Technical Appendix
The simulations program was written on C# using Microsoft Visual Studio.NET (2008) by Professor Irina Zakharova of the Department of Software at Tyumen State University (Tyumen, Russia).[endnoteRef:1] The program is intended for academic use only. This appendix describes how the parameters were specified in the simulations reported here. [1: The use of this software is based on a license obtained through the cooperation program between the MSDN Academic Alliance with the Institute of Mathematics and Computer Science, Tyumen State University.]

Each simulation run involved the creation of 10,000 political systems that each held an election. In each of these elections, 10,000 voters cast votes. The positions of voters on the first or left-right dimension were drawn from a truncated normal distribution with a range of [0, 1] and a mean that is located in the middle of the scale, at .5. The standard deviations vary across the systems; they were drawn from a normal distribution with a mean of .26 and a SD=.04. These parameters are consistent with survey data (Eurobarometer and CSES), which indicate that the standard deviations of voter left-right opinion themselves appear to be normally distributed with a range of approximately .13 to .39 (on a 0-1 scale). In order to make the simulated environments as close to the real data as possible, only systems with voter standard deviations in that range were allowed. Each election also has J parties, 3 ≤ J ≤ 7, where J is drawn from a uniform distribution. The party positions themselves were drawn randomly from the same distribution as the voters’ positions. To enhance verisimilitude, party distributions in which all parties are located on the same side of the true voter median were disallowed.
Except in the no-error environment, each voter’s utility for each party in the system in question involves some degree of error. These errors were drawn from a normal distribution with a mean of zero and a standard deviation that varies across systems. The error standard deviation used in any given system was drawn from a uniform distribution with range [0, 0.2]. We also experimented with 0.1 and 0.3 as the upper limit, but found that 0.2 created an adequate amount of error for our purposes.
To accommodate valence, two versions of the program were created – one that draws valence scores from a uniform distribution with range [0, 1] and another that draws valence from a skew normal curve. For both operationalizations, the parties' raw valences are transformed into proportions and multiplied by the product of the number of parties and the mean voter-party distance in the system. The first element in the product sets the average party valence in each system to 1; the second then rescales that value so that the average valence in each system equals its average voter-party distance. This is done in order to balance out the relative sizes of the valence and policy distance components in voter utility calculations. The relative weight of the two components can then be manipulated by means of the mixing parameter β. For the analyses reported here, equal numbers of simulations were performed with β set manually at values 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5.
In the case of skew normal valence, we used a function that resembles the univariate skew-normal distribution. Its density function is

where α is the shape parameter. Here, φ is the standard normal density and Φ is its cumulative distribution function. The mean was set at 0.5 and the standard deviation at 0.2 for these simulations. When α = 0, the normal distribution is recovered. As the absolute value of α gets larger, the amount of skewness increases. The distribution is right-skewed if α > 0 and is left-skewed if α < 0. In the simulations, α is drawn randomly from a uniform distribution with range [-4. 4]. Unlike the other functions used in the program which create probabilities of a certain draw, the curve created by this function determines the raw valence scores (i.e., the party gets the raw valence score that is directly above its position).

In the environment with two policy dimensions, positions of parties and voters on the first and second dimension may be correlated to a certain degree. Each voter's and party's position on the second dimension is randomly generated through the Monte-Carlo method using the formula where x1 is a position on the first dimension, x2 is a randomly generated number drawn from the same distribution as x1, r is the correlation between dimensions, and x2’ is the second dimension position for this voter or party. . The correlation coefficient between party and voter positions is the same for each voter and party in a given system and is drawn randomly from a uniform distribution with range [0, 1]. The mixing parameter γ, which determines the salience of the distance component on the second dimension relative to the first, is set manually. Similar to the β parameter, equal numbers of simulations were performed with γ set at values 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
Once the party positions are drawn from a particular distribution and other input parameters are determined, the program runs a set of 10 elections for each system. All input parameters stay constant except for the voter positions and the error term in each utility function. The average results for each set of 10 elections is reported as a single election result. In our simulations, the within-set results were very robust (for the most part, the standard deviations of the output parameters are less than .001).

image1.wmf
)

(

)

(

2

)

(

x

x

x

f

a

f

F

=

oleObject1.bin

image2.wmf
2

2

'

2

)

1

(

x

r

rx

x

-

+

=

oleObject2.bin

