[Supplementary material]

The earliest water buffalo in the Caucasus: shifting animals and people in the medieval Islamic world

Paul D. Wordsworth^{1,*}, Ashleigh F. Haruda^{2,3}, Alicia Ventresca Miller⁴ & Samantha Brown^{5,6}

¹ Institute of Archaeology, University of Oxford, UK

² Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Germany

³ PalaeoBARN, School of Archaeology, University of Oxford, UK

⁴ Department of Anthropology, University of Michigan, USA

⁵ Max Planck Institute for the Science of Human History, Jena, Germany

⁶ Institute for Scientific Archaeology, University of Tübingen, Germany

* Author for correspondence: 🖾 paul.wordsworth@orinst.ox.ac.uk

Semula #	ID	COL1a1	COL1a2	COL1a1	COL1a1	COL1a2	COL1a2						
Sample #		508-519	978–990	978–990	484–498	502-519	292-309	793-816	454–483	586-618	586-618	757–789	757–789
AEB01 TI	Failed												
(372) (AH01)	Falled												
AEBO1 T1													
(372) ZIP	Bos/bison	1105.7		1208.8	1427.9		1649	2131.1		2853.7			3033.5
1967 (AH02)													
AEBO1 TI													
(372) ZID	Bos/bison	1105.7		1208.8	1427.9		1649	2131.1		2853.6			
1968 (AH 03)													
AEB01 T1													
(20) ZID 411	Failed												
DA-AEB-	Paneu												
0518-01													
AEB01 T1													
(20) ZID 412	Bos/bison	1105.6		1208 7	1427.7			2131.1		2853.6	2869.4		
DA-AEB-	D 03/013011	1105.0		1200.7	1727.7			2131.1		2055.0	2007.4		
0518-02													
AEB01 T1													
(20) ZID 413	Bos/bison	1105 7		1208.8	1427.7			2131.2		2853.6	2869.6		
DA-AEB-	D 03/013011	1105.7		1200.0	1727.7			2131.2		2055.0	2007.0		
0518-03													
AEB01 T1													
(20) ZID 414	Water	1105 7		1208.8	1455.8					2853 7			
DA-AEB-	buffalo	1105.7		1200.0	1755.0					2033.1			
0518-04													

Table S1. Peptide markers used in the identification of indeterminate bone fragments (Buckley *et al.* 2009; Welker *et al.* 2016;Brown *et al.* 2021).

AEB01 T1 (20) ZID 415 DA-AEB-	Bos/bison	1105.7		1208.8	1427.9	2131.4	2853.7	
0518-05								
AEB01 T1								
(20) ZID 416	Water			1200 0	1456 0	2121 4	2952 9	
DA-AEB-	buffalo			1208.8	1450.0	2131.4	2033.0	
0518-06								
AEB01 T1								
(20) ZID 417	Bos/bison	1105.8	1103.0	1208.0	1428 1	2121 5		3018
DA-AEB-	BOS/DISOI	1105.0	1195.0	1200.9	1420.1	2131.5		5018
0518-08								
AEB01 T1								
(20) ZID 418	D og/bigon	1105.0	1102.0	1200.0	1428 1			
DA-AEB-	D08/018011	1103.9	1195.0	1209.0	1420.1			
0518-09								

Methodology

Fragments of the indeterminate Bovid sp. long bones were selected for ZooMS analysis to determine species identification. Bovid sp. elements which were not fragmented were not selected in this initial study in order to preserve their morphology. Since sampling was initially conducted in 2018, a non-destructive ZooMS method has been published and may provide a way to revisit these Bovid sp. specimens in the future (McGrath et al. 2019; Martisius et al. 2020). Zooarchaeology by Mass Spectrometry (ZooMS) is a form of peptide mass fingerprinting which is used to assign a taxonomic identification to digested proteins, specifically collagen extracted from bone (Buckley et al. 2009), leather, ivory, and parchment (Fiddyment et al. 2015; Coutu et al. 2016; Ebsen et al. 2019). The method is most reliable in assigning a genus or family level identification but, in some instances, has been successful in making species-specific determinations. Bos and Bison for instance, cannot be separated using ZooMS as the resulting spectra and the peptide markers used for taxonomic identification are identical. The differentiation between Bos/bison and Bubalus bubalis collagen is made on the basis of a single marker, COL1AT38 known as marker B. Bos/bison carry a mass-to-charge (m/z) value of 1427 for their B marker whereas Bubalus bubalis carry a m/z value of 1455 (Buckley et al. 2009; Welker et al. 2016).

Samples were demineralised in 0.6M hydrochloric acid (HCI) for 18 hours. The HCl was removed and the sample was rinsed three times in 50mM ammonium bicarbonate (AmBic). After rinsing, the sample was incubated at 65°C for an hour in 100µl of 50mM AmBic. 50µl of the resulting supernatant was treated with trypsin (Pierce TM Trypsin Protease, Thermo Scientific) at 37°C for 18 hours. Following digestion, the samples were subjected to C18 cleanup (PierceTM C18 Tips, Thermo Scientific), mixed with a matrix solution of α -cyano-4-hydroxycinnamic of 10mg/mL in 50% acetonitrile (ACN)/0.1% trifluoroacetic acid (TFA) and allowed to co-crystallise. All samples were analysed in triplicate using an Autoflex MALDI-TOF (Bruker Daltonics, Bremen). The resulting mass spectra were screened for diagnostic markers using the FlexAnalysis and mMass software (Niedermeyer & Strohalm 2012) and compared against a reference library (Buckley *et al.* 2009; Welker *et al.* 2016). Samples were also analysed alongside multiple blanks which all returned negative results and were determined to be empty.

	Unique Z											
Site	ID	Phase	ID	GL	GLI	GLC	Bp	Dp	SD	Bd	BT	HTC
AEB01	1541	5	Bos taurus							58.69	57.47	25.91
AEB01	3184	5	Bos taurus							60.41	58.27	25.66
AEB01	3535	4	Bos taurus							66.87	66.44	29.6
AEB01	3536	4	Bos taurus							67.06	59.27	29.62
AEB01	1006	6	Bos taurus							67.56	64.53	27.44
AEB01	575	7	Bos taurus							70.07	67.22	31.17
AEB01	2105	10	Bovid sp.							72.08	68.25	30.63
AEB01	1817	8	Bovid sp.							73.86	67.49	33.78
AEB01	1925	8	Bos taurus							75.18	73.56	34.29
AEB01	412	3	Bos/bison*							77.72	75.32	31.02
AEB01	1968	10	Bos/bison*				92.04	84.78		89.8	87.12	38.7
AEB01	293	6	Bovid sp.							91.06	85.66	37.41
AEB01	411	3	$Bubalus\ bubalis^*$							94.81	79.82	39.02
MunichZoo												
(male)	2	0	Bubalus bubalis (re	ef)						102.5	88.5	57.2
AEB01	418	3	Bos/bison*									
AEB01	577	7	Bos taurus				40.64	52.29				

Table S2. Zooarchaeological metrical data for *Bos taurus*, and possible *Bubalus bubalis* from Bardha'a, compared against a *Bubalus bubalis* specimen from Munich Zoo.

* Sent for ZooMS analysis and confirmed to genus/species. Note that Munich Zoo specimen originates from the Staatssammlung für Anthropologie und Paläoanatomie. The specimen number for this is listed under the 'ZID' column.

	Phase	Bos	Probable Bubalus	Total	% Bos of	% Bubalus of	% Bos of phase	% Bubalus of
Phase	NISP	taurus	bubalis	bovids	bovids	bovids	total	phase total
3	234	65	4	69	94	6	28	2
4	509	103	5	108	95	5	20	1
5	460	70	3	73	96	4	15	1
6	891	134	10	144	93	7	15	1
7	550	80	6	86	93	7	15	1
8	394	41	11	52	79	21	10	3
9	246	25	3	28	89	11	10	1
10	232	37	5	42	88	12	16	2

Table S3. Zooarchaeological identification of *Bubalus bubalis* and *Bos taurus* from the excavations of Bardha'a by chronological phase.

References

BROWN, S., K. DOUKA, M.J. COLLINS & K.K. RICHTER. 2021. On the standardization of ZooMS nomenclature. *Journal of Proteomics* 235: 104041. https://doi.org/10.1016/j.jprot.2020.104041 BUCKLEY, M., M. COLLINS, J. THOMAS-OATES & J.C. WILSON. 2009. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. *Rapid Communications in Mass Spectrometry* 23: 3843–54.

https://doi.org/10.1002/rcm.4316

COUTU, A., G. WHITELAW, P. LEROUX & J. SEALY. 2016. Earliest evidence for the ivory trade in southern Africa: isotopic and ZooMS analysis of seventh–tenth century AD ivory from KwaZulu-Natal. *African Archaeological Review* 33: 411–35. https://doi.org/10.1007/s10437-016-9232-0

EBSEN, J.A., K. HAASE, R. LARSEN, D.V.P. SOMMER & L.O. BRANDT. 2019. Identifying archaeological leather: discussing the potential of grain pattern analysis and zooarchaeology by mass spectrometry (ZooMS) through a case study involving medieval shoe parts from Denmark. *Journal of Cultural Heritage* 39: 21–31. https://doi.org/10.1016/j.culher.2019.04.008 FIDDYMENT, S. *et al.* 2015. Animal origin of 13th-century uterine vellum revealed using

noninvasive peptide fingerprinting. *Proceedings of the National Academy of Sciences of the USA* 112: 15066–71. https://doi.org/10.1073/pnas.1512264112

MARTISIUS, N.L. *et al.* 2020. Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals. *Nature Scientific Reports* 10: 7746. https://doi.org/10.1038/s41598-020-64358-w

MCGRATH, K., K. ROWSELL, C.G. ST-PIERRE, A. TEDDER, G. FOODY, C. ROBERTS, C. SPELLER & M. COLLINS. 2019. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: examples from Iroquoian bone points. *Nature Scientific Reports* 9: 11027. https://doi.org/10.1038/s41598-019-47299-x

NIEDERMEYER, T.H.J. & M. STROHALM. 2012. mMass as a software tool for the annotation of Cyclic Peptide Tandem Mass Spectra. *PLoS ONE* 7.

https://doi.org/10.1371/journal.pone.0044913

WELKER, F. *et al.* 2016. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. *Proceedings of the National Academy of Sciences of the USA* 113: 11162–67. https://doi.org/10.1073/pnas.1605834113