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Abstract

This Addendum provides the demonstration of Theorem 1.

1 Formal proof of the impossibility result

We focus on societies with a finite set N = {1, ..., N} of agents with generic
element i. Let X be the set of social states. Individual preferences are denoted
<i for i ∈ N and are assumed to be orderings, that is reflexive, transitive and
complete binary relations on X. A social preference relation is denoted < and
it is also assumed to be an ordering on X.
Let R (resp., R++) denote the set of (resp., positive) real numbers. We

suppose that X can be written as X = T × (M1 × ...×MN ), where Mi ⊆ R++
is the set of possible quantities of a special commodity called ‘money’that agent
i may own, while T is an arbitrary nonempty set of social states described
entirely except for the money allocation. Let m = (m1, ...,mN ) be a vector in
M1 × ... ×MN which describes the amount of money that each agent i ∈ N
obtains. A social state x ∈ X is thus a tuple x = (t,m) where t ∈ T . For every
m ∈ M1 × ... ×MN and every i ∈ N , let m−i denote the amount of money
that all agents except i receive, so that we can write m = (m−i,mi). For every
x ∈ X, and for every mi ∈ R, we write

x~i mi ≡ (t, (mi +mi,m−i)) ∈ X

to denote the modification of alternative x consisting of giving (or taking away)
mi extra units of money to agent i, such that the modified alternative is still in
the set of social states X. For every x ∈ X, and for every m = (m1, ...,mN ) ∈
RN , we also write

x~m ≡ (t, (m+m)) ∈ X

to denote the modification of alternative x consisting of giving (or taking away)
m1 units of money to agent 1, m2 units of money to agent 2, and so on, such
that the modified alternative is still in the set of social states X. Observe that
for a given m = (m1, ...,mN ) ∈ RN , x~m = (((x~1 m1)~2 m2) ...)~N mN .
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The following assumptions together define a rich economic environment:

Richness (R):

• Indifference to others’money (R1). For all x ∈ X, all i ∈ N , and all
mi ∈ R such that x~i mi ∈ X: x~i mi ∼j x for all j ∈ N\{i}.

• Desirability of own money (R2). For all x ∈ X, all i ∈ N , and all mi ∈ R
such that x~i mi ∈ X: x~i mi <i x⇔ mi ≥ 0.

• Divisibility of own money (R3). For all i ∈ N and all x, y, z ∈ X such that
x �i y �i z there exist mi,m

′
i ∈ R such that x~i mi ∈ X, z ~i m′i ∈ X,

y �i x~i mi �i z, and x �i z ~i m′i �i y.

R1 entails a society in which there is neither ‘money envy’nor ‘money sym-
pathy’: therefore our impossibility result is not due to any externality of this
sort. R2 imposes a mild monotonicity assumption on individual preferences.
R3 implies some sort of Archimedean continuity of individual preferences: it
states that it is always possible to vary the amount of money possessed by an
individual in such a way as to alter the ranking of any physical alternatives.
This assumption is satisfied if, for example, money becomes progressively more
valuable as its scarcity increases.
At a more general level, our Richness assumption plays a conceptually simi-

lar role to the standard ‘Diversity’assumptions used in the literature on single-
profile Arrovian impossibility results1 in that it guarantees a suffi ciently large
space of alternatives for a given profile of individual preference relations. Our
economic environment is similar to that analysed by Kaplow and Shavell in their
study of nonwelfarist social welfare functions.2

Finally, our three basic axioms for < can be formally stated as follows:
Weak Pareto (WP): For all x, y ∈ X, if x �i y for all i ∈ N , then x � y.
Non-Dictatorship (ND): For all i ∈ N , there exist x, y ∈ X such that x �i y

and y < x.
Non-Interference (NI): Let x, y ∈ X be such that x � y, and let x′,y′ ∈ X

be such that, for some i ∈ N ,

x′ < i x⇔ y′ <i y
not (x′ ∼i x)

x′ ∼ j x and y′ ∼j y for all j ∈ N\{i} .

Then y′ � x′ whenever x′ �i y′.
In order to prove Theorem 1, we first prove a simple technical Lemma.

1See, for example, Feldman and Serrano 2008.
2Kaplow and Shavell 2001.
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Lemma 1 : Assume R. Let a social welfare ordering < satisfy WP. Consider
x, y ∈ X, x 6= y, such that x �i y for some i ∈ N . Then:

(i) if y < x, then there exist x′, y′ ∈ X, such that x′ �i y′ and y′ � x′;
(ii) if y � x, then for any j ∈ N\{i}, there exist x′, y′ ∈ X, such that

x′ �i y′, y′ �j x′ and y′ � x′.

Proof. 1. By R2 and R3, for all k ∈ N and all x,y ∈ X such that x �k y, there
exist mk,m

′
k ∈ R such that x~kmk ∈ X, y~km′k ∈ X and x �k x~kmk �k y

and x �k y ~k m′k �k y.
Part (i). 2. Suppose x, y ∈ X, x 6= y, are such that x �i y and y < x. If

y � x then the result follows trivially. So, suppose y ∼ x.
3. By step 1, there exists mi ∈ R such that x~imi ∈ X, x �i x~imi �i y.

By R1, x ~i mi ∼j x, for all j ∈ N\{i}. Consider next any j ∈ N\{i}.
By R2, there exists mj ∈ R such that mj < 0, (x~i mi) ~j mj ∈ X and
x~imi �j (x~i mi)~jmj and by the transitivity of <j , x �j (x~i mi)~jmj .
By R1, x ~i mi ∼l (x~i mi) ~j mj , for all l ∈ N\{j}. Proceeding recursively
for all k ∈ N , it is possible to construct a social state x ~m ∈ X such that
x �k x ~m for all k ∈ N . By WP and the transitivity of <, y � x ~m. The
desired result then follows noting that x~m �i y.
Part (ii). 4. Suppose x, y ∈ X, x 6= y, are such that x �i y and y � x. If

y �k x, for all k ∈ N\{i}, then the result follows trivially. So, suppose x <j y,
for some j ∈ N\{i}.

5. Consider i ∈ N . By step 1, there exists mi ∈ R such that x �i y~imi �i
y. By R1, y ~i mi ∼k y, for all k ∈ N\{i}. Consider next j ∈ N . By the
transitivity of <j , x <j (y ~i mi). Then, by R2 and R3, there exists mj ∈ R
such that mj > 0, (y ~i mi) ~j mj ∈ X and (y ~i mi) ~j mj �j x. By R1,
y~imi ∼k (y ~i mi)~jmj , for all k ∈ N\{j}. Finally, consider k ∈ N\{i, j}.
By R2, there exists mk ∈ R such that mk > 0, ((y ~i mi)~j mj) ~k mk ∈ X
and ((y ~i mi)~j mj)~kmk �k (y ~i mi)~jmj and by the transitivity of <k,
((y ~i mi)~j mj)~kmk �k y. By R1, ((y ~i mi)~j mj)~kmk ∼l (y ~i mi)~j
mj , for all l ∈ N\{k}. Proceeding recursively for all k ∈ N , it is possible to
construct a social state y~m ∈ X such that y~m �k y for all k ∈ N . By WP
and the transitivity of <, y ~m � x. The desired result then follows noting
that x �i y ~m and y ~m �j x.

We can now prove our main result.

Theorem 1: Assume R. There is no social preference ordering < that sat-
isfies WP, ND, and NI.

Proof. 1. By R2 and R3, for all i ∈ N and all x,y ∈ X such that x �i y,
there existmi,m

′
i ∈ R such that x~imi ∈ X, y~im′i ∈ X and x �i x~imi �i y

and x �i y ~i m′i �i y.
2. Fix i, j ∈ N , j 6= i. By ND and Lemma 1(i), there exist p, q ∈ X such

that p �i q, and q � p. By Lemma 1(ii), we suppose q �j p, without loss of
generality. By ND and Lemma 1(i), there are x, y ∈ X such that y �j x and
x � y. Again, by Lemma 1(ii), x, y can be chosen such that x �i y, without
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loss of generality. Further, without loss of generality, let j = 1, and i = 2. We
want to show that, starting from p, q, x, y, it is possible to construct social states
p̃, q̃, x̃, ỹ ∈ X such that q̃ � p̃, x̃ � ỹ, but p̃ � x̃, ỹ � q̃, yielding the desired
contradiction.
3. In particular, for any social states z, z′ ∈ X, and for any k ≤ N , we

write z �(k) z′ (respectively, z ∼(k) z′) to mean that z is strictly preferred
(respectively, indifferent) to z′ by the first k agents in N . We shall proceed
by induction to show that starting from p, q, x, y, for any k ≥ 2, it is possible
to construct social states pk−1, qk−1 ∈ X such that qk−1 � pk−1 and to find
two social states xk−1, yk−1 ∈ X such that xk−1 � yk−1, pk−1 �(k) xk−1, and
yk−1 �(k) qk−1. The desired contradiction is then obtained by WP, and the
transitivity of <, for k = N .
4. (k = 2.) We show that, starting from p, q, x, y, there exist social states

p1, q1,x1, y1 ∈ X such that q1 � p1, x1 � y1, p1 �(2) x1, and y1 �(2) q1.
There are in principle a number of cases to consider. Consider the configuration
x <1 p, p �2 x, y �1 q, and q <2 y.
By step 1, there exist m2,m

′
2 ∈ R such that x ~2 m2 ∈ X, y ~2 m′2 ∈ X,

p �2 x ~2 m2 �2 x and y ~2 m′2 �2 q <2 y. Furthermore, noting that by
construction p �2 q and x �2 y, by step 1, m2,m

′
2 ∈ R can be chosen such that

x~2m2 �2 y~2m′2. By R1, x~2m2 ∼i x and y~2m′2 ∼i y, for all i ∈ N\{2}.
Therefore, by NI, it follows that x~2 m2 < y ~2 m′2.
Further, by step 1, there exist m1,m

′
1 ∈ R such that p ~1 m1 ∈ X, q ~1

m′1 ∈ X, p ~1 m1 �1 x ~2 m2 ∼1 x <1 p and y ~2 m′2 ∼1 y �1 q ~1 m′1 �1
q. Furthermore, noting that by construction q �1 p and y �1 x, by step 1,
m1,m

′
1 ∈ R can be chosen such that q~1m′1 �1 p~1m1. By R1, p~1m1 ∼i p

and q~1m′1 ∼i q, for all i ∈ N\{1}. Therefore, by NI, it follows that q~1m′1 <
p~1 m1.
If x~2m2 ∼ y~2m′2, then consider the social state (x~2 m2)~m′′ ∈ X with

m′′k > 0 for all k ∈ N . By step 1 and R1, m′′1 ,m′′2 ∈ R can be chosen such that
p~1 m1 �l (x~2 m2)~m′′ �l (x~2 m2), l = 1, 2. By WP and transitivity, it
follows that (x~2 m2)~m′′ � y~2m′2. A similar argument holds if q~1m′1 ∼
p~1m1. Therefore, without loss of generality, we can assume x~2m2 � y~2m′2
and q~1m′1 � p~1m1. It is easily checked that any initial configuration of the
social states p, q,x, y can be similarly transformed using NI (and WP), which
proves our claim for k = 2, by setting p1 = p~1m1, q

1 = q~1m′1, x1 = x~2m2,
and y1 = y ~2 m′2. Furthermore, if N = 2, by WP, it follows that p1 � x1 and
y1 � q1, yielding the desired contradiction. So suppose that N > 2.
5. (Induction step.)
5.1. Suppose that there exist pk−2, qk−2, xk−2, yk−2 ∈ X such that qk−2 �

pk−2, xk−2 � yk−2, pk−2 �(k−1) xk−2, and yk−2 �(k−1) qk−2. If pk−2 �k xk−2,
and yk−2 �k qk−2, the result follows immediately. So suppose xk−2 <k pk−2.
By R2, for any mk,m

′
k ∈ R++, pk−2 ~k mk ∈ X, qk−2 ~k m′k ∈ X, pk−2 ~k

mk �k pk−2, and qk−2 ~k m′k �k qk−2. Noting that xk−2 <k pk−2, by step 1,
mk,m

′
k ∈ R++ can be chosen such that qk−2~km′k �k pk−2~kmk �k xk−2. By

R1, pk−2~kmk ∼i pk−2 and qk−2~km′k ∼i qk−2, for all i ∈ N\{k}. Therefore,
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by NI, it follows that qk−2 ~k m′k < pk−2 ~k mk.
If qk−2~km′k ∼ pk−2~kmk , then consider the social state

(
pk−2 ~k mk

)
~

m′′ ∈ X, with m′′i < 0 for all i ∈ N . By step 1, and R1, m′′1 ,m′′2 , ...,m′′k ∈ R can
be chosen such that pk−2 ~kmk �j

(
pk−2 ~k mk

)
~m′′ �j xk−2, all j ≤ k. By

R2, WP and the transitivity of <, it follows that qk−2~km′k �
(
pk−2 ~k mk

)
~

m′′. Therefore, without loss of generality, we can assume qk−2~km′k � pk−2~k
mk. If yk−2 �k qk−2 ~k m′k, the desired result is obtained. Hence, suppose
qk−2 ~k m′k <k yk−2. Let kpk−2 ≡ pk−2 ~k mk and kq

k−2 ≡ qk−2 ~k m′k.
5.2. The reasoning in step 5.1 can be repeated for all i > k to give a sequence

of social states
{
ip
k−2,i q

k−2}N
i=k

in X such that for all i, ipk−2 �i i−1pk−2,
iq
k−2 �i i−1q

k−2, iqk−2 �i ip
k−2 �i xk−2, and by R1 ip

k−2 ∼j i−1p
k−2
i ,

iq
k−2 ∼j i−1qk−2, all j ∈ N\{i}, where k−1pk−2 ≡ pk−2 and k−1q

k−2 ≡ qk−2.
Therefore, Nqk−2 � Np

k−2. Let q′k−2 ≡ Nq
k−2and p′k−2 ≡ Np

k−2.
5.3. By WP p′k−2 � xk−2: if yk−2 < q′k−2 then a contradiction imme-

diately follows. Therefore assume q′k−2 � yk−2 and noting that yk−2 �(k−1)
q′k−2 ∼(k−1) qk−2, by Lemma 1, we suppose q′k−2 �k yk−2, without loss of
generality. In order to simplify the notation, let qk−1 ≡ q′k−2 and pk−1 ≡ yk−2,
and recall that pk−1 �k−1 qk−1, qk−1 �k pk−1, and qk−1 � pk−1.
By ND and Lemma 1, there exist xk−1, yk−1 ∈ X such that xk−1 �k−1

yk−1, yk−1 �k xk−1, and xk−1 � yk−1. Following the same reasoning as in
step 4 above, without loss of generality, we suppose that pk−1 �k−1 xk−1,
pk−1 �k xk−1, yk−1 �k−1 qk−1, and yk−1 �k qk−1. If pk−1 �(k−2) xk−1 and
yk−1 �(k−2) qk−1, then pk−1 �(k) xk−1, and yk−1 �(k) qk−1, and the desired
result holds.
5.4. If, for some i ≤ k − 2, either xk−1 <i pk−1, or qk−1 <i yk−1, or both,

holds, then letm = max
{
i ≤ k − 2 : either xk−1 <i pk−1, or qk−1 <i yk−1, or both

}
and note that since pk−1 �(k−1) qk−1 by construction, then by applying (re-
peatedly, if necessary) NI, WP, and R1, it is possible to construct social states
mx

k−1,m y
k−1 ∈ X such that pk−1 �m mx

k−1 �m my
k−1 �m qk−1, mxk−1 ∼i

xk−1, myk−1 ∼i yk−1, all i ∈ N\{m}, and mxk−1 < my
k−1. If mxk−1 ∼ my

k−1,
then consider the social state my

k−1 ~ m ∈ X with ml < 0 for all l ∈ N .
By step 1 and R1, mm,mm+1, ...,mk ∈ R can be chosen such that myk−1 �i
my

k−1 ~m �i qk−1, all m ≤ i ≤ k. By WP and the transitivity of <, it follows
that mxk−1 � my

k−1~m. Therefore, without loss of generality, we can assume
mx

k−1 � my
k−1.

5.5. This reasoning can be iterated for all i < m, to give a sequence of
social states

{
m−ix

k−1,m−i y
k−1}m−1

i=0
in X such that, for all i, pk−1 �m−i

m−ix
k−1 �m−i m−iyk−1 �m−i qk−1, and by R1 m−ixk−1 ∼j m−i+1xk−1, m−iyk−1 ∼j

m−i+1y
k−1, all j ∈ N\{m− i}, and m−ix

k−1 � m−iy
k−1, where m+1x

k−1 ≡
xk−1 and m+1y

k−1 ≡ yk−1. Therefore, by letting x′k−1 ≡ 1x
k−1 and y′k−1 ≡

1y
k−1, we have x′k−1 � y′k−1 and noting that from the previous argument it

follows that pk−1 �(k) x′k−1, y′k−1 �(k) qk−1, the desired result is obtained.
6. For any finite N , if k = N , define the social states p̃ ≡ pk−1, q̃ ≡ qk−1,

x̃ ≡ x′k−1, and ỹ ≡ y′k−1. By construction q̃ � p̃ and x̃ � ỹ, whereas given
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step 5 above, it follows by WP that p̃ � x̃, and ỹ � q̃, which yields the desired
contradiction.
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