3	-20.6	12.0	1.1
3	M38	М	35–40	Long bone	23.4	8.4	3.2	-21.7	11.8	2.2
3	M48	F	30–39	Long bone	29.0	9.9	3.4	-21.1	12.4	0.9
3	M3	М	Adult	Long bone	29.2	10.1	3.4	-19.6	11.0	0.5
3	M1	F	35±	Long bone	28.6	9.7	3.4	-21.6	12.5	0.7
3	M310	М	>35	Long bone	17.5	6.5	3.1	-21.0	12.9	1.7
3	M301	F	20–25	Long bone	36.9	13.2	3.3	-21.6	11.2	0.6
3	M2	F	>40	Long bone	40.4	14.3	3.3	-21.5	11.9	1.3
3	M230	М	35–45	Long bone	35.5	12.7	3.3	-20.8	12.3	0.6
3	M291	M?	>45	Long bone	34.6	12.2	3.3	-20.2	10.8	0.5

3	M327	М	19–20	Long bone	38.1	13.5	3.3	-21.5	11.9	1.4
3	M278	М	25-30	Long bone	26.4	9.4	3.3	-21.3	11.6	0.6
3	M4-2	?	<16	Long	32.1	11.4	3.3	-21.1	13.6	2.2
3	M196	?	40–50	Long bone	34.5	12.5	3.2	-21.0	12.6	0.6
3	M38	М	35–40	Rib	25.6	9.6	3.1	-21.9	12.2	0.6
3	M27	F	40–45	Rib	33.7	12.2	3.2	-20.8	12.3	0.5
3	M2	F	>40	Rib	40.1	14.3	3.3	-21.3	12.5	0.7
3	M327	М	19–20	Rib	25.0	8.8	3.3	-21.3	11.1	1.1
3	M56	?	0– 5months	Rib	29.3	10.4	3.3	-20.6	15.0	0.6
3	M6-1	F	30–40	Rib	21.5	7.7	3.3	-21.4	12.4	1.1
3	M42	?	4–5	Rib	35.7	12.8	3.3	-20.6	12.3	1.2
3	M4-2	?	<16	Rib	39.1	14.3	3.2	-21.0	13.1	1.7
4?	M26-1	F	35–40	Long bone	35.1	12.7	3.2	-21.6	12.1	1.1
4?	M72	М	40–45	Long bone	38.5	14.0	3.2	-21.2	13.3	1.3
4?	M315	F	35–45	Long bone	36.7	13.0	3.3	-21.2	13.0	0.5
4?	M26-1	F	35–40	Rib	34.2	12.5	3.2	-20.9	12.8	0.9
4?	M72	М	40–45	Rib	32.8	11.8	3.3	-21.6	12.9	0.6

Location	Site	Date	Avera	ge±SD	Total	Sex	Infancy	Early	Juvenile	Adoles	Post-	Middle	Old	Average	Reference
		(BP)	δ ¹³ C	δ ¹⁵ N	population		(0-2	childhood	(7–14	cence	adolesce	age (36–	age	life span	
			(‰)	(‰)	(n)		years)	(3–6	years)	(15–23	nce	55 years)	(>56	(years)	
							(%)	years)	(%)	years)	(24–35	(%)	years)		
								(%)		(%)	years)		(%)		
								(,,,)			(%)				
	Jiangzhai	6900-	-9.6±0.9	8.7±0.5	15	М				0	26.67	26.67	0	35.66	Xi'an Banpo
Northern	(1 st period)	6000	(n=10)	(n=10)		F				40.0	6.67	0	0	30.6	Museum <i>e t al</i> .
China						All				40.0	33.30	26.70	0	30.12	(1988);
(Yellow	Jiangzhai	-	-10.6±1.	8.6±0.6	23	М				0	17.39	26.09	4.35		Pechenkina et
River	(2 nd period)		8 (n=12)	(n=12)		F				8.70	21.74	27.74	0		al. (2005);
Basin)						All				8.70	39.13	47.83	4.35		Wang (2009);
															Guo <i>et al</i> .
															(2011).
Yangtze	Tianluoshan	7000-	-20.0±0.	8.7±0.9											Nan <i>et al</i> .
River		5500	5 (n=10)	(n=10)											(2011)
Basin	Sanxingcun	6500-	-20.1±0.	9.7±0.3	1190	М				10.00	13.45	12.35	0.92	31.04	Zhang &
		5500	2 (n=19)	(n=19)		F				7.31	7.98	5.71	1.09	29.28	Wang (2004);
						Unk				0.92	0.84	0.17	0.12		Hu et al.
															(2007)
						All	4.45	2.69	9.50	18.23	22.27	18.24	2.18	26.26	
Southern	Dingsishan	8000-	-20.9±0.	12.1±0.6	21	М	0	0	0	4.76	19.05	4.76	0		This study; Li
China	(2 nd period)	6000	8 (n=11)	(n=11)		F	0	0	0	4.76	14.29	4.76	0		(unpublished);

Table S3. The stable isotope (C & N) values, death rate and average life span in Neolithic sites in China.

					Unk	14.29	4.76	4.76	4.76	0	4.76	0		Zhang <i>et al</i> .
														(2018)
					All	14.29	4.76	4.76	14.29	33.33	14.29	0	21.75	
Dingsishan	ſ	-	12.2±0.9	361	М	0	0	0.28	6.65	14.40	13.57	0.55	34.26	
(3 rd period)		21.1±0.5	(n=22)		F	0	0	0.28	4.16	9.42	5.83	0.83	33.45	
		(n=22)			Unk	3.32	1.94	3.05	1.39	0.83	2.49	0		
					All	3.32	1.94	3.60	12.47	26.04	24.10	1.66	31.15	

* Demographic data of Dingsishan site provided by F. Li

References

CHEN, W. 2016. Research on Neolithic chronologies and subsistence strategies of Lingnan Area. Unpublished PhD dissertation, Jilin University (in Chinese).

CHEN, X. 2015. Ganzao site in Fusui, Guangxi Province. *China Cultural Relics News* 2015-07-17(008) (in Chinese).

Guangxi team, *et al.* 1998. Excavation of Dingsishan site, Yongning, Guangxi Province. *Archaeology* 11): 11–33 (in Chinese).

Guangxi team, *et al.* 2003. Excavation of Baozitou site, Nanning, Guangxi Province. *Archaeology* 10: 2, 24–36, 99 (in Chinese).

GUO, Y., Y. HU, Q. GAO, C. WANG & M.P. RICHARDS. 2011. Stable carbon and nitrogen isotope evidence in human diets based on evidence from the Jiangzhai site, China. *Acta Anthropologica Sinica* 30: 149–57 (in Chinese).

HU, Y., F. WANG, Y. CUI, Y. DONG, L. GUAN & C. WANG. 2007. Study on the diet of ancient people in Sanxingcun, Jintan, Jiangsu. *Chinese Science Bulletin* 52: 85–88 (in Chinese).

LI, Z. & Y. HUANG. 2008. The Neolithic Huiyaotian site in Nanning, in Q. Liu (ed.) *Yearbook of Chinese archaeology 2007*: 381–83. Beijing: Cultural Relics (in Chinese).

LI, Z., H.C. HUNG, Y. HUANG, H. MATSUMURA & K. SHINODA. 2017a. Huiyaotian site in Nanning, Guangxi, China, in H. Matsumura, H.C. Hung, Z. Li & K. Shinoda (ed.) *Bio-anthropological studies of Early Holocene hunter-gatherer sites at Huiyaotian and Liyupo in Guangxi, China*: 7–16. Tokyo: National Museum of Nature and Science.

LI, Z., H.C. HUNG, Q. HUANG & H. MATSUMURA. 2017b. Liyupo site in Longan,
Guangxi, China, in H. Matsumura, H.C. Hung, Z. Li & K. Shinoda (ed.) *Bioanthropological studies of Early Holocene hunter-gatherer sites at Huiyaotian and Liyupo in Guangxi, China*: 95–104. Tokyo: National Museum of Nature and Science.
LIU, Z. 1981. *Demography*. Beijing: China Renmin University Press (in Chinese).
LU, P. 2011. Study on fauna from shell midden sites along Yong river, Guangxi. *Quaternary Sciences* 4: 715–22 (in Chinese). NAN, C., J. SONG, C. ZHONG & G. SUN. 2011. Carbon and nitrogen stable isotope research on collagen form human and faunal bones from Tianluoshan site, in Peking University & Zhejiang Institute of Archaeology (ed.) *Research on remains from the Tianluoshan site*: 172–205. Beijing: Cultural Relics (in Chinese).

PECHENKINA, E.A., S.H. AMBROSE, M. XIAOLIN & R.A. BENFER, JR. 2005.

Reconstructing northern Chinese Neolithic subsistence practices by isotopic

analysis. Journal of Archaeological Science 32: 1176-89.

https://doi.org/10.1016/j.jas.2005.02.015

RICHARDS, M.P. & R.E.M. HEDGES. 1999. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. *Journal of Archaeological Science* 26: 717–22.

https://doi.org/10.1006/jasc.1998.0387

SHAO, X. 1985. *Anthropometric manual*. Shanghai: Shanghai Lexicographical Publishing House (in Chinese).

WANG, J. 2009. A preliminary study on the health of prehistoric population in the Yellow River basin. *Archaeology* 5: 61–69 (in Chinese).

WU, R. 1984. *Anthropometry methods*. Beijing: People's Medical Publishing House (in Chinese).

Xi'an Banpo Museum, *et al.* 1988. *Jiangzhai*. Beijing: Cultural Relics (in Chinese). ZHANG, J. & G. WANG. 2004. Demographic research on Neolithic tombs in Sanxingcun, Jintan, Jiangsu. *Cultural Relics* 2: 54–60 (in Chinese)