		HPP -	MPP -	HPP -	
	FM-FO	MVO	HVO	HVO	
Ingredients, g/kg					
Fish meal *	560	120	300	120	
Krill meal †	-	50	25	50	
Wheat gluten ‡	-	150	90	150	
Corn gluten §	-	150	150	150	
Soybean meal	-	110	14	110	
extracted					
Wheat	157	123	127	124	
Fish oil ¶	280	188	84	86	
Rapeseed oil ¶	-	56	110	110	
Palm oil	-	32	61	61	
Linseed oil **	-	18	36	36	
Premixes ††	3	3	3	3	
Proximate composition, g	/kg				
Protein	422	424	412	426	
Fat	343	318	339	328	
DM	923	925	924	932	
Energy, kJ/g	25.1	25.4	25.4	25.3	

Supplemental Table 1: Composition and proximate composition of experimental diets from trial 1.

FM-FO, 100% fish meal and 100% fish oil; HPP-MVO, 80% plant protein (PP) and 35% vegetable oil (VO); MPP-HVO, 40% PP and 70% VO; HPP-HVO, 80% PP and 70% VO; DM, dry matter.

* South American fish meal, Skretting, Stavanger, Norway

† Aker BioMarine ASA, Oslo, Norway

‡ Cargill Nordic, Charlottenlund, Denmark

§ Cargill, Minneapolis, USA

| Denofa AS, Fredrikstad, Norway

| Statkorn, Oslo, Norway

¶ Skretting, Stavanger, Norway

** Elbe Fetthandel GmbH, Geesthacht, Germany

†† Include vitamins and minerals; Trouw Nutrition, Boxmeer, the Netherlands, proprietary composition Skretting ARC, vitamin and mineral supplementation as estimated to cover requirements according to National Research Council (2011) Nutrient Requirements of Fish and Shrimp. Washington DC: The National Academies Press.

	PP-FO	PP-OO	PP-RO	PP-SO
Ingredients, g/kg				
Fish meal *	180	180	180	180
Wheat gluten †	162	162	162	162
Hi-pro soya ‡	97.3	97.3	97.3	97.3
Soya concentrate §	150	150	150	150
Wheat	70	70	70	70
Fish oil	310	62	62	62
Rapeseed oil	-	-	248	-
Olive oil	-	208	-	-
Soybean oil ¶	-	20	-	218
Palm oil **	-	-	-	30
Linseed oil ††	-	20	-	-
Premixes ‡‡	31.8	31.8	31.8	31.8
Proximate composition,	g/kg			
Protein	411	408	413	406
Fat	341	336	345	332
DM	932	931	936	934
Energy, kJ/g	25.6	25.5	25.8	25.4

Supplemental Table 2: Composition and proximate composition of experimental diets from trial 2.

PP-FO, 70% plant protein (PP) and 100% fish oil; PP-OO, 70% PP, 68% olive oil, 6% soybean oil and 6% linseed oil; PP-RO, 70% PP and 80% rapeseed oil; PP-SO, 70% PP, 70% soybean oil and 10% palm oil; DM, dry matter.

* South American fish meal, Skretting, Stavanger, Norway

† Cargill Nordic, Charlottenlund, Denmark

‡ Felleskjøpet, Stavanger, Norway

§ Imcopa, Araucaria, Brazil

| Skretting, Stavanger, Norway

| D. Danielsen AS, Stavanger, Norway

¶ Denofa AS, Fredrikstad, Norway

** Fritex 24, Aarhus Karlshamns, Karlshamn, Sweden

†† Elbe Fetthandel GmbH, Geesthacht, Germany

Include vitamins and minerals; Trouw Nutrition, Boxmeer, the Netherlands, proprietary composition Skretting ARC, vitamin and mineral supplementation as estimated to cover requirements according to National Research Council (2011) *Nutrient Requirements of Fish and Shrimp*. Washington DC: The National Academies Press. Diluted to ease blending into meal mix.

Name	Drimar saguanças	Amplicon	Accession nº	Annealing
Indiffe	Timer sequences	size, bp	Accession in	temp., °C
New primers				
cyp7a1	F: GAAGACCTTAGCAGGGTAGAAG	178	BT059202.1	60
	R: GCCGAAGAGTAGTCAGGTAGC			
npc111	F: GATAGGAATAGAGCCGACAGC	178	EZ788198.1	60
	R: GGGTATAGAATAGCAACCTAGCT			
Other primers	used and reference article:			
apob100	(1)		GI854619	
srebp1	(2)		TC148424	
srebp2	(3)		DY733476	
dhcr7	(3)		DW561983	
lxr-α	(4)		NM001159338	
abcb11	(5)		NM001124656	
fas	(6)		CK876943	
efla-b	(7)		BG933853	
actb	(7)		AF012125	

Supplemental Table 3: Details about primers used in article.

References:

1. Torstensen BE, Espe M, Stubhaug I *et al.* (2011), Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (*Salmo salar* L.). *Br J Nutr* **106**, 633-647.

2. Minghetti M, Leaver MJ & Tocher DR (2011) Transcriptional control mechanisms of genes of lipid and fatty acid metabolism in the Atlantic salmon (*Salmo salar* L.) established cell line, SHK-1. *Biochim Biophys Acta* **1811**, 194-202.

3. Leaver MJ, Villeneuve LA, Obach A *et al.* (2008) Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (*Salmo salar*). *BMC Genomics* **9**, 299-313.

4. Cruz-Garcia L, Sanchez-Gurmaches J, Gutierrez J *et al.* (2011) Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-alpha in rainbow trout myocytes. *Comp Biochem Physiol A Mol Integr Physiol* **160**, 125-136.

5. Lončar J, Popović M, Zaja R *et al.* (2010) Gene expression analysis of the ABC efflux transporters in rainbow trout (*Oncorhynchus mykiss*). *Comp Biochem Physiol C Pharmacol Toxicol Endocrinol* **151**, 209-15.

6. Morais S, Pratoomyot J, Taggart J *et al.* (2011) Genotype-specific responses in Atlantic salmon (*Salmo salar*) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. *BMC Genomics* **12**, 255-271.

7. Olsvik P, Lie K, Jordal AE *et al.* (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. *BMC Mol Biol* **6**, 21-29.

	Trial 1				Trial 2				
	FM-FO	HPP - MVO	MPP - HVO	HPP - HVO	PP-FO	PP-OO	PP-RO	PP-SO	
Fatty acids, g/100g	total fatty	acid							
Total SFA	25.4	23.5	22.8	22.6	26.8	18.0	13.2	21.2	
Total MUFA	36.7	39.8	43.3	43.3	38.5	58.4	53.5	28.6	
Total <i>n</i> -6	3.4	8.2	13.3	13.1	4.7	13.2	17.2	39.0	
20 : 5 <i>n</i> -3, EPA	9.8	7.5	3.5	3.9	8.1	1.9	2.5	2.0	
22 : 6 <i>n</i> -3, DHA	13.0	8.5	5.0	4.7	10.0	2.3	3.0	2.4	
Total <i>n</i> -3	30.5	26.0	19.9	20.3	24.9	9.5	14.8	10.1	
Total PUFA	33.9	34.2	33.2	33.4	29.6	22.7	32.0	49.1	
<i>n</i> -3 / <i>n</i> -6	8.9	3.2	1.5	1.6	5.3	0.7	0.9	0.3	
Amino acids, g/16N	1								
Taurine	0.9	0.2	0.5	0.3	0.3	0.3	0.3	0.3	
Methionine	2.6	2.6	3.2	2.5	2.2	2.4	2.5	2.2	

Supplemental Table 4: Fatty acid, taurine and methionine content of experimental diets.

FM-FO, 100% fish meal and 100% fish oil (FO); HPP-MVO, 80% plant protein (PP) and 35% vegetable oil (VO); MPP-HVO, 40% PP and 70% VO; HPP-HVO, 80% PP and 70% VO; PP-FO, 70% PP and 100% FO; PP-OO, 70% PP, 68% olive oil, 6% soybean oil and 6% linseed oil; PP-RO, 70% PP and 80% rapeseed oil; PP-SO, 70% PP, 70% soybean oil and 10% palm oil.

	FM	-FO	HPP-MVO		MPP-HVO		HPP-HVO		P (one-way
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	ANOVA)
Plasma lip	oproteii	n choleste	rol, mm	ol/l lipopı	rotein fr	action			
VLDL	1.9	0.7	1.2	0.4	1.2	0.2	2.0	0.4	0.49
LDL	11.0 ^a	1.2	7.7 ^{ab}	1.0	6.6 ^b	1.3	6.5 ^b	0.5	0.0598
HDL	48.9	2.6	45.0	1.7	45.2	4.6	39.4	2.6	0.26

Supplemental Table 5: Plasma lipoprotein cholesterol in each lipoprotein fraction from Atlantic salmon fed diets with different levels of plant ingredients in trial 1, sampled at week 52.^{*}

FM-FO, 100% fish meal and 100% fish oil; HPP-MVO, 80% plant protein (PP) and 35% vegetable oil (VO); MPP-HVO, 40% PP and 70% VO; HPP-HVO, 80% PP and 70% VO.

* Data presented as mean with SEM, *n* 3 (3 tanks per diet with 3 pooled individuals from each tank).

^{a,b} Mean values with unlike superscript letters within a row were borderline significantly different (P < 0.1).

	PP-	FO	PP-OO		PP-RO		PP-SO		P (one-way
	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	ANOVA)
Plasma lip	oproteii	n choleste	rol, mm	ol/l lipopı	rotein fr	action			
VLDL	1.3	0.2	2.7	0.4	2.7	0.6	1.7	0.2	0.09
LDL	6.8	0.9	8.9	0.4	7.4	0.6	8.1	0.8	0.24
HDL	19.9 ^b	0.4	21.3 ^a	0.2	21.2 ^a	0.2	21.1^{ab}	0.2	0.02

Supplemental Table 6: Plasma lipoprotein cholesterol in each lipoprotein fraction from Atlantic salmon fed diets fed diets with high PP and different lipid sources in trial 2, sampled at week 28.*

PP-FO, 70% plant protein (PP) and 100% fish oil; PP-OO, 70% PP, 68% olive oil, 6% soybean oil and 6% linseed oil; PP-RO, 70% PP and 80% rapeseed oil; PP-SO, 70% PP, 70% soybean oil and 10% palm oil.

* Data presented as mean with SEM, n 3 (3 tanks per diet with 3 pooled individuals from each tank).

^{a,b} Mean values with unlike superscript letters within a row were significantly different (P < 0.05).